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Abstract 

An algorithm is developed to segment arbitrary boundary 
images into sets of boundaries which represent a single object. and 
to group together lines which cofTespond to a single object or 
object part. The algorithm is based on features which were found 
to used by human~ in the early stages of visual processing. and 
which have a high correlation with perceptually significant 
aspects of images. In addition. the data structure used is based on 
the image representation used in the primate visual cortex. 

By using perceptually valid features. the algorithm is able to 
enhance the perceptually significant edges in an image using sim ­
ple. local. parallel computations. It demonstrates that selective 
processing can occur in the parallel stages of early visual process· 
ing. without domain specific knowledge. iterative processing. or 
top-ilown control of some mechanism to shift attention. 

KEYWORDS: image segmentation. boundary images. visual 
psychophysics 
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1. Introduction 

Images conta in too much information for humans or 
mil,hines to process all of it in detail. The human visual system 
solves this problem by performing a initial . cursory analysis of 
the entire image which allows it to pick out automatically what 
is important in the image (Treisman. 1986). and then to selec­
ti ve ly process that information in preference to the rest of the 
mformation. That is. a rapid, parallel analvsis of the entire image 
indicates which regions are likely to contain the most useful 
information. Then the following stages of analysis, which 
require more focused, serial processing can concentrate primarily 
on the preselected regions. This can also be a useful approach for 
a computer vision system. and in fact the parallel computation of 
intrinsic images can be viewed as an example of the first stage 
(Barrow and Tenenbaum, 198]). This paper describes another 
type of processing which enables the early visual processing to 
indicate which regions of an image are likel y to contain the most 
useful inf orma tiOn, and to selectively process such regions in 
parallel. This is accomplished by selectively processing image 
features which have a high correlation with perceptually 
significant aspects of an image. This is not a new approach . For 
example. edge detection techniques pick out object boundaries and 
other edges which are more perceptually significant than more 
uniform image regions (Marr. 1982). However, the research in 
th is paper presents a new set of features which can enable strong 
in ferences about which regions of an image contain the most per­
ceptuall y relevant information. 

Determining which aspects or feat ure, of an image contain 
the most useful information, and sh"u ld therefore be preferen ­
tiall y processed is difficult because there are nearly an infinite 
number of potential features. The dlmensinns of physics cannot 
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necessarily be used to determine which features are relevant, as 
perceptual features may lie along some other dimensions. For 
example. the perceived color of a region depends not only on the 
wavelength and intensity of the light reflected from it, but also 
on the relative contrast between it and neigh boring regions. So 
how can perceptually relevant features be found? 

The question is further complicated as one set of features 
may be ideal for one task, but useless for another. One' basic 
machine vision task is to segment an image into different regions 
which correspond to different objects, or object parts. This may be 
possible based on the color. shading, texture and shape informa­
tion. But, are the color and shading information necessary for 
image segmentation? Not always. as humans can readily segment 
simple line drawings or boundary images' which lack that infor­
mation. So one way to study image segmentation is to study line 
drawing perception. and as line drawings are much simpler than 
natural images. this should make the selection of features easier. 
Once features are found from line drawings, then it is possible to 
test them in the analysis of natural images. 

But even for simple line drawings. it is not obvious which 
featu res should be used. As the goal is to find perceptually 
significant aspects of an image, and then to determine which 
features correlate with those aspects, it is desirable to determine 
w hat aspects of an image have perceptual significance for' humans. 
It i~ not pos.'lble to .iust introspect about possible features, as the 
releya nt preattentlve stages ,'f human visual processing are nnt 
., \, ai lahlt r(lr LllnS<:hlUS Introspection (Julesz & Schumer. 1981 ). 
Ihe ilrrroa~h taken in this paper is to use psychophysical e~peT1 
ments to e>.plore preattentive vision and to discover image 
leJlures used by humans. Once potential feature, are found. their 
,"eful n e~s is tested by developing a computational algoTllhm 
",sed nn them, and then testing the algorithm . The algorithm 
Jeveloped here can segment arbitrary boundary images containing 
hoth straight lines and curves. It is a simple, data-ilriven, 
hottom-up approach, which requires no domain specific 
knowledge, and demonstrates the importance of using perceptu ­
ally valid features. 

