
- 287 -

A File Organization Scheme for Polygon Data

Chung Hee Hwang & Wayne A. Davis

Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada T6G 2Hl

Abstract l

This paper presents a fIle organization scheme for
representing polygon data by a quadtree. The proposed scheme
is an adaptive cell method that is based on extendible hashing
and interpolation-based index maintenance. It aims, on the
average, to locate the record associated with a given key with
one disk access (or at most two), maintaining a high storage
utilization ratio. It also aims to process range search and set
operations efficiently. The dynamic fIle organization capabilities
of the scheme and the algorithm for range search are described.

1. Introduction
Given a sequence of k points Pi=(xi,Yi), for 1 :5; i :5; k, in a

plane, a polygon with vertices Pi is the sequence of line
segments, called edges, P}P2, P2P3, ... , PkPl. If these kedges
do not have any intersection points, the polygon is simple. A
simple polygon divides the plane into two distinct regions. The
interior of a simple polygon is called a polygonal region. A
complex polygonal region is a polygonal region which is
allowed to have one or more holes in it. Hereafter, a complex
polygonal region is called a polygon. A polygon network for a
study area is a set of disjoint polygons overlapping the study
area such that the set of polygons yields a total partition of the
study area. Each polygon in a polygon network has a unique
name.

Although polygon networks have been traditionally
represented in vector format, recently quadtree encoding of a
polygon network has received increased attention. The quadtree
[7] is a dynamic data structure developed to reduce the storage
requirement of raster representation by aggregating
homogeneous cells. Nevertheless, as the original quadtree
concept was based on the assumption that quadtrees were
resident in main memory, quadtree structures may not be directly
applicable to data resident in external memory. For example, the
need to follow pointers may lead to a larger number of page
faults than are acceptable in an interactive environment

In an effort to overcome the frequent page fault problem,
there have been studies to represent a quadtree as a linear
quadtree [5] and use a B-tree file structure in organizing the data

[1,8]. While the B-tree organization of a linear quadtree is a
significant improvement over the original quadtree organization
in the expected number of disk accesses for single record
retrieval, the absence of a localization property is a primary
disadvantage. A query usually requires the whole file to be
retrieved even though the query can be answered with

IThis research was supported in part by Grant NSERC A7634.

Graphics Interface '86

information from a small part of the file . For example, range
search is very awkward and set operations are not efficient
because there is no implied connection between data buckets in
physical storage and regions in the search space. Furthermore,
the B-tree organization of quadtree encoded data still needs
several disk accesses to retrieve each record because it is
essentially a tree that is accessible with O(log n) 110 operations,
where n is the number of records in the file.

From this perspective, a file organization scheme is
developed for polygon networks encoded as a linear quadtree
with an aim to locate the record associated with a given key with
an average of one disk access (or at most two), maintaining a
high storage utilization ratio. Furthermore, the following types
of spatial queries are to be supported efficiently: the point-in­
polygon query, range search and set operations such as polygon
union or intersection and polygon overlay. The scheme is an
adaptive cell method and it is based on extendible hashing [4]
and interpolation hashing [2], a k-dimensional generalization of
linear hashing [6].

2. Definitions and Notation

Let the study area, U = [0, 2n)2, be an image of 2n x 2n
unit square pixels that intersects a polygon network, and let each
of the pixels have a polygon name (hereafter called color)
associated with it Furthermore, let the polygon network on U
be represented by a region quadtree. To yield an arbitrary but
consistent total ordering among the blocks of a quadtree, the
following hash function is introduced:

Definition 1. Let (x,y) E U = [o,2n)2 be the x and y
coordinates of the lower-left corner of a block of a quadtree
defined on U and have the following binary representation:

x = L. ai2i, and y = L. bi2i, for 0:5; i:5; n-l,

where ai,bi E {0,1}. Then, an order preserving hash junction,

s, that maps (x,y) onto the key space of [0,4n) is defined by:
s(x,y) = L.(ai22i+i + bi22i), for ° :5; i :5; n-1.

Notice. that the key produced for each of the blocks in this
manner is essentially the same as the locational code of the block
in linear quadtree encoding [5]. Now, a file that represents a
polygon network by a quadtree is defined:

Definition 2. A file F representing a polygon network for the
study area U by a quadtree is the set,

F = {(K(L),S(L),C(L» : LE R},
where R is the set of all leaf nodes (blocks) of a region quadtree
on U,

K(L) is the key of L produced by s,
S(L) is the size, or alternatively the level, ofL, and
C(L) is the color of the pixels intersecting L.

Vision Interface '86

- 2 BB -

In order to structure the file F using an adaptive cell method,
the study area is partitioned into a set of blocks and/or sub blocks
which are de:ined in the following.

Definition 3. A block of depth d, 0:5: d :5: maxd :s; 2n,
where maxd is the predefined maximum depth of a block
partition, is a rectangular region in the study area with a standard
shape and a standard location that are the same as those of a
region produced by recursively halving the study area d times
with lines alternately perpendicular to the x and y axes. A block
with its depth equal to maxd is called a minimal block.

Definiti()n 4. A subblock of depth d, where
maxd < d :s; 2n, is a rectangular region in the study area with a
shape and a location that are the same as those of a region
produced by recursively halving the study area d times with lines
alternately perpendicular to the x and y axes. Within each
minimal block there exist at most two different depths of
subblocks, i.e., d' and d" such that d" = d' + 1.

Throughout this paper, maxd will be used to denote the
predefmed maximum depth of a block partition. The following
defmition is useful for defming an adaptive cell method.

Definition S. Afu:ed data bucket is a bucket which contains
no more than a predefined number of records, b, and an
ex:pandable data bucket is a bucket which may contain more than
b records by attaching one or more overflow fields to it

An adaptive cell method is now defined that organizes the
leaf nodes of a region quadtree into a file.

Definition 6. An adaptive cell method of organizing a file F is
an abstract data type which:

(I) guarantees that, for every cell G I and G2 and for every
record Ll E F 11 GI and L2 E F 11 G2,
key(LI) < key(L2) if index(G I) < index(G2),

(2) guarantees that, for every subblock G I' and G2' of a
minimal block G and for every record Ll' E F 11 G I' and
L2' E F 11 G2',
key(L I ') < key(L2') if index(Gl ')< index(G2'), and

(3) asserts that every block of depth d has exclusively one fixed
data bucket associated with it if d < maxd; otherwise (the
case of a minimal block), it has associated with it either a
single fixed bucket exclusively or two or more expandable
buckets that are contiguously located in physical memory
such that:

a) each expandable bucket is exclusively associated with
exactly one subblock of the minimal block, and

b) the overalload factor, i.e., the ratio of the number of
existing records to the number of slots available, of these
expandable buckets is within some predefined range.

It is understood from Definition 6 that every data bucket is
associated with a block or a subblock in the study area.
Consequently, each data bucket has associated with it a depth
which is equal to the depth of the block or the subblock it
corresponds to. For an illustration of the concept of Definition
6, consider the polygon network in Fig. I . Let the predefined
maximum depth of a block partition maxd = 4 (maxd is
normally small so that the directory may be stored in main
memory), the capacity of a data bucket b = 5, the capacity of an
overflow field b' = 3, and the lower and upper limits of the load
factor be 0.40 and 0.75, respectively. Then, for the image of
Fig. la, the proposed scheme produces a partition as shown in
Fig. lb.

Graphics Interface '86

x

x

z

x x ~xz y y y z z
x xy y y

yy

x yy
xy - y y

xx Xy
Xy yy

D. b .

Fig. 1. Image of a Polygon Network
and Partition of the Data Space.

3. Mapping between Regions and Data Buckets

z

z

z

z z
y Z

Ordinarily the set of records in F is distributed over a
number of data buckets, and each data bucket has associated
with it a block or a subblock in the study area. The mapping
between blocks and data buckets is achieved by a directory. A
directory is a set of elements, each of which corresponds to a
cell of size 22n-d, where d is the maximum of the depths of the
existing blocks. Thus, a directory has associated with it a depth
whose value is the same as d.

Each element of a directory has a pointer to a data bucket or a
set of buckets which contains records describing the quadtree
leaf nodes that intersect the corresponding cell in the study area.
At depth d of a directory, there are altogether 2d pointers,
indexed from 0 to 2cl l, which are not necessarily unique. The
pointers of a directory are indexed in such a manner that a data
bucket or a set of data buckets pointed to by a pointer with an
index i contains all the records whose keys are prefued with bits
that are identical to the binary representation of i. That is, a data
bucket or a set of data buckets pointed to by pointer 0 contains
all the keys that start with d consecutive "0" bits, a data bucket
pointed to by pointer I contains all the keys that start with d - I
consecutive "0" bits followed by a "1" bit, and so on. Thus, the
pointer i is guaranteed to fmd all the keys whose first d bits
agree with the binary representation of i ..

This indexing scheme is in fact equivalent to a Morton
sequence [7] and naturally satisfies the first and second
requirements of Definition 6. Fig. 2 illustrates the
correspondence between the regions in the study area and
directory elements (indexes are shown both in decimal and
binary). Note that when the depth of a directory is odd, each
pair of buddies at the deepest level are numbered consecutively
from left to right, e.g., the pair 0 and I and the pair 2 and 3 in
Fig. 2a.

[5] [7] [13]
0101 0111 1101

[2) [3] [6] [7) [4] [6] [12)
010 011 110 111 0100 0110 1100

[1] [3] [9)
0001 0011 1001

[0) [I] [4] [5)
000 001 lOO 101

[0] [2] [8]
0000 0010 1000

a. Depth 3 b. Depth 4

Fig. 2. Correspondence Between Regions
& Directory Elements

Vision Interface '86

[15]
1111

[14)
1110

[11)
1011

[10)
1010

- 289 -

A

AOI

[][J
d=6 d=6

Al

7 13 15

001 !...

F

IT]
d=3
lOO ...

Fig. 3. Correspondence Between Blocks & Data Buckets.

The mapping between directory elements and data buckets,
or sets of data buckets, is many-to-one. Fig. 3 shows the
directory configuration corresponding to the partition shown in
Fig. lb. In Fig. 3, buckets C, E, F, G and H are fixed buckets,
and buckets AOO, AOI , AI , BO, BI, DOO, DOl , andDI are
expandab1e buckets (bucket Al has an overflow field attached to
it). Note that all the records contained in a data bucket of depth
d have the same bit pattern in their first d bits. Thus, bucket F,
whose depth is 3, consists of the records whose keys start with
"100", while bucket Aaa whose depth is 6 contains all the
records whose keys start with ''000000''. Also, notice that
buckets AOO, AOI and Al contain 13 records in total while their
capacity is 18. Thus, the load factor of these three expandable
bucy;!ts is 13/18 = 0.72, which is within the predefined range.
The directory has 24 pointers because the largest of the depths of
existing blocks is 4 which is the same as maxd. Note that
pointer 0 points to a set of buckets (AOO, AOI and AI) which
contain all the records that start with "0000". The
correspondence between sub blocks and expandable data
buckets, however, is not shown in the directory. That is, the
corresponding pointer in the directory points to the starting
address of a set of buckets that are physically located together,
but it does not specify the correspondence between each of the
subblocks and data buckets.

How the mapping between subblocks and data buckets are
achieved will now be shown. Fig. 4 shows examples of a
subblock partition of a minimal block. The subblocks of a
minimal block are indexed in a similar manner as the cells
corresponding to directory elements are indexed. In fact, when
all the subblocks are the same size, they are indexed in the
exactly same manner. Examples are shown in Figs. 4a and 4c.
However, when there exist two different sizes of subblocks, the
larger subblocks have two candidates for their index. In that
case, the smaller of the two is selected for the index of the
sub block as in Figs. 4b and 4d. As a result, when subblocks
are of different sizes, the indexes of subblocks are not
continuous.

Graphics Interface '86

rn rn
a.

rn
EEff]

b.

EEEEJ
ffff]

c,

.;..
4

6 13
~ 14

1 3 9
0 2 8 le

d.

Fig. 4. Subblocks & Their Indexes.

Every subblock has an expandable data bucket associated
with it The keys of the records contained in a subblock of
depth d have the same bit pattern in their leftmost d bit places.
More explicitly, their leftmost maxd bits agree with the index of
the minimal block the subblock belongs to, and the next (d -
maxd) bits agree with the index of the sub block itself. Now, the
mappin~ between subblocks and buckets is achieved by
numbering each of the buckets that belongs to the same minimal
block in a specific way as follows. Let a data bucket D be
associated with a subblock whose index is i. Furthermore, let
the maximum depth of existing subblocks be d. Then, i can be
represented by a bit string S which is (d - maxd) bits long.
Next, let k be a number represented by a bit string S' which is
the reversed bit string of S. Then, k is the bucket number of D,
i.e., D is the (k + l)st of the set of buckets that are contiguously
located. The proof of this "reversed bit pattern" relation between
i and k can be easily shown by induction (see [2] for a formal
proof). Fig. 5 illustrates the correspondence between data
buckets and subblocks.

[5]
0101

[4J [6] [12] [14]
0100 0110 1100 1110

[1] [9]
0001 1001
To] [2] ~ [10]
0000 0010 1000 1010

a. Indexes of Subblocks.

[6] [3] [7]
0110 0011 0111

[9]
1001

[1] [5]
0001 0101

b. Data Bucket Numbers.

Fig. 5. Correspondence Between Subblocks

& Data Buckets.

4. Dynamic Nature of the Scheme

The proposed me organization scheme allows a me structure
to adapt its shape automatically to the nature of the data to be
stored, i.e., the amount and the distribution pattern. The
adaptability of the scheme is obtained mainly by a dynamic
partition of the data space, which is implemented by splitting
and merging mechanisms. In this section the merging
mechansim is briefly described. See [3] for details of the
dynamic file organization technique.

As more and more data is inserted in a file, data buckets
overflow and this results in splitting of buckets. There are four
kinds of splits possible. The first type of split occurs when a
record is assigned to a data bucket that is full and pointed to by
more than one pointer of the directory. In this case, the
overflow bucket is split to resolve the collision, and the pointers
in the directory are adjusted to reflect this split

Vision Interface '86

- 290 -

The second type of split arises when the overflow bucket is
pointed to by a single pointer, and the directory has not reached
its maximum yet. Then, in addition to a data bucket split,
refmement of the cell partition in the data space is required as
well as a directory doubling. A directory doubling involves
copying of the entire directory in such a manner that the old
contents of element i, for i = 0, 1, ... , 2d-1, where d is the old
value of directory depth, is copied into elements 2i and 2i+ 1.

The third case occurs when the depth of the directory has
reached its maximum already. Then, the overflow bucket is split
into two expandable buckets, numbered 0 and 1, bucket 1 being
physically allocated after bucket o. This is called a linear bucket
split.

The fourth type of split occurs when a record is assigned to
an expandable bucket, and the load factor exceeds the upper limit
as a result of insertion. Suppose a record is assigned to a data
bucket of depth greater than d. Then, the record is first inserted
into the bucket, or if necessary, into its overflow field, and the
overall load factor of the set of buckets that are associated with
the same minimal block is calculated and checked again the
predeflned range. If the load factor exceeds the upper hJ t, a
linear bucket split is triggered, i.e., a new bucket is allocated at
the end of the existing buckets of the set, and the bucket
designated by the variable next to split, explained in the
following, is split into two. If the load factor still exceeds the
upper limit, the splitting process is repeated.

Similar to linear hashing [6], the following two variables are
used to control linear bucket splits: j - split level, and p - next to
split. The split level,j, indicates the level of linear splits within
each minimal block. Initially,jis set to 0 for every minimal
block but is increased as linear bucket splits are performed so
that

j = max (depths of all subblocks 1- maxd.
~ within the minimal block)

Next to split, p, points to the bucket which is to split next. It is
initially 0 for every minimal block, but is increased by one as a
linear bucket split occurs. However, at the end of each cycle of
linear bucket splits, p is reset to O. That is, during the first cycle
of splits, bucket 0 is split; during the second cycle, first, bucket
0, and then bucket 1 is split; and during the k-th cycle,
buckets are split in the order of 1, ... , 2k- L 1.

5. Range Search

This section describes how the proposed file scheme
supports range search. Given two points, (xt.Yl) and (x2,Y2),
where xIS x 2 and Y 1 S yz, specifying a query rectangle, the
proposed fIle scheme is able to retrieve every data bucket that
contains the records describing the quadtree leaf nodes which
overlap the query rectangle without retrieving any irrelevant data
buckets. An algorithm for identifying the relevant data buckets
for a given query rectangle is described using the example of
Fig. 6. Suppose a directory has depth 4 which is the same as
the predeflned maximum depth. Suppose also that the shaded
area in Fig. 6 is the query rectangle. Determination of the cells
that intersect the query rectangle is done as follows:

(1) Using Algorithm Access in Appendix B, determine the
indexes of cells in which (x 1,y 1) and (x2,Y2) are contained.
In this example, they are 2 and 14.

(2) Decompose the bit pattern of these indexes into their x and y­
components. Let the x-component of the higher index be the
upper limit of x. Similarly, determine the lower and upper
limi ts of y.

Lower index: 0010 (2)

Higher index:
xyxy
1110 (14)
xyxy

xlow:
ylow:
xhigh:
yhigh:

01 (1)
00(0)
11 (3)
10 (2)

Graphics Interface '86

5 7 13 15

4 6 12 14
(x2,y2) r-rr+-___ t-;.,'""'

3

o

Fig. 6. Range Search.

(3) For each of x and y, create a set of numbers which contains
all the integers that are between the lower and upper limits
inclusive.

x: {01(l), 10(2), 11(3)}
y: {OO(O), 01(1), 1O(2)}

(4) Obtain a cross product of these sets, where each member of
the resulting set is an integer produced by interleaving the x
and y components. This set then indicates the cells that
overlap the query rectangle. In this example, the following
cells overlap the query rectangle: 2,3,6,8,9,10,11,12 and
14.

y

00
01
10

(0)
(1)
(2)

01 (1)

0010 (2)
0011 (3)
0110 (6)

10 (2) 11 (3)

1000 (8) 1010 (10)
1001 (9) 1011 (11)
1100 (12) 1110 (14)

(5) Next, suppose some of the cells have been further
subdivided, e.g., cells 9 and 12. As for cell 9, every
expandable bucket associated with it should be retrieved
since the cell is completely contained in the query rectangle.
Retrieval of these buckets can be done using Algorithm
SequenRetrieve in [3]. As for cell 12, the subblocks that
intersect the query rectangle should be determined in a
similar manner as the cells intersecting the query rectangle.
The bucket number corresponding to each relevant sub block
is then obtained by reversing the bits of the subblock index.
The detailed description of the algorithm is given in
Algorithm RangeSearch in Appendix C.

6. Performance of the Proposed Scheme

In this section, the performance of the proposed file
organization scheme is compared with other fIle organization
schemes in terms of access efficiency for single record retrieval.
The object for comparison is a B+-tree that has been proposed
and implemented for representing a polygon network by a linear
quadtree [1,8]. In addition, the EXCELL method is also used
for comparison. Although the EXCELL method was originally
used for representing a polygon network in vector format [9),
the method is also useful for representing a polygon network by
aquadtree.

Vision Interface '86

- 291 -

The B+ -tree maintains consistent perfonnance both in
storage and access time as its structure is not affected by the
pattern of data distribution. Its buckets are more or less
uniformly filled (each bucket being at least half full) even with
non-uniformly distributed data, and every record in the file can
')e retrieved with O(log n) disk accesses, where n is the number

f records in the file. In contrast, the proposed scheme and the
EXCELL methods, i.e., cell methods in general, are very
sensitive to the pattern of data distribution. With these methods,
the best case occurs when data is distributed uniformly over the
study area. Then, the proposed scheme requires one disk access
to locate a record with a given key while the EXCELL method
requires two disk accesses. The worst case occurs when data is
distributed non-uniformly over the study area. With the
EXCELL method, the directory will become large and unwieldy
and the goal of two disk accesses for retrieving a record cannot
be achieved. On the other hand, with the proposed scheme,
there will be a long chain of overflow fields as well as many
underflow buckets. Thus, both schemes may take O(n) disk
accesses for single record retrieval in the worst case.

The poor perfonnance of a cell method is due to its extreme
sensitivity to the existence of a random cluster of data.
However, as a hybrid of extendible hashing and linear hashing,
the proposed scheme allows its file structure to be considerably
adapted to the nature of data. As the directory of the proposed
scheme divides the study area into a coarse grid, any non-
uniformity of data distribution affects the file structure only
within a grid cell rather than over the entire study area.
Furthennore, the probability of the worst case happening in
practical data is expected to be exceedingly low. Since a worst
case analysis does not provide meaningful conclusions, the
performance of the proposed scheme has been simulated using a
set of real data.

The scheme has been applied to a surficial geology map of
the Wabamun area in Alberta, Canada (114'-115'W and 53.5'-
54'N). Next, the same data have been used to estimate the
performance of a B+-tree and the EXCELL method. It has been
shown that the proposed scheme perfonns better than either a
B+ -tree or the EXCELL method in the expected number of disk
accesses required to retrieve a record in a file, with a higher
storage utilization ratio. See [3) for details. Although a formal
prO('f cannot be given, it is conjectured that with the proposed
scheme the expected number of disk accesses required for
locating the record with a given key is constant irrespective of
the fIle size, while that of B-trees or the (hierarchical) EXCELL
method [11) grows logarithmically with the file size.

7. Conclusion

In most geometric databases, 110 operations are the
bottleneck of their performance due to the large volume of data
that should be handled. The proposed fIle organization scheme
is an adaptive cell method which attempts to minimize the
number of disk accesses in performing spatial queries. As a
hybrid of interpolation hashing and extendible hashing, the
proposed scheme combines the best features of both. First, the
mapping between data buckets in physical storage and regions in
the search space is interpolated rather than stored. Secondly,
since a directory allows the search space to be divided into a
coarse grid, any random cluster of data affects the file structure
only within a grid cell rather than the entire file structure.
Thirdly, a compromise between space and access time can be
obtained by controlling the load factor.

Another important feature of the proposed scheme is that it
handles spatial queries , range search in particular, efficiently by
allowing a query to be decomposed into a set of subqueries
within cell restrictions.

Graphics Interface '86

Experimental results with a set of real data show that the
proposed scheme is superior to a B+-tree both in access
efficiency and storage utilization. Additionally, the scheme is
comparable to the EXCELL method which was originally
proposed for representing a polygon network by vectors.

BIBLIOGRAPHY

1. Abel, DJ., "A B+-Tree Structure for Large QUadtrees",
Computer Vision, Graphics, and Image Processing, Vol.
27, pp. 19-31, 1984.

2. Burkhard, Waiter A., "Interpolation-Based Index
Maintenance", BIT, Vol. 23, pp. 274-294,1983.

3. Davis, Wayne A. & Chung Hee Hwang, "File Organization
Schemes for Geometric Data", TR 85-14, Dept. of
Computing Science, Univ. of Alberta, 1985.

4. Fagin, R, J. Nievergelt, N. Pippenger & H.R. Strong,
"Extendible Hashing - A Fast Access Method for Dynamic
Files", ACM TODS, Vol. 4, pp. 315-344, Sep. 1979.

5. Gargantini, Irene, "An Effective Way to Represent
Quadtrees", CACM, Vol. 25, pp. 905-910, Dec. 1982.

6. Litwin,Witold, "Linear Hashing: A New Tool for File and
Table Addressing" Proc. 6th Int. Conf Very Large Data
Bases, pp. 212-223, 1980.

7. Samet, Hanan, "The Quadtree and Related Hierarchical Data
Structures", Comput. Surveys, Vol. 16, pp. 187-260,
Jun. 1984.

8. Samet, H., A. Rosenfeld, C.A. Shaffer & R.E. Webber, "A
Geographic Information System Using Quadtrees", Pattern
Recognition, Vol. 17, pp. 647-656, 1984.

9. Tamminen, Markku, "Efficient Spatial Access to a Data
Base", ACM-SIGMOD, pp. 200-206, 1982.

10. Tamminen, Markku, "The Extendible Cell Method for
Closest Point Problems", BIT, Vol. 22, pp. 27-41,1982.

11 . Tamminen, Markku, "Performance Analysis of Cell Based
Geometric File Organizations", Computer Vision,
Graphics, and Image Processing, Vol. 24, pp. 160-181,
1983.

APPENDIX

A. Data Structure

The file structure consists of a directory and data buckets.
The directory has a header containing the depth of the directory
followed by 2d elements, where d is the depth of the directory.
Each element of the directory is a 5-tuple of
<j, p, occ, over, ptr>, where j is the split level, p is the
bucket to be split next, occ is the number of records contained in
the data bucket (or set of expandable buckets), over is the
number of overflow fields employed, and ptr is the pointer to the
data bucket (or set of expandable data buckets).

Each data bucket or overflow field contains a set of records,
(K(L), S(L), C(L» . In addition to the set of records, each data
bucket has a header that contains db, the bucket depth, and a
pointer, ptr. If a bucket is an expandable one, ptr points to a
chain of overflow fields attached to it; otherwise, it may be either
ignored or used to point to the next bucket.

Vision Interface '86

- 292 -

B. Algorithm Access

Input: fill; F, directory dir to F, and (x,y) E V,
where V = [0,2n)2 is the study area.

Output: data bucket D which contains (K(L),S(L),C(L» such
that (x,y) E L. (The record may be in an overflow field
of D .)

Note: d.ir[i].A denotes field A of (i+ I)st element of directory.
Step I: key ~ s(x,y)
Step 2: read d, depth of directory
Step 3: i ~ L(key I 22n-d J #determine d.ir index#

Step 4: lac ~ dir[/l-ptr #read pointer value#
Step 5: if dir[l].j = 0, goto Step 8
Step 6: #case of split level ~

a. if dir[i].p = 0, #every bucket split#
I) #set subblock index with j bits of the key#

isub ~ L(key mod 22n-d)/22n-d-iJ.
where j denotes dir[/l-j

2) #calculate bucket no.#
bnum ~ Lak2m-I-k, for ° ~ k ~ m-I, where

isub is Lak2k, for ° ~ k ~ m-I
b. otherwise

I) #set sub block index with (j-I) bits of the key#
isub ~ L(key mod 22n-d)/22n-d-j+1 J,

wherej denotes dir[i] .j
2) #Calculate bucket no.#

bnum ~ Lak2m-I-k, for ° ~ k ~ m-I, where

isub is Lak2k, for ° ~ k ~ m-I
3) #if bucket split, adjust bucket no.#

if bnum < dir[/l-p and (d+J)th bit of key = "I",
bnum ~ bnum + 2i-1

Step 7: #Calculate address of the bucket#
loc ~ loc + bnum * unit-length, where

unit-length is the bucket size
Step 8: access bucket D at loc and exit.

c. Algorithm RangeSearch
Input: file F, directory dir to F, and (xl ,yl),(x2,y2) E V ,

where xl ~ x2 and yl ~ y2.
Output: retrieve every data bucket whose associated block or

subblock in V intersects the query rectangle specified by
(xl,yl) and (x2,y2) .

Step I : R ~ { } #initialize index set#
Step 2 : read d, depth of directory
Step 3: #Calculate keys and indexes#

key1 ~s(xl ,yl) ; i1 ~Lkey1122n-dJ
key2 ~ s(x2,y2) ; i2 ~ Lkey2 I 22n-d J

Step 4 : if i1 = i2, #trivial case#
R ~ {il} and goto Step 12

Step 5: #determine limits of index#
a. if d is even,
I)xlow ~ La2k+12k, forO ~ k ~Lm12J
2)xhigh ~ Lb2k+12k, for ° ~ k ~ Lm12J

3) ylow ~ La2k2k, for ° ~ k ~ r ml2l

4) yhigh ~ Lb2k2k, for ° ~ k ~ r ml2l
b. otherwise,

I) x low ~ La2k2k, for ° ~ k ~ r ml2l

2)xhigh ~ Lb2k2k, forO ~ k ~r ml2l

3) ylow ~ La2k+12k, for ° ~ k ~ Lml2J

4)yhigh ~Lb2k+12k,forO~k~Lml2J
where i1 (i2) is Lak2k (Lbk2k), for ° ~ k ~ m-I

Graphics Interface '86

Step 6: Lx ~ xlow #initialize x index#

Step 7: iy ~ ylow #initialize y index#
Step 8: #Compute index of relevant block#

if d is even, i ~ shurne(ix,iy);

otherwise, i ~ shume(iy,ix), where
shume(V,W) = L(2vk+wk)22k, for ° ~ k ~ m-I
given V =LVk2k and W = LWk2k,

Step 9 : R ~ RV {i} #store the index#
Step 10: #continue until y upper limit is reached#

I) increase iy by I
2) if iy ~ yhigh, goto Step 8

Step 11: #continue until x upper limit is reached#
1) increase Lx by I
2) if Lx ~ xhigh, goto Step 7

Step 12: loc ~'null #initialize#
Step 13: for each member i in R, perform

a. #determine address of bucket#
if dir[/].ptr * loc, lac ~ dir[/lptr;
otherwise, goto Step 13.e

b. if dir[/].j = 0,
retrieve bucket at loc and goto Step 13_e

c. #linear splits have occurred#
if the block is totally contained in the query rectangle,
retrieve every bucket belonging to the block using
Algorithm SequenRetrieve and goto Step 13.e

d. #the block is partially contained#
I) R' ~ { } #initialize subblock index set#
2) let (xl ',yl ') and (x2',y2'), where xl' ~ x2' and

yl' ~ y2', be the points specifying the rectangle
which is the intersection of the current minimal block
and the query rectangle

3) compute R' in a similar manner to Steps 3-11
Note: in Step 8, d should be substituted with j

4) #compute the number of buckets#
if dir[/].p = 0, M ~ 2i;
otherwise, M ~ 2i-I+p

5) for each member isub in R',
compute bucket number bnum;
ifbnum < M ,

calculate address of bucket and retrieve
e. continue.

Vision Interface '86

