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ABSTRACT 

An Artif ic ial Visual System ( AVS ) has 
been deve l oped to simplify 
three - dimensiona l microscope image~ f o r 
presentation and man ipul ation l n an 
interactive compu ter g raphics s ystem. The 
AVS consi sts o f several se ts of spatial 
fil t e rs t ha t decompose an image along three 
differ ent mea s ureme nt con tinua. A 
recombination algorithm processes the 
filter ou tputs to detect ob j ects, to 
eliminate noise, and to map the detected 
object s i nto po i nts in a multidimensional 
featu re space . Re cent discoveries 
regarding the geometry of the p oi n ts i n t he 
featur e space are descri bed . One r ecent 
r esult simp lifies the AVS by decreas i ng the 
numbe r of filters required t o obta i n the 
same measuremen ts. Not onl y are accurate 
measurements possible, but certain image 
distortions can be modelled and 
counteracted in t he feature s pace . 

Key words: compu ter vision , pattern 
recognition , inte rac ti ve computer graphics 

Introduction 

Dif ficulti es in the analysis of 
na tural imag e s arise from ra nd om noise, 
aliasing from the digitizat ion grid, 
s y stemat i c distortions such as optical 
b lur, and fr om an excess of informati on 
accurate but irrelevant data, relevant but 
ambiguous data, o r simply too much relevant 
data that we call "information 
ove~load". M~ny techni que s exist for 
correcting nOls e and distortion [1), but 
the informat i on overload problem requires 
an understanding of the aspects of the 
image tha t ar e important for the particular 
application and techniques for specifying 
and extracting the re l evan t aspects of the 
image. Once the informati on is extracted, 
then interactive computer graphics can be 
applied to present the ex tracted 
information and to provide powerful 
interactive facilities to support image 
interpretation activity [ 2 ). 

We have devel oped an interface between 
ima ge processing and computer graphics 
syst ems that both prov ides a mechanism for 
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specifying the sa l ient aspect s of the image 
and extrac ts that information in a form 
that can be used to build an interactive 
graphi cs mode l of an image . The interface 
takes the for m of an artificial visual 
system (AVS ). 

The d evelopment of the AVS as a means 
for addressing the information overload 
pr o blem has been motiva t ed by a biomedical 
research problem involving interpretation 
of three-dimensional fluorescence images. 
In this paper we will p r ese n t an overview 
of the biomedical research probl em and then 
show how the AVS for this problem wa s 
designed. Additional applicati ons of AVS 
technique s will be dis cussed. 

Background 

Our goal is to elucidate the 
contractile mechan ism of smooth muscle 
cell s [3,4) . One of the proteins believed 
to play a role in that mechanism is 
a-actinin, which occurs in two types of 
discrete bodies of concentration: 
irregular plaques on the cell membrane, and 
oblong bodies distributed throughout the 
c ytoplasm and or i ented within 30 degrees of 
the long axis of the ce ll. Organizational 
patterns such as strands of these bodies 
branc hing and twist ing through three 
dimensions may be discerned if the 
loca ti ons of the bodies and the 
orientations of the oblong bodies are 
known. Different kinds of organizational 
patterns could support different hypotheses 
of cell structure and function. 

A three-dimensional image of the 
protein distribution fn a single, isolated 
cell is obtained by acquiring a series of 
2-D optical sections of the cell using 
Fluorescence Digital Imaging Microscopy 
[3,5). Several types of noise are 
minimized using averaging and normalizing 
operations during image aquisition [3]. 

There remains a serious optical 
distortion in the direction of focus 
arising from fluorescence sources from 
out-of-focus planes above and below the 
foc al plane. This distortion has been 
empirically modelled by imaging a 
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fluorescent bead smaller than a voxel. The 
image obtained serves as an empiric51 
estimate of the point spread function of 
the overall optical system and is used in a 
constrained iterative restoration procedure 
to reduce the distortion in the cell images 
(3). The restoration reverses about 80% of 
the optical distortion, but significant 
distortion remains in the direction of 
focus. This residual distortion elongates 
the image of a spherical object in tne 
direction of focus yielding an apparent 
axial ratio of about 3:1. 

The restored image is still difficult 
to analyze due to information overload. A 
64x64x64 cell image can contain over 200 
discrete concentration bodies . The oblong 
bodies are about 1 voxe1 wide and about 5 
voxels long, but their oblique orientation 
and the residual distortion spread the 
image of each body over a larger volume. 
Locating the bodies manually is a tedious 
task requiring constant flipping between 
adjacent image planes, correlating traces 
of the bodies through the planes. 
Estimating the orientations of the bodies 
from these traces is even more difficult. 
In addition to the residual optical 
distortion, the small apparent size of the 
bodies makes a1iasing from the digitizing 
grid a serious concern; the difference in 
the digitized image between two small 
bodies at nearby orientations involves a 
subtle shift qf energy among a few voxels. 

The three-dimensional nature of the 
data adds more information overload. Since 
the structures we seek twist through three 
dimensions, no single two-dimensional view 
can capture all of the relevant information 
about the structures. 

We need, then, a system to simplify 
the restored three-dimensional image by 
locating the protein bodies and determining 
the orientation of the oblong bodies. The 
system we have developed is called a 
three-dimensional artificial visual system. 

Designing an Artificial Visual System 

An Artificial Visual System (AVS) is a 
set of filters along some equivalence 
dimension (e.g. spatial frequency, size. 
orientation) and a recombination algorithm 
for mapping the filter responses into a 
perceptual feature space [4,6). Defining 
an ,AVS involves selecting approprate 
equ~valence dimensions, designing filters 
sensitive to different values along tnose 
dimensions, and defining the recombination 
algorithm to perform the visual task at 
hand. 

The equivalence dimension is a 
continuum along which measurements can be 
made. Objects in the image will be treated 
as stimuli to be represented or measured 
along these continua. Complex structures 
may require measurements on several 
equivalence dimensions to adequately 
characterize the structure of the stimulus. 
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A sequence of filters is defined for 
each equivalence dimension. Each filter is 
sensitive to a different range of values 
along the continuum. Normally, the 
sensitivity profiles of the sequence of 
filters on their equivalence dimension are 
designed to be tapered and overlapping. 
Such an ensemble of filters provides a 
unique sequence of responses for every 
single-valued stimulus on the equivalence 
dimension [4,7). The filter responses 
serve as coordinates of the stimuli in a 
multidimensional feature space (8). 
Measurements of the stimuli are based on 
the geometry of the mapping of stimuli into 
this feature space. 

The purposes of the filters are as 
follows: (1) to decompose the image into 
separate , bands of information so that 
important and useful information can be 
identified more easily; (2) to represent 
the a priori knowledge concerning the 
objects being sought and the precision of 
measurement required and (3) to define a 
feature space into which the image will be 
mapped (6). Use of a priori knowledge in 
the filter design enhances both the 
sensitivity and the efficiency of the 
analysis. Sensitivity is enhanced because 
the filters can be tuned to detect the 
structures of interest. The filters can 
also embody the degree of uncertainty in 

the a priori knowledge, as demonstrated in 
the present study where the orientations 
and sizes of the oblong dense bodies are 
known a priori only to an approximation. 
Efficiency is enhanced because the a priori 
knowledge decreases the number of filters 
required for the task; a more generalized 
analysis or higher measurement precision 
requires a finer or more complete 
decomposition of the image, requiring more 
filters. The AVS allows a priori 
information to be incorporated in the 
design of the filters rather than in the 
design of new problem-specific heuristic 
algorithms. 

The recombination algorithm merges the 
information from each set of filters to 
perform the visual task required. The 
algorithm may involve thresholding to 
eliminate noise, averaging to compute a 
measurement, location of relative extrema 
to create a representation or detect a 
particular kind of stimulus. Other 
recombination algorithms provide edge 
detection or texture representations [6,9). 
If the objective of the recombination 
algorithm is to create a representation of 
the stimulus to be operated upon later by 
other processes, then the AVS serves as the 
"low-level vision" compohent of the vision 
system. If the objective of the 
recombination algorithm is to produce the 
required measurement, then the task is 
called a "pre-attentive" operation. 

The AVS for the Cell Study 

For the 
equivalence 

smooth muscle 
dimensions 
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study, three 
are defined: 
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length, declination, and azimuth. The 
filters for each dimension are constructed 
in the spatial domain and convolved with 
the 3-D image using Fourier Transform 
methods. The filtering operation produces 
three series of filtered images. 
Fortunately, we can arrange the 
computations so that the filtered images 
can be created, processed, and discarded, 
so it is not necessary to store the entire 
ensemble of 3-D filtered images at once. 

The filters along the length dimension 
are used to locate the bodies, 
differentiate them from noise phenomena in 
the image, and to measure the lengths of 
the bodies. · The filters are shaped 
(approximately) as truncated cones of 
length R-3, 5, 7, and 9 voxels (4). See 
Appendix 2 for details of filter creation. 
The width of the cone is determined by a 
priori information concerning the expected 
variability in the orientations of the 
oblong bodies. 

When convolved with the fluorescence 
image of the cell, a local relative maximum 
response occurs when the filter contains a 
locally maximum fluorescence intensity. 
These local maxima include the centers of 
all of the concentration bodies due to the 
symmetry both of the filters and of the 
bodies, along with maxima caused by noise 
o r fluorescence hot spots unrelated to the 
dense bodies we seek. 

The recombination algorithm for 
processing the output of the R series 
filters inv olves two steps. First, the 
local maximum responses are located and 
t hresholded to eliminate miniscule 
fluorescen c e hot spots and random noise. 
Second, if a real concentration body has 
been found, then the energy captured in the 
sequence of R filters increases until the 
filter si z e exceeds the size of the body, 
at which point the filter response remains 
c onstant. Thus, the length measurement 
works as follows: If, at a particular 
location in the image, the smallest filter 
(R=3) has an superthreshold maximum and the 
R=5 filter response at the same location is 
also a superthreshold maximum that is 
significantly (1.2 times) greater than the 
R= 3 response, then a valid body (length at 
least 4) has been found. The estimated 
length will be increased to the size of the 
next larger R filter as long as the next R 
filter has a superthreshold maximum at the 
same location with an inten s ity greater 
( 1.2 t i mes ) than the respo nse of the 
current R filter. 

The orientations of the oblong bodies 
are measured in terms of the declination 
( 0 <=theta<=90 ) of the long axis of the body 
f r om the y axis of the 3-D image and the 

azimuth (0<-phi<360) about the y axis using 
the x axis as phi=O. (The 3-D images are 
acquired with the long axis of the cell 
oriented vertically in the microscope 
i mage, corresponding to the y axis of the 
3-D image. ) 
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The filters for the theta and phi 
equivalence dimensions are constructed by 
partitioning the R filters into "hollow 
cones" for theta measurements or "wedges" 
for phi measurements (4). Theta filters ­
are centered at theta-O, 5, 10, 15, 20, 25, 
and 30 degrees. Phi filters are centered 
at phi-O, 60,120,180,240, and 300 
degrees. See Appendix 2 for details of the 
creation of the phi filters. The R filters 
at R-5, 7, and 9 are thus partitioned into 
theta and phi filters giving a total of 40 
filters covering all combinations of values 
in all three equivalence dimensions. 

The 36 theta and phi filters are 
convolved with the input image. For each 
body identified by the R filters, we record 
the responses at the body center of the 
twelve theta and phi filters corresponding 
to the size of the body. We use only the 
theta and phi filters best matching the 
body size to avoid incorporating respon~es 
to nearby structures or noise into t h e 
orientation measurements. (There is some 
evidence that responses to fluorescence 
signals outside the body can be eliminated 
mathematically without using separate 
filter sequences for each possible length. 
We plan to investigate this possibility 
later.) These filter responses form two 
six-dimensional vectors that characterize 
the theta and phi orientations of the 
bodies. The feature vectors are normalized 
by the responses to the R filter matching 
the body's size so that the sum of the 
values in each feature vector is 1. 

The oblong bodies have a single 
preferred orientation (by virtue of their 
oblong shape), so the sequence of responses 
to overlapping, tapered filters defined 
along the theta and phi equivalence 
dimensions is unique for every possible 
orientation. In fact, the normalized 
response to each filter may be used as a 
weighting factor indicating the degree to 
which the body's spatial energy 

distribution matches the filter's preferred 
orientation. The recombination algorithm 
for constructing an estimate of the 
orientation of the body involves 
(circularly) averaging the filter center 
orientations weighted by the responses of 
the filters. This is equivalent to a sum 
of vectors whose polar representation (r, 
alpha) has the r component equal to the 
normalized filter response for the filter 
centered at phi-alpha. 

Application and Evaluation of the AVS 

The performance of the AVS has been 
extensively studied using artificial images 
containing model cylindrical bodies at 
regularly spaced orientations. Model 
bodies are created at theta angles 0, 5, 
10, 15, 20, 25, and 30. For each theta 
angle (except theta=O) bodies ~ re created 
with phi angles 0, 30, 60, 90, 120, 150, 
180, 210, 240, 270, 300, and 330 degrees. 
These images have been analY7ed themselves, 
and they have been distorted using the 
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empirically determined point spread 
function of the microscope system and 
partially restored using the iterative 
restoration algorithm before further 
analysis . 

The objective of this study is to 
determine from the regular sampling of body 
angles whether the mapping of the bodies 
into the feature spaces displays similar 
regularity. If so, then measurements of 
body orientations may be reliably performed 
from the feature space. 

with the noiseless images, the R 
filters correctly locate the bodies, and 
application of the circular weighted 
averaging procedure on the sequences of 
theta and phi filter responses obtains 
orientation measurements correct within 2 
degrees in theta and 5 degrees in phi. The 
errors remaining are due to aliasing 
effects and roundoff errors. 

With the blurred/ restored images, the 
interpretation of the filtered images is 
far less straightforward . The residual 
z-axis distortion, which elongates the 
images in the phi-90 and phi-270 

directions, ruins the theta filter 
measurements. The problem appears to be 
that the z-axis distortion causes theta 
measurements of bodies at a fixed theta 
orientation to vary through a wide range of 
values as phi varies. Thus, bodies at 
different theta orientations are 
indistinguishable unless the phi angle is 
already known. We could compute the phi 
angle first and establish for each phi 
angle appropriate thresholds for 
interpreting the theta data, but a more 
elegant approach has been found. 

We have discovered that both the theta 
and phi measurements can be reliably 
obtained from the phi filter data alone. 
This simplification is possible because as 
the theta angle of a body increases, an 
increasing proportion of the volume of the 
body moves away from the theta-O axis, 
resulting in increased energy in a 
preferred phi direction. Therefore, we can 
measure phi by computing the circular 
weighted average of the phi filter 
responses, and we can compute theta by 
measuring the intensity of the phi angle 
preference. 

When this approach is applied to 
noiseless model images, the pattern of 
points in the feature space is a series of 
concentric circles. Each circle 
corresponds to a particular theta value, 
and the polar angle alpha of each point 
along the circle is precisely the phi angle 
of the corresponding body. 

When the same approach is applied to 
blurred/ restored bodies, the pattern of 
responses in the feature space is a series 
of concentric ellipses. The minor axes are 
in the phi-90 and phi-270 directions, 
corresponding to the direction of the z 
axis distortion in the images. The effect 
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of the distortion on the feature space, 
then, is to decrease the sensitivity of the 
filters in the direction of the distortion. 
We can correct this problem in the feature 
space by converting the polar (r,alpha) 
coordinates to Cartesian form and boosing 
the y component of the Cartesian vectors. 
The scaling factor was determined by 
measuring the eccentricities of the 
ellipses in the feature space and for our 

current data is about 3.2, which 
corresponds to the axial ratio induced by 
the residual distortion in the image of a 
sphere. This scaling factor must be 
recomputed only if the imaging system 
changes. 

Evaluation of the approach is carried 
out by measuring the angle between the 
actual and estimated body orientation 
vectors. That is, the (theta,phi) values 
of a set of model bodies and the 
corresponding estimates are converted to 
Cartesian form and the angle between the 
two vectors was computed. The average 
error angle on our model images is less 
than 2 degrees. Additional tests are in 
progress on noisy model images. 
Preliminary results indicate that in the 
presence of noise, the errors in the 
orientation measurements increase gradually 
as the signal/ noise ratio decreases. 
Further work on interpreting these results 
is in progress. 

Interfacing with a Gr aph ics System 

The information extracted by the AVS 
consists of a list of (x, y, z) locations 
where a dense body was found along with (r, 
theta, phi) measurements on each of the 
oblong dense bodies. This position and 
orientation data has been used to create a 
graphic model of the 3-D distribution of 
dense bodies. The bodies are represented 
as lozenge-shaped solid objects having the 
measured length and orientations. The cell 
image is created by projecting prototype 
bodies into space and then subjecting the 
projected model to the required viewing 
transformations [21. 

The user of the graphics system can 
specify any view position, including 
positions inside the graphic model that 
correspond to positions inside a cell . The 
three-dimensional distribution of the dense 
bodies can be explored by marking ( in 
color) particular dense bodies in order to 
trace a network or follow a strand of 
bodies through the cell [41. 

Interaction is provided by a 3-D 
wire-frame arrow cursor whose movement is 
controlled by a three-dimensional joystick. 
Joystick movements can be interpreted as 
translation or rotation commands depending 
on a switch setting. 

At present, a 
single viewpoint 
graphics system [41. 
implementation of a 
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is presented by the 

We are considering 
dual viewport system 
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that could enable presentation of the view 
as a stereo pair or as a proximal / distal 
view pair. 

Discussion 

The artificial visual system has 
proven to be a powerful tool for image 
analysis due to the following properties 
[4,6) : 

1. A priori knowledge can be 
effectively incorporated into the design of 
the filters and the recombination 
algorithm. The artificial visual system 
can be tuned and experiments can be 
performed by changing only the filter data 
and not the analysis algorithms. This 
enables rapid prototyping and optimization 
of the artificial visual system with a 
minimum of reprogramming and algorithm 
development. In addition, since a few 
simple algorithms suffice for much of the 
processing requirements, special devices 
such as array processors can be brought to 
bear to enhance the speed of execution. 

2. spatial filtering is intuitively 
understandable. Filters can be defined 
either in the spatial domain or in the 
frequency domain. Either way, the filters 
and their effects on images can be 
determined and understood easily since the 
filter is applied uniformly over the image. 
Understandability is especially important 
in appl i cations since decisions will be 
b ased on the results of the computer 
procedures and those decisions must be 
defended based on an understanding of the 
computer's results . 

3. Fast algori thms exist for 
performing spatial filtering. Spatial 
domain convolution, spatial frequency 
doma i n multiplication, recursive filtering, 
and in-place filtering are all well-known 
algorithms for performing spatial 
filtering. Depending on the hardware 
support and the nature of the filtering to 
be performed, any of these equivalent 
algorithms can be chosen. These algorithms 
are amenable to parallel processing to 
enhance execution speeds. 

4. The most im~ortant property of 
spatial filtering 1S that a suitably 
constructed ensemble of filters can be used 
to decompose an image along any of several 
continua (e.g . size, orientation, spatial 
frequency, shape, etc. ) . Thus, the 
ensemble of filters in a visual system can 
be constructed so as to define a meaningful 
feature space. 

Moreover, a stimulus can be located 
along a continuum (orientation, size, 
spatial frequency) by an ensemble of 
tapered, overlapping filters. With 
suitably defined filters, every possible 
stimulus along the continuum yields a 
unique pattern of responses from the 
ensemble of filters, and thus a unique 
location in the feature space. Increased 
accuracy in the measurements of stimuli 
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requires a finer decomposition of the 
relevant continuum involving a larger 
number of more narrowly-defined filters. 
Thus, the tradeoff between cost and 
measurement accuracy is explicit and 
measurable. 

Conclusion 

An Artificial Visual System has been 
developed to simplify three-dimensional 
fluorescence microscopy images. The AVS 
locates bodies of interest in the 3-D 
image, discriminates the bodies from noise, 
and measures the 3-D orientation of each 
body. The measurements are made by using 
the outputs ·of a series of spatial filters 
to map each body into a point in an 
abstract feature space. The geometry of 
the mapping allows the orientation angles 
to be computed directly from the mapping. 

Moreover, distortions in the 3-D image 
due to the image acquisition system that 
were not corrected by noise reduction or 
image restoration algorithms appear as 
systematic distortions of the geometry of 
the feature space. This residual 
distortion can be measured and corrected in 
the feature space, enabling accurate 
measurements in spite of the imperfections 
in the image data. 

The measurements are then used to 
create a simplified graphical image that 
can be viewed and manipulated using 
interactive graphics tools. Viewpoints 
corresponding to locations inside a cell 
may be constructed. The graphics system 
user can interact with the simplified image 
to record organizational patterns that may 
explain the operation of the contractile 
machinery of the cell. 

Appendix 1: Coordinate Convers i ons 

This appendix gives the algorithms for 
converting Cartesian vectors to (theta,phi) 
orientation vectors and vice versa where 
the (0,0) direction is the y axis and the 
(90,0) direction is the x axis. 

Convert a (theta,phi) orientation to a 
3-D Cartesian unit vector [x,y,z) as 
follows: 

x - sin(theta)*cos(phi) 
y - cos(theta) 
z - sin(theta)*sin(phi) 

The following algorithm converts a 3-D 
Cartesian vector [x,y,z) to a (theta,phi) 
orientation vector: 

Let r1 - sqrt(y A 2+z A 2) 
theta arctan(r1 / y) if y is not zero 

- 0 if y- O and r1-0 
- 90 if y~O and r1> - 0 

phi ~ arctan(z / x) if x is not 0 
o if x=O and Z~O 

= 90 if x=O and z>-O 
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Appendix 2: Filter Definitions 

Filters defined as geometric cones and 
segments of cones [4] were found to be 
subject to errors s~ch as false positives 
or mislocated maXlma. Superior results 
have been obtained with filters created by 
integrating images of a cylinder rotated 
about its center. The resulting filters 
have higher sensitivity where many of the 
rotated cylinder images overlap (i.e. at 
the filter center). 

Each filter is formed by a weighted 
sum of images of a rotated cylinder 9 
voxels long and 1 voxel in diameter 
corresponding to the longest apparent size 
of the dense bodies in our images. The 
weighting factor applied to each cylinder 
is based on the difference between the 
cylinder orientation (t,p) and the filter's 
preferred orientation. We define two 
utility functions as follows: 

WT(t,pitmax) - 1 if t<-tmax 
- max(0,1-[(t-tmax) / 10]) 

if t>tmax 

WP(t,pipcen) - max(O,l-[ ! pcen-p! / 60]) 

The WT function assigns a weight of 1 to 
cylinders whose theta orientation is less 
than or equal to tmax and attenuates 
cylinders with larger theta values with the 
weight decreasing linearly with (t-tmax) 
and reaching 0 at a theta orientation of 
tmax+10 degrees. The WP function 
attenuates the cylinder images linearly as 
the phi orientation differs from pcen with 
the weight reaching zero 60 degrees away 
from pcen. Note that the difference 
(pcen-p) must be computed mod 360. Now we 
use the utility functions to define the 
cylinder weighting functions for an R 
filter (a cone) and filters P1-P6 
(wedge-shaped phi filters): 

R(t,p) 
P1(t,p) 
P2(t,p) 
P3(t,p) 
P4(t,p) 
P5(t,p) 
P6(t,p) 

WT(t,Pi 30 ) 
- WT(t,Pi 30 )*WP(t,p;0) 
= WT(t,Pi 30 )*WP(t,p;60) 
= WT(t,Pi30)*WP(t,Pi120) 
- WT(t,Pi 30)*WP(t,Pi 180) 
- WT(t,Pi30)*WP(t,Pi 24 0) 
- WT(t,Pi30)*WP(t,Pi300) 

The R filter is equal to the sum of the pi 
filters, making the response of the R 

filter a reasonable normalization factor 
for the sequence of pi responses. This 
normalization eliminates the effects of 
different overall intensity in different 
bodies. 

Shorter filters are created by 
mUltiplying the above filters by a sphere 
of an appropriate radius. R and pi filters 
have been created at lengths 3, 5, 7, as 
well as 9. When the size of a body is 
determined, the P series filters 
corresponding to that size are used to 
estimate the theta and phi angles. 
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