2. Psychophysical Experiments 

The psychophysical experiments are based on the perceived 
contrast of lines phenomenon (WaIters and Weistein. 1982a). The 
patterns in Fig. 1 can be used to illustrate this phenomenon. 
When viewed at low contrast the lines in the cube (Fig. la) 
appear to have higher contrast than the lines in Fig. lb. If these 
differences in perceived contrast can be correlated with the pres­
ence of particular image features, it would suggest that stim uli 
with those features are processed differently from stimuli lacking 
the features. In particular, stimuli having features associated 
with high perceived contrast may be preferentially processed. 
The aim of the psychophysical experiments was to isolate such 
features. The experiments have been reported elsewhere (WaIters 
and Weistein, 1982b; WaIters, 1984. 1985), so only a brief descrip­
tion is incl uded here. 
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Figure 1 

By looking at lots of pairs of patterns designed to differ in 
terms of various global and local properties, it was found that the 
difference in perceived contrast did not correlate with any of the 
global features. For example, closure, global connectivity, per­
ceived J-dimensionality and objectness did not correlate with per­
ceived contrast. Local features were also explored, and the pres­
ence of angles, and the number of free line ends were ruled out. 
The onl y two features that did correlate with perceived contrast 
were line length, and the local connections between the ends of 
the line segments. For lines which subtended less than one degree 
of visual arc, perceived contrast was a positive function of line 
length. For longer lines, there was no correlation between per­
ceived contrast and length. The other local property is the way in 
"hich line ends are connected, and experiments show that there is 
dlCtually a hierarchy of end connections. Figure 2 shows the 
resu Its of one such experiment. The brightness of various patterns 
formed of 30 minute line segments was measured relative to a 
line which subtended 60 minute of visuaI'arc. Some of these pat­
terns could be referred to as the "L", "Fork ", and 'T' junctions 
from the Huffman-<:Iowes tradition (Huffman, 1971; Clowes, 
1971; Waltz, 1975). But it turns out that that is no~ the most use­
f ul classification. As section 3.2 explains, it is better to classify 
these patterns in terms of the spatial relations between the ends of 
the lines. 

From the results in Fig. 2 we can see that line segments 
joined at their ends have higher contrast than segments where one 
end abuts the middle of the other segment. And these abutting 
lines have higher contrast than lines that intersect, while inter­
secting lines have higher contrast than unconnected lines. 

Further experiments found one additional pattern in the 
hierarchy, as show n in Fig. 3. Two lines connected end-to-end 
(pa ttern A) have higher contrast than three lines connected end­
to-end (pattern B), which have higher contrast than lines which 
.:onnect end -to-middle (pattern C), which have higher contrast 
than the lines which intersect, which in turn have higher contrast 
than parallel lines. 
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3. Computer Model of Contrast Enhancement 

The T" \ ' Ilnphvsic.;al experiment' pf(lvlde eV lden ~e Ih"1 t he 
ienrlr. .. ' I ,:lc- . and the connections bet"een the ends 0) hnes, are 
h"SI, le<ttu res for human vision. This hvpothesis was further 
te~ted by implementing it as a computer model. The model 
recei ves a boundary image as its input, and outputs the "per­
ceived" c.;ontrast of the pattern. 
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3.1. Enhancement Rules 
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Figure 3 
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The model uses the presence of the different types of end 
connections to implement the following enhancement rules. tl 
Each section of line with length L is enhanced by amount "I". 2) 
Lines terminating at Type A connections are enhanced by amount 
"a". 3) Lines terminating at Type B connections are enhanced by 
amount "b". 4) Lines terminating at Type C connections are 
enhanced by amount "c". 5) Amount "a" > amount "b" > 
amount "c". 

3.2. Detection of Features 

The presence of the features can be detected in an image by 
defining the different end connections in terms of a discrete 
geometry (Rosenfeld, 1979). The first step is to determine 
whether each point in the image is part of a line. Thus points can 
be labeled as either non-line or line points. The line points can 
then · be further broken down into end points and non-end (mid­
dle) points. But consider the intel'llection of two lines. The point 
that lies on the intel'llection can be considered to be a middle point 
of one 'or the other line, or can even be considered an end point of 
each of four shorter line segments. Thus some way of defining 
the point is needed which avoids these ambiguities. An edge 
detection technique could be used to label each point in the image 
with the orientation and amplitude of the best line or edge cen­
tered on that point. But at the intel'llection point, it is not so clear 
what the best line would be. Some edge detection techniques give 
the orientation of either one or the other line, while others give 
an average of the two orientations. So, just at a point that pro­
vides lots of inform;;tion about the scene, the edge detection 
methods don't give sensible answers. 

Another problem in edge detection arises because many of 
the popular approaches to edge detection in computer vision are 
based on the use of the mathematics of continuous functions. This 
creates problems in detecting the Type A connection, which is 
defined in terms of a tangent discontinuity, as in the mathematics 
of continuous functions, discontinuities are problematical. Poggio 
et al. (1985) have suggested that the solution to this problem is to 
regularize the computation. For example, get rid of the discon­
tinuities by convolving the image with a gaussian, and then look 
for edges in the blurred image. The advantage of this technique is 
that patterns can then be represented as smooth continuous func­
tions, but it is rather unfortunate from the contrast enhancement 
point of v iew. as it gets rid of the the tangent discontinuities, 
which appear to be such important features for early vision . So 
edge representation methods based on continuous functions are not 
very useful for this model. 

The solution to these edge representation problems can be 
found by looking at how edges are represented in the primate 
visual cortex. If an amplitude/ orientation scheme were used, 
there would need to be two "edge" neurones in the primary visual 
cortex for each retinal ganglion cell: one to signal the amplitude 
of the edge at that point, and another to signal the orientation of 
the edge. Bu t the cortex does not have that organization, instead 
there is a whole c.;olumn of edge neurones for each spatial location, 
and each neurone is sensitive to edges with a narrow range of 
orientations (Hubel and Weisel. 1968). So, instead of just signally 
the "best" amplitude and orientation, the orientation column sig­
nals the amplitude at man y orientat ions. This representation has 
several advantages over the amplitude/ orientation scheme. For 
e\ample. at the mtersection of two lines. both orientations can be 
repre-ented. which would disambiguate the pattern . 
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The data structure used in the general enhanceflltn t a lgo~ 

T1 thm. is based on the orientation representation of 1he mam~ 

malian visual system. Figure 4(a ) shows the basic fo:rm of the 
data structure. It is an orientation plane representation. It is a 3~ 

d space where each point represents a short piece of line having a 
specific orientation and located at a specific x-y location. An image 
is transformed into this representation by convolving tbe image 
wi th a separate oriented edge kernel for each orientatiolll plane. It 
is possible to construct any number of separate orientatjon planes 
for this representation. In the current implementation 8 or 16 
orientation planes are used. In addition, if boundaries ue presen t 
at different scales in the image, then a separate orientation plane 
structure is needed for each scale. This would be required for 
grey-level images, though not for line drawings contaiJlling a sin­
gle width of line. 

One advantage of the orientation plane representation is that 
it makes it easy to define lines and find tangent discontinuities. A 
line is defined to be a set of dark pixels such that eac-h pixel is 
connected to neigh boring pixels of similar orientation. The speciftc 
definition of 'connected' is orientation dependent. line J'i.xels can 
only be connected to other line pixels which lie within a certain 
x,y distance, and a certain orientation distance, and the greater the 
x,y distance, the greater the possible orientation distalllce which 
c.an yield a connection. These definitions c.an be used to label all 
the pixels in an image as either nontine, end 'e' or middle 'm' 
points. 

Connections c.an be defined in terms of these 'e' and 'm' 
labels. For example, for a Type A connection located at point 
(x l ,yl), examining the xl,yl position in each plane would yield 
exactly two 'e' labels, and no others. (Actually, the eXClmination 
may involve a small neigh borhood a round the (xl ,yl) point.) This 
suggests how to define the different connections in terms of the 'e' 
and 'm' labe ls. 

3.3. Completeness of the Feature Set 

Another question that needs answering is, are thes.e features 
geometrically complete? Does it cover the space of all possible 
w nnections? This question c.an be answered in terms (If all the 
possible combinations of 'e' and 'm' labels. Figure 5 shows all the 
possible connections for straight lines of just three possi.ble orien­
tations, in terms of the number of 'e' and 'rn ' labels at the center 
of the connections. The upper left three are not connect ions. The 
upper right two are both intersections, which receive n(l contrast 
enhancemen t. Th ree of the con nections were used in tJ.e psycho­
physical experiments, and there are two additional connections 
needed to cover the space. The new connections are hypothesized 
to belong to the classes as labeled. 

There are only a limited number of orientations in Fig. 5. 
For more orientations, the set wou ld be extended, and 1he labels 
can a lso be extended. Everything out to infinity in the LOp row is 
a Type D connection. Every thing out to infinity in the second 
row is a Type C connection~ And everything out to infinity in 
the other rows is u. Type R connection. It is important 10 be able 
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t o label all possible t ypes of end connections, but at the same time, 
the probability of any of the higher order types occurr ing in a 
natural scene are very small, thus they are not as important as 
the few seen in Fig. 5. It can now be seen that the set of connec­
tions is complete, and that there is a means of detecting the pres­
ence of the features as all connections c.an be cJassifyed into the 
four perceptually valid classes using these rul~s. I ) All 
connections with exactly two 'e' labels are of t ype A. 2) All con ~ 

nections with two 'e' labe ls, and at least one additional 'e' or 'm ' 
label are of type H. 3) All cORnections with exactl,!' one 'e' label 
a nd one or more 'm' labels are of type C. 4) All con:-nections w ith 
no 'e' labels and two or more 'm' labels are of type D. 

3.4. Dealing with Curved Boundaries 

The examples thus far have dealt only with line drawings 
containing straight lines. To be usef ul the algorithm should be 
able to deal with curves as well. Does the perceived contrast of 
curves also vary with the type of end connections present? 
Further psychophysic.al experiments confirmed thi.s hypothesis. 
Figure 6 shows the hierarchy of end connections f or curved lines, 
with the li.nes on the right having the highest perceived contrast, 
and the lines on the left having the lowest. The results for the 
curved lines are identic.al to the results for the straight line seg ~ 

ments, although curved lines have a possibility of one further 
type of end connection, as shown in the A' pattern. With curved 
segments, two segments c.an merge or join into one, wi thout a 
discontinuity of the tangent. So, one additional ru le must added 
to the algorithm to deal with such connections. 

It is easy to see the relation between these cu rved connec­
tions and the straight line connections, but what is the relation 
between a Type A connection, and the same pattern with the 
discontinuity slightly smoothed, as in Fig. 4? The pri.nciple of sta­
bility argues for continuity ·of interpretation when small pertur­
bations are made in an image. Thus when the right angle of is 
perturbed to form the smoothed angle, the interpretation should 
remain similar. In order to have the same orientation plane 
inttrpretation a means of defining the end connections of curved 
lines is needed. The solution is tha t end connections occur when a 
line passes through J orientation planes within K pixels; J and K 
are variables which determine the sensitivity to curves. 
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3.5. Model Implementation 

The model can be implemented in parallel. Imagine a simple 
processor a t each pixe l in an image, such that each processor 
receives input onl y from a small neighborhood of pixels. Each 
processor ca n compute w hether a part icul ar spatial rel a tion 
between the ends of lines is cen tered in its neighborhood, and if 
so, can send the appropriate enhancement out along the appropri · 
ate pixels. Note that it's nOT the mechanism of contrast enhance· 
ment that is being mode led . it 's the overall computation that is of 
concern. 

4. Model Results 

Figure 7a shows the output of the computer model for four 
of the psychophysical patterns. The results are displayed in terms 
of a threshold. The highest threshold · that is the highest contrast 
lines are at the top. The threshold becomes lower in each subse· 
quent line. At the bottom is the lowest threshold where all of 
the lines which were present in the patterns appear. 

The model results ag ree with the experimental results for 
all of the patterns used in the psychophysical experiments. Thus 
the hypothesis that perce ived contrast is a function of line length 
and the type of connections between the ends of lines, is further 
~upported. 

4.1. Uses of Features Suggested by the Model 

A further use of the computer model is to go be.vond the 
psvchophysica l results. One limitation with the human expe ri ­
ments is that subjects are onl~' ahle to make global judgements of 
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,,'ntra'! the\" can say pattern A was overa ll bnghter than pat 
tern I:l. hut thev cannot say whether a particular lint in pattern A 
\\~, hnghter than the others. But the computer model gi\'e, sULh 
results. wh ich can help in determinin g wh\" such proceS-~ tng 

might be useful. 

Actuall y, some of the possible uses can be seen with these 
simple stimuli of Fig 7a. Lines which are part of object contours 
are enhanced relative to lines which .form texture, or are per­
cei ved as noise. And, the outer contours of objects are enhanced 
relative to the inner contours. 

Looking at another example (Fig. 7b) shows how the model 
goes one step further. Figure 7b contains two distinct objects. one 
partially occluding the other. At the highest threshold the lines 
composing the two objects are not spatially continuous. The the 
model selectively enhances Objects in the foreground, and helps to 
group lines into two sets which correspond to the two objects. 

Figure 7c shows the model results for an impossible object. 
For the possible object, the model results at an early level (level 2) 
show the main properties of the object - a blob with a hole in it. 
That is, the model is giving the topological structure of the object 
at a very early level. But with the impossible object, at the first 
level it is represented as a single object, then as one object with 
two sub-objects, or object components. The model again agrees 
wi th ou r perception of one object if we look atone corner of the 
drawing, and another if we look at ~he diagonally opposite corner, 
and neither we nor the model can get the perceptions to merge. 

5. Uses of Image Features 

The results of the computer model give more support to the 
hypothesis that the length of lines, and the spatial relations 
between the ends of lines, are perceptually va lid features. But 
how should these features be CSED? 

5.1. Current Approaches 

Various theories concerning the use of features have been 
proposed in computer v ision. One conceptually simple use of 
features is to represent objects in terms of a list of features (Feld­
man, 1985). A model of an object can be expressed in terms of 
features and the relations between them, and then portions of an 
image can be compared to the model to see if the object is present. 
This is similar to the way line drawing junctions were first used 
by Roberts (1965). But this use involves domain specific 
knowledge, which is a major drawback as it is thus not easily 
extendible to deal with arbitrary images. 

Guzman(1979), Kanade (1981), Draper ( 1981), and Lee et 
al.(1985) have used very similar line drawing features in their 
boundary image interpretation algorithms. The features are used 
in various constraint satisfaction systems. This paper presents 
another, related use of end connection features, which is not Iim ' 
ited to trihedral vertices, and accomplishes a somewhat different 
task . 

5.2. Selective Enhancement 

A different use of features is suggested by the psychophysi ­
cal experimenL~ and computer model. Lines appear to be selec­
tively enhanced based on the presense of a few basic features. 
(The potential usefulnes.~ of this enhancement is described in the 
next section') It appears that selective enhancement is pos~ible , 
even in the automatic parallel stages of processing. This requi res 
no top-down processing, no domain-specific knowledge, and no 
iterative processi ng. 

. ------
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b. PeJ'ceptual SIgnificance of Selective Enhancement 

\\ 11\ should ,uch pi.rallel selective enhancement be useful " 
rhe ,,'mruter model provided some hints. The outer contours of 

obJect, "''' ere enhanced more than the inner contours. and object 
contours were enhanced more ',han lines interpreted as texture or 
noise. and the highest contrast lines were correctly segmented. 
But wh y would these results be helpful? 

The selective enhancement of outer contours is important for 
object recognition. An object can usually be recognized just from 
it's silhouette, which is simply it's outer boundary - outer con ­
tou rs have a special perceptual significance. And the edges of a 
si lhouette can only contain type A connections. This may be the 
reason that end-to-end connections appear to receive the most con ­
trast enhancement. And this supposed correlation between type A 
connections and the outer contours of objects makes it possible to 
infer that the most enhanced lines in an image have a high proba­
bility of having arisen from the occluding contours of objects. 

The type B connections can arise from either an inner or 
outer contour of an object, and thus do not have as strong a corre­
lation with outer object boundaries. Even when we divide the 
type B connections into forks and arrows as Chakraverty and oth­
ers do (Chakraverty, 1979; Lee et al., 1985), they can still both 
arise from both types of object contours. 

Yet, if two simple assumptions are made, both type A and 
type B junctions have a high correlation with object contours in 
general. 

The first assumption is: 

Assumption I: Viewing position is representative. 

(This means we assume we are looking at an object along a view­
ing direction which is not one of the few viewing directions 
which results in the accidental alignment of object boundaries or 
wires in a scene. minford, 1981; Cowie, 1982)) 

Result 1: Two or more lines meeting at a junction should be 
interpreted as two or more wires or object boundaries that meet. 
Assumption 2: Object position is representa tive. 

(This means we assume objects or wires in a scene are not acciden­
tally aligned. The first assumption concerns looking at objects in 
such a way as to make them appear to be accidentally aligned. 
The se~ond assumption concerns cases where the objects are in 
some form of accidental alignment with each other, independent 
of the viewing position.) 

Result 2a: Line ends meeting at a point should all be interpreted as 
having arisen from the same object. 

Result 2b: Two or more line middles falling on a point should be 
interpreted as wires or texture boundaries. 

Result 2c: Connections containing both ends and middles are most 
generally interpreted as object boundaries that either occl ude or 
meet other object boundaries. 

Result 2d: The end line in a connection should be in terpreted as 
arisi ng from a different ob.ject from the middle lines, 

The assumptions about nonaccidental alignment do not mean 
that images with accidental alignment cannot he enhanced or seg­
mented using this algorithm. It just means that the most general 
interpretation for a basic feature will be utilized. Thus in the 
majority of cases, the correct interpretation will arise, while a 
few cases may exist where the algorithm gives an incorrect 
In terpretatlOn, 

from these assumptions we see that in Type A and B con ­
nections the lines have a high probability of having arisen from 
the same object. This result makes these connections the most use­
f).!1 for grouping together lines which correspond to a single object 
or object part. This result is also useful for segmenting the image 
into sets of lines which represent a single object . Note that this 
type of segmentation is different from Richards' segmentation of 
curves (Richards & Hoffman, 1983). His work shows how to seg­
ment the curves of an object into sets which correspond to various 
object parts, but not how to segment an entire image into different 
objects. 
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So, from the contrast enhanced lines, certain inferences about 
the line drawing can be made. Wh:v would these inferences be 
useful for a visual system? Well, as previously 
mentioned, a major problem for a visual system is that there is 

too much information in a visual image to process all of it in 
detail. One solution is to have some automatic preprocessing sys­
tem which determines which lines or areas contain the most 
important information, and then to concentrate the serial process­
ing on those areas, while ignoring other potentially less fruitful 
areas. This model automatically enhances those lines which have 
a high probabilit~' of being part of object contours, rather than 
just part of texture or noise. If the next stage of processing has to 
be selective, it can "attend" only to the enhanced lines and thus 
not waste resources processing spurious edges. But note that some 
stages of the selective processing can be done in parallel, and they 
do not require the 'top-down control of some mechanism to shift 
attention (Ullman, 1986). 

7. Additional Perceptual Effects 

Before describing the results of implementing the enhance­
ment algorithm for curves and straight lines, a couple of other 
perceptual effects incorporated into the algorithm need to be 
described. The connections between the ends of straight and 
curved lines are basic features for the human visual system. The 
hum an v isua l s:vstem is a lso sensitive to virtual edges such as the 
ones seen in Fig. 8a. Thus the enhancement algorithm may be 
improved b:v including the ability to deal with virtual edges. 
Again the orientation plane representation makes it easy to 
represent virtual edges, by allowing edges to grow perpendicu­
larly from the ends of lines. This is similar to the boundary con­
tou; completion of (Grossberg and Mingolla, 1986). 
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Figure 9 demonstrates one further trick of the human visua l 
system, which is incorporated into the algorithm . The figure is 
perceived as representing a single diagonal line, which appears to 

pass behind the surface represented by the vertica l lines. Thus 
pairs of Ty pe C connections, when aligned and hav ing a pa rti cu ­
lar sy mmetry can be interpreted as occlusion of a single line. A 
rel a ted approach ahs been used by (Lee et a I., 1985) to fin d h idden 
vertices in line drawings. 

8. Segmentation Examples 

The contrast enhancement algorithm can be implemented 
using the orientation pl ane representation. figure lOa shows some 
examples of appl :v ing the ,egmentation algorithm to 2-0 , origami , 
and 3-~ objects. The dra w ings are correctl:v segmented in a ll 
three cases, as indicated by the different line sty les for the 
different objects. Again the outer contours of the oh.Jects a re 
enhanced more than the inner contours, and ohiects in the 
fort'grounJ ;lre en'h,; ~ l e~-reJ ;i1 I \ C to o.--:-: udeJ , .b )(' , t~ . Note ,o .. t 
t il f ,'ne 't l nf rul e' ,-<I n deal with '_he three "'parate d,'m il ln'_ 

~n . , t he - e ~ '"npl e IS ",en 11l I If' - lOb. where the h r~ t and 
'<!w nd Imilge' Jiffer onl y b~' a single line segment, :vet the second 
alone is represented as two separate objects. Note that this segmen ' 
tation is indicated earl y in the process - ie. