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Abstract l 

This paper presents a fIle organization scheme for 
representing polygon data by a quadtree. The proposed scheme 
is an adaptive cell method that is based on extendible hashing 
and interpolation-based index maintenance. It aims, on the 
average, to locate the record associated with a given key with 
one disk access (or at most two), maintaining a high storage 
utilization ratio. It also aims to process range search and set 
operations efficiently. The dynamic fIle organization capabilities 
of the scheme and the algorithm for range search are described. 

1. Introduction 
Given a sequence of k points Pi=(xi,Yi), for 1 :5; i :5; k, in a 

plane, a polygon with vertices Pi is the sequence of line 
segments, called edges, P}P2, P2P3, ... , PkPl. If these kedges 
do not have any intersection points, the polygon is simple. A 
simple polygon divides the plane into two distinct regions. The 
interior of a simple polygon is called a polygonal region. A 
complex polygonal region is a polygonal region which is 
allowed to have one or more holes in it. Hereafter, a complex 
polygonal region is called a polygon. A polygon network for a 
study area is a set of disjoint polygons overlapping the study 
area such that the set of polygons yields a total partition of the 
study area. Each polygon in a polygon network has a unique 
name. 

Although polygon networks have been traditionally 
represented in vector format, recently quadtree encoding of a 
polygon network has received increased attention. The quadtree 
[7] is a dynamic data structure developed to reduce the storage 
requirement of raster representation by aggregating 
homogeneous cells. Nevertheless, as the original quadtree 
concept was based on the assumption that quadtrees were 
resident in main memory, quadtree structures may not be directly 
applicable to data resident in external memory. For example, the 
need to follow pointers may lead to a larger number of page 
faults than are acceptable in an interactive environment 

In an effort to overcome the frequent page fault problem, 
there have been studies to represent a quadtree as a linear 
quadtree [5] and use a B-tree file structure in organizing the data 

[1,8]. While the B-tree organization of a linear quadtree is a 
significant improvement over the original quadtree organization 
in the expected number of disk accesses for single record 
retrieval, the absence of a localization property is a primary 
disadvantage. A query usually requires the whole file to be 
retrieved even though the query can be answered with 
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information from a small part of the file . For example, range 
search is very awkward and set operations are not efficient 
because there is no implied connection between data buckets in 
physical storage and regions in the search space. Furthermore, 
the B-tree organization of quadtree encoded data still needs 
several disk accesses to retrieve each record because it is 
essentially a tree that is accessible with O(log n) 110 operations, 
where n is the number of records in the file. 

From this perspective, a file organization scheme is 
developed for polygon networks encoded as a linear quadtree 
with an aim to locate the record associated with a given key with 
an average of one disk access (or at most two), maintaining a 
high storage utilization ratio. Furthermore, the following types 
of spatial queries are to be supported efficiently: the point-in­
polygon query, range search and set operations such as polygon 
union or intersection and polygon overlay. The scheme is an 
adaptive cell method and it is based on extendible hashing [4] 
and interpolation hashing [2], a k-dimensional generalization of 
linear hashing [6]. 

2. Definitions and Notation 

Let the study area, U = [0, 2n)2, be an image of 2n x 2n 
unit square pixels that intersects a polygon network, and let each 
of the pixels have a polygon name (hereafter called color) 
associated with it Furthermore, let the polygon network on U 
be represented by a region quadtree. To yield an arbitrary but 
consistent total ordering among the blocks of a quadtree, the 
following hash function is introduced: 

Definition 1. Let (x,y) E U = [o,2n)2 be the x and y 
coordinates of the lower-left corner of a block of a quadtree 
defined on U and have the following binary representation: 

x = L. ai2i, and y = L. bi2i, for 0:5; i:5; n-l, 

where ai,bi E {0,1}. Then, an order preserving hash junction, 

s, that maps (x,y) onto the key space of [0,4n) is defined by: 
s(x,y) = L.(ai22i+i + bi22i), for ° :5; i :5; n-1. 

Notice. that the key produced for each of the blocks in this 
manner is essentially the same as the locational code of the block 
in linear quadtree encoding [5]. Now, a file that represents a 
polygon network by a quadtree is defined: 

Definition 2. A file F representing a polygon network for the 
study area U by a quadtree is the set, 

F = {(K(L),S(L),C(L» : LE R}, 
where R is the set of all leaf nodes (blocks) of a region quadtree 
on U, 

K(L) is the key of L produced by s, 
S(L) is the size, or alternatively the level, ofL, and 
C(L) is the color of the pixels intersecting L. 
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In order to structure the file F using an adaptive cell method, 
the study area is partitioned into a set of blocks and/or sub blocks 
which are de:ined in the following. 

Definition 3. A block of depth d, 0:5: d :5: maxd :s; 2n, 
where maxd is the predefined maximum depth of a block 
partition, is a rectangular region in the study area with a standard 
shape and a standard location that are the same as those of a 
region produced by recursively halving the study area d times 
with lines alternately perpendicular to the x and y axes. A block 
with its depth equal to maxd is called a minimal block. 

Definiti()n 4. A subblock of depth d, where 
maxd < d :s; 2n, is a rectangular region in the study area with a 
shape and a location that are the same as those of a region 
produced by recursively halving the study area d times with lines 
alternately perpendicular to the x and y axes. Within each 
minimal block there exist at most two different depths of 
subblocks, i.e., d' and d" such that d" = d' + 1. 

Throughout this paper, maxd will be used to denote the 
predefmed maximum depth of a block partition. The following 
defmition is useful for defming an adaptive cell method. 

Definition S. Afu:ed data bucket is a bucket which contains 
no more than a predefined number of records, b, and an 
ex:pandable data bucket is a bucket which may contain more than 
b records by attaching one or more overflow fields to it 

An adaptive cell method is now defined that organizes the 
leaf nodes of a region quadtree into a file. 

Definition 6. An adaptive cell method of organizing a file F is 
an abstract data type which: 

(I) guarantees that, for every cell G I and G2 and for every 
record Ll E F 11 GI and L2 E F 11 G2, 
key(LI) < key(L2) if index(G I) < index(G2), 

(2) guarantees that, for every subblock G I' and G2' of a 
minimal block G and for every record Ll' E F 11 G I' and 
L2' E F 11 G2', 
key(L I ') < key(L2') if index(Gl ')< index(G2'), and 

(3) asserts that every block of depth d has exclusively one fixed 
data bucket associated with it if d < maxd; otherwise (the 
case of a minimal block), it has associated with it either a 
single fixed bucket exclusively or two or more expandable 
buckets that are contiguously located in physical memory 
such that: 

a) each expandable bucket is exclusively associated with 
exactly one subblock of the minimal block, and 

b) the overalload factor, i.e., the ratio of the number of 
existing records to the number of slots available, of these 
expandable buckets is within some predefined range. 

It is understood from Definition 6 that every data bucket is 
associated with a block or a subblock in the study area. 
Consequently, each data bucket has associated with it a depth 
which is equal to the depth of the block or the subblock it 
corresponds to. For an illustration of the concept of Definition 
6, consider the polygon network in Fig. I . Let the predefined 
maximum depth of a block partition maxd = 4 (maxd is 
normally small so that the directory may be stored in main 
memory), the capacity of a data bucket b = 5, the capacity of an 
overflow field b' = 3, and the lower and upper limits of the load 
factor be 0.40 and 0.75, respectively. Then, for the image of 
Fig. la, the proposed scheme produces a partition as shown in 
Fig. lb. 
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Fig. 1. Image of a Polygon Network 
and Partition of the Data Space. 

3. Mapping between Regions and Data Buckets 
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Ordinarily the set of records in F is distributed over a 
number of data buckets, and each data bucket has associated 
with it a block or a subblock in the study area. The mapping 
between blocks and data buckets is achieved by a directory. A 
directory is a set of elements, each of which corresponds to a 
cell of size 22n-d, where d is the maximum of the depths of the 
existing blocks. Thus, a directory has associated with it a depth 
whose value is the same as d. 

Each element of a directory has a pointer to a data bucket or a 
set of buckets which contains records describing the quadtree 
leaf nodes that intersect the corresponding cell in the study area. 
At depth d of a directory, there are altogether 2d pointers, 
indexed from 0 to 2cl l, which are not necessarily unique. The 
pointers of a directory are indexed in such a manner that a data 
bucket or a set of data buckets pointed to by a pointer with an 
index i contains all the records whose keys are prefued with bits 
that are identical to the binary representation of i. That is, a data 
bucket or a set of data buckets pointed to by pointer 0 contains 
all the keys that start with d consecutive "0" bits, a data bucket 
pointed to by pointer I contains all the keys that start with d - I 
consecutive "0" bits followed by a "1" bit, and so on. Thus, the 
pointer i is guaranteed to fmd all the keys whose first d bits 
agree with the binary representation of i .. 

This indexing scheme is in fact equivalent to a Morton 
sequence [7] and naturally satisfies the first and second 
requirements of Definition 6. Fig. 2 illustrates the 
correspondence between the regions in the study area and 
directory elements (indexes are shown both in decimal and 
binary). Note that when the depth of a directory is odd, each 
pair of buddies at the deepest level are numbered consecutively 
from left to right, e.g., the pair 0 and I and the pair 2 and 3 in 
Fig. 2a. 

[5] [7] [13] 
0101 0111 1101 

[2) [3] [6] [7) [4] [6] [12) 
010 011 110 111 0100 0110 1100 

[1] [3] [9) 
0001 0011 1001 

[0) [I] [4] [5) 
000 001 lOO 101 

[0] [2] [8] 
0000 0010 1000 

a. Depth 3 b. Depth 4 

Fig. 2. Correspondence Between Regions 
& Directory Elements 
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Fig. 3. Correspondence Between Blocks & Data Buckets. 

The mapping between directory elements and data buckets, 
or sets of data buckets, is many-to-one. Fig. 3 shows the 
directory configuration corresponding to the partition shown in 
Fig. lb. In Fig. 3, buckets C, E, F, G and H are fixed buckets, 
and buckets AOO, AOI , AI , BO, BI, DOO, DOl , andDI are 
expandab1e buckets (bucket Al has an overflow field attached to 
it). Note that all the records contained in a data bucket of depth 
d have the same bit pattern in their first d bits. Thus, bucket F, 
whose depth is 3, consists of the records whose keys start with 
"100", while bucket Aaa whose depth is 6 contains all the 
records whose keys start with ''000000''. Also, notice that 
buckets AOO, AOI and Al contain 13 records in total while their 
capacity is 18. Thus, the load factor of these three expandable 
bucy;!ts is 13/18 = 0.72, which is within the predefined range. 
The directory has 24 pointers because the largest of the depths of 
existing blocks is 4 which is the same as maxd. Note that 
pointer 0 points to a set of buckets (AOO, AOI and AI) which 
contain all the records that start with "0000". The 
correspondence between sub blocks and expandable data 
buckets, however, is not shown in the directory. That is, the 
corresponding pointer in the directory points to the starting 
address of a set of buckets that are physically located together, 
but it does not specify the correspondence between each of the 
subblocks and data buckets. 

How the mapping between subblocks and data buckets are 
achieved will now be shown. Fig. 4 shows examples of a 
subblock partition of a minimal block. The subblocks of a 
minimal block are indexed in a similar manner as the cells 
corresponding to directory elements are indexed. In fact, when 
all the subblocks are the same size, they are indexed in the 
exactly same manner. Examples are shown in Figs. 4a and 4c. 
However, when there exist two different sizes of subblocks, the 
larger subblocks have two candidates for their index. In that 
case, the smaller of the two is selected for the index of the 
sub block as in Figs. 4b and 4d. As a result, when subblocks 
are of different sizes, the indexes of subblocks are not 
continuous. 
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Fig. 4. Subblocks & Their Indexes. 

Every subblock has an expandable data bucket associated 
with it The keys of the records contained in a subblock of 
depth d have the same bit pattern in their leftmost d bit places. 
More explicitly, their leftmost maxd bits agree with the index of 
the minimal block the subblock belongs to, and the next (d -
maxd) bits agree with the index of the sub block itself. Now, the 
mappin~ between subblocks and buckets is achieved by 
numbering each of the buckets that belongs to the same minimal 
block in a specific way as follows. Let a data bucket D be 
associated with a subblock whose index is i. Furthermore, let 
the maximum depth of existing subblocks be d. Then, i can be 
represented by a bit string S which is (d - maxd) bits long. 
Next, let k be a number represented by a bit string S' which is 
the reversed bit string of S. Then, k is the bucket number of D, 
i.e., D is the (k + l)st of the set of buckets that are contiguously 
located. The proof of this "reversed bit pattern" relation between 
i and k can be easily shown by induction (see [2] for a formal 
proof). Fig. 5 illustrates the correspondence between data 
buckets and subblocks. 

[5] 
0101 

[4J [6] [12] [14] 
0100 0110 1100 1110 

[1] [9] 
0001 1001 
To] [2] ~ [10] 
0000 0010 1000 1010 

a. Indexes of Subblocks. 

[6] [3] [7] 
0110 0011 0111 

[9] 
1001 

[1] [5] 
0001 0101 

b. Data Bucket Numbers. 

Fig. 5. Correspondence Between Subblocks 

& Data Buckets. 

4. Dynamic Nature of the Scheme 

The proposed me organization scheme allows a me structure 
to adapt its shape automatically to the nature of the data to be 
stored, i.e., the amount and the distribution pattern. The 
adaptability of the scheme is obtained mainly by a dynamic 
partition of the data space, which is implemented by splitting 
and merging mechanisms. In this section the merging 
mechansim is briefly described. See [3] for details of the 
dynamic file organization technique. 

As more and more data is inserted in a file, data buckets 
overflow and this results in splitting of buckets. There are four 
kinds of splits possible. The first type of split occurs when a 
record is assigned to a data bucket that is full and pointed to by 
more than one pointer of the directory. In this case, the 
overflow bucket is split to resolve the collision, and the pointers 
in the directory are adjusted to reflect this split 
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The second type of split arises when the overflow bucket is 
pointed to by a single pointer, and the directory has not reached 
its maximum yet. Then, in addition to a data bucket split, 
refmement of the cell partition in the data space is required as 
well as a directory doubling. A directory doubling involves 
copying of the entire directory in such a manner that the old 
contents of element i, for i = 0, 1, ... , 2d-1, where d is the old 
value of directory depth, is copied into elements 2i and 2i+ 1. 

The third case occurs when the depth of the directory has 
reached its maximum already. Then, the overflow bucket is split 
into two expandable buckets, numbered 0 and 1, bucket 1 being 
physically allocated after bucket o. This is called a linear bucket 
split. 

The fourth type of split occurs when a record is assigned to 
an expandable bucket, and the load factor exceeds the upper limit 
as a result of insertion. Suppose a record is assigned to a data 
bucket of depth greater than d. Then, the record is first inserted 
into the bucket, or if necessary, into its overflow field, and the 
overall load factor of the set of buckets that are associated with 
the same minimal block is calculated and checked again the 
predeflned range. If the load factor exceeds the upper hJ ..... t, a 
linear bucket split is triggered, i.e., a new bucket is allocated at 
the end of the existing buckets of the set, and the bucket 
designated by the variable next to split, explained in the 
following, is split into two. If the load factor still exceeds the 
upper limit, the splitting process is repeated. 

Similar to linear hashing [6], the following two variables are 
used to control linear bucket splits: j - split level, and p - next to 
split. The split level,j, indicates the level of linear splits within 
each minimal block. Initially,jis set to 0 for every minimal 
block but is increased as linear bucket splits are performed so 
that 

j = max (depths of all subblocks 1- maxd. 
~ within the minimal block ) 

Next to split, p, points to the bucket which is to split next. It is 
initially 0 for every minimal block, but is increased by one as a 
linear bucket split occurs. However, at the end of each cycle of 
linear bucket splits, p is reset to O. That is, during the first cycle 
of splits, bucket 0 is split; during the second cycle, first, bucket 
0, and then bucket 1 is split; and during the k-th cycle, 
buckets are split in the order of 1, ... , 2k- L 1. 

5. Range Search 

This section describes how the proposed file scheme 
supports range search. Given two points, (xt.Yl) and (x2,Y2), 
where xIS x 2 and Y 1 S yz, specifying a query rectangle, the 
proposed fIle scheme is able to retrieve every data bucket that 
contains the records describing the quadtree leaf nodes which 
overlap the query rectangle without retrieving any irrelevant data 
buckets. An algorithm for identifying the relevant data buckets 
for a given query rectangle is described using the example of 
Fig. 6. Suppose a directory has depth 4 which is the same as 
the predeflned maximum depth. Suppose also that the shaded 
area in Fig. 6 is the query rectangle. Determination of the cells 
that intersect the query rectangle is done as follows: 

(1) Using Algorithm Access in Appendix B, determine the 
indexes of cells in which (x 1,y 1) and (x2,Y2) are contained. 
In this example, they are 2 and 14. 

(2) Decompose the bit pattern of these indexes into their x and y­
components. Let the x-component of the higher index be the 
upper limit of x. Similarly, determine the lower and upper 
limi ts of y. 

Lower index: 0010 (2) 

Higher index: 
xyxy 
1110 (14) 
xyxy 

xlow: 
ylow: 
xhigh: 
yhigh: 

01 (1) 
00(0) 
11 (3) 
10 (2) 
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Fig. 6. Range Search. 

(3) For each of x and y, create a set of numbers which contains 
all the integers that are between the lower and upper limits 
inclusive. 

x: {01(l), 10(2), 11(3)} 
y: {OO(O), 01(1), 1O(2)} 

(4) Obtain a cross product of these sets, where each member of 
the resulting set is an integer produced by interleaving the x 
and y components. This set then indicates the cells that 
overlap the query rectangle. In this example, the following 
cells overlap the query rectangle: 2,3,6,8,9,10,11,12 and 
14. 

y 

00 
01 
10 

(0) 
(1) 
(2) 

01 (1) 

0010 (2) 
0011 (3) 
0110 (6) 

10 (2) 11 (3) 

1000 (8) 1010 (10) 
1001 (9) 1011 (11) 
1100 (12) 1110 (14) 

(5) Next, suppose some of the cells have been further 
subdivided, e.g., cells 9 and 12. As for cell 9, every 
expandable bucket associated with it should be retrieved 
since the cell is completely contained in the query rectangle. 
Retrieval of these buckets can be done using Algorithm 
SequenRetrieve in [3]. As for cell 12, the subblocks that 
intersect the query rectangle should be determined in a 
similar manner as the cells intersecting the query rectangle. 
The bucket number corresponding to each relevant sub block 
is then obtained by reversing the bits of the subblock index. 
The detailed description of the algorithm is given in 
Algorithm RangeSearch in Appendix C. 

6. Performance of the Proposed Scheme 

In this section, the performance of the proposed file 
organization scheme is compared with other fIle organization 
schemes in terms of access efficiency for single record retrieval. 
The object for comparison is a B+-tree that has been proposed 
and implemented for representing a polygon network by a linear 
quadtree [1,8]. In addition, the EXCELL method is also used 
for comparison. Although the EXCELL method was originally 
used for representing a polygon network in vector format [9), 
the method is also useful for representing a polygon network by 
aquadtree. 

Vision Interface '86 



- 291 -

The B+ -tree maintains consistent perfonnance both in 
storage and access time as its structure is not affected by the 
pattern of data distribution. Its buckets are more or less 
uniformly filled (each bucket being at least half full) even with 
non-uniformly distributed data, and every record in the file can 
')e retrieved with O(log n) disk accesses, where n is the number 

f records in the file. In contrast, the proposed scheme and the 
EXCELL methods, i.e., cell methods in general, are very 
sensitive to the pattern of data distribution. With these methods, 
the best case occurs when data is distributed uniformly over the 
study area. Then, the proposed scheme requires one disk access 
to locate a record with a given key while the EXCELL method 
requires two disk accesses. The worst case occurs when data is 
distributed non-uniformly over the study area. With the 
EXCELL method, the directory will become large and unwieldy 
and the goal of two disk accesses for retrieving a record cannot 
be achieved. On the other hand, with the proposed scheme, 
there will be a long chain of overflow fields as well as many 
underflow buckets. Thus, both schemes may take O(n) disk 
accesses for single record retrieval in the worst case. 

The poor perfonnance of a cell method is due to its extreme 
sensitivity to the existence of a random cluster of data. 
However, as a hybrid of extendible hashing and linear hashing, 
the proposed scheme allows its file structure to be considerably 
adapted to the nature of data. As the directory of the proposed 
scheme divides the study area into a coarse grid, any non-
uniformity of data distribution affects the file structure only 
within a grid cell rather than over the entire study area. 
Furthennore, the probability of the worst case happening in 
practical data is expected to be exceedingly low. Since a worst 
case analysis does not provide meaningful conclusions, the 
performance of the proposed scheme has been simulated using a 
set of real data. 

The scheme has been applied to a surficial geology map of 
the Wabamun area in Alberta, Canada (114'-115'W and 53.5'-
54'N). Next, the same data have been used to estimate the 
performance of a B+-tree and the EXCELL method. It has been 
shown that the proposed scheme perfonns better than either a 
B+ -tree or the EXCELL method in the expected number of disk 
accesses required to retrieve a record in a file, with a higher 
storage utilization ratio. See [3) for details. Although a formal 
prO('f cannot be given, it is conjectured that with the proposed 
scheme the expected number of disk accesses required for 
locating the record with a given key is constant irrespective of 
the fIle size, while that of B-trees or the (hierarchical) EXCELL 
method [11) grows logarithmically with the file size. 

7. Conclusion 

In most geometric databases, 110 operations are the 
bottleneck of their performance due to the large volume of data 
that should be handled. The proposed fIle organization scheme 
is an adaptive cell method which attempts to minimize the 
number of disk accesses in performing spatial queries. As a 
hybrid of interpolation hashing and extendible hashing, the 
proposed scheme combines the best features of both. First, the 
mapping between data buckets in physical storage and regions in 
the search space is interpolated rather than stored. Secondly, 
since a directory allows the search space to be divided into a 
coarse grid, any random cluster of data affects the file structure 
only within a grid cell rather than the entire file structure. 
Thirdly, a compromise between space and access time can be 
obtained by controlling the load factor. 

Another important feature of the proposed scheme is that it 
handles spatial queries , range search in particular, efficiently by 
allowing a query to be decomposed into a set of subqueries 
within cell restrictions. 
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Experimental results with a set of real data show that the 
proposed scheme is superior to a B+-tree both in access 
efficiency and storage utilization. Additionally, the scheme is 
comparable to the EXCELL method which was originally 
proposed for representing a polygon network by vectors. 
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APPENDIX 

A. Data Structure 

The file structure consists of a directory and data buckets. 
The directory has a header containing the depth of the directory 
followed by 2d elements, where d is the depth of the directory. 
Each element of the directory is a 5-tuple of 
<j, p, occ, over, ptr>, where j is the split level, p is the 
bucket to be split next, occ is the number of records contained in 
the data bucket (or set of expandable buckets), over is the 
number of overflow fields employed, and ptr is the pointer to the 
data bucket (or set of expandable data buckets). 

Each data bucket or overflow field contains a set of records, 
(K(L), S(L), C(L» . In addition to the set of records, each data 
bucket has a header that contains db, the bucket depth, and a 
pointer, ptr. If a bucket is an expandable one, ptr points to a 
chain of overflow fields attached to it; otherwise, it may be either 
ignored or used to point to the next bucket. 
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B. Algorithm Access 

Input: fill; F, directory dir to F, and (x,y) E V, 
where V = [0,2n)2 is the study area. 

Output: data bucket D which contains (K(L),S(L),C(L» such 
that (x,y) E L. (The record may be in an overflow field 
of D .) 

Note: d.ir[i].A denotes field A of (i+ I )st element of directory. 
Step I: key ~ s(x,y) 
Step 2: read d, depth of directory 
Step 3: i ~ L(key I 22n-d J #determine d.ir index# 

Step 4: lac ~ dir[/l-ptr #read pointer value# 
Step 5: if dir[l].j = 0, goto Step 8 
Step 6: #case of split level ~ 

a. if dir[i].p = 0, #every bucket split# 
I) #set subblock index with j bits of the key# 

isub ~ L(key mod 22n-d)/22n-d-iJ. 
where j denotes dir[/l-j 

2) #calculate bucket no.# 
bnum ~ Lak2m-I-k, for ° ~ k ~ m-I, where 

isub is Lak2k, for ° ~ k ~ m-I 
b. otherwise 

I) #set sub block index with (j-I) bits of the key# 
isub ~ L(key mod 22n-d)/22n-d-j+1 J, 

wherej denotes dir[i] .j 
2) #Calculate bucket no.# 

bnum ~ Lak2m-I-k, for ° ~ k ~ m-I, where 

isub is Lak2k, for ° ~ k ~ m-I 
3) #if bucket split, adjust bucket no.# 

if bnum < dir[/l-p and (d+J)th bit of key = "I", 
bnum ~ bnum + 2i-1 

Step 7: #Calculate address of the bucket# 
loc ~ loc + bnum * unit-length, where 

unit-length is the bucket size 
Step 8: access bucket D at loc and exit. 

c. Algorithm RangeSearch 
Input: file F, directory dir to F, and (xl ,yl),(x2,y2) E V , 

where xl ~ x2 and yl ~ y2. 
Output: retrieve every data bucket whose associated block or 

subblock in V intersects the query rectangle specified by 
(xl,yl) and (x2,y2) . 

Step I : R ~ { } #initialize index set# 
Step 2 : read d, depth of directory 
Step 3: #Calculate keys and indexes# 

key1 ~s(xl ,yl) ; i1 ~Lkey1122n-dJ 
key2 ~ s(x2,y2) ; i2 ~ Lkey2 I 22n-d J 

Step 4 : if i1 = i2, #trivial case# 
R ~ {il} and goto Step 12 

Step 5: #determine limits of index# 
a. if d is even, 
I)xlow ~ La2k+12k, forO ~ k ~Lm12J 
2)xhigh ~ Lb2k+12k, for ° ~ k ~ Lm12J 

3) ylow ~ La2k2k, for ° ~ k ~ r ml2l 

4) yhigh ~ Lb2k2k, for ° ~ k ~ r ml2l 
b. otherwise, 

I ) x low ~ La2k2k, for ° ~ k ~ r ml2l 

2)xhigh ~ Lb2k2k, forO ~ k ~r ml2l 

3 ) ylow ~ La2k+12k, for ° ~ k ~ Lml2J 

4)yhigh ~Lb2k+12k,forO~k~Lml2J 
where i1 (i2) is Lak2k (Lbk2k), for ° ~ k ~ m-I 
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Step 6: Lx ~ xlow #initialize x index# 

Step 7: iy ~ ylow #initialize y index# 
Step 8: #Compute index of relevant block# 

if d is even, i ~ shurne(ix,iy); 

otherwise, i ~ shume(iy,ix), where 
shume(V,W) = L(2vk+wk)22k, for ° ~ k ~ m-I 
given V =LVk2k and W = LWk2k, 

Step 9 : R ~ RV {i} #store the index# 
Step 10: #continue until y upper limit is reached# 

I) increase iy by I 
2) if iy ~ yhigh, goto Step 8 

Step 11: #continue until x upper limit is reached# 
1) increase Lx by I 
2) if Lx ~ xhigh, goto Step 7 

Step 12: loc ~'null #initialize# 
Step 13: for each member i in R, perform 

a. #determine address of bucket# 
if dir[/].ptr * loc, lac ~ dir[/lptr; 
otherwise, goto Step 13.e 

b. if dir[/].j = 0, 
retrieve bucket at loc and goto Step 13_e 

c. #linear splits have occurred# 
if the block is totally contained in the query rectangle, 
retrieve every bucket belonging to the block using 
Algorithm SequenRetrieve and goto Step 13.e 

d. #the block is partially contained# 
I) R' ~ { } #initialize subblock index set# 
2) let (xl ',yl ') and (x2',y2'), where xl' ~ x2' and 

yl' ~ y2', be the points specifying the rectangle 
which is the intersection of the current minimal block 
and the query rectangle 

3) compute R' in a similar manner to Steps 3-11 
Note: in Step 8, d should be substituted with j 

4) #compute the number of buckets# 
if dir[/].p = 0, M ~ 2i; 
otherwise, M ~ 2i-I+p 

5) for each member isub in R', 
compute bucket number bnum; 
ifbnum < M , 

calculate address of bucket and retrieve 
e. continue. 
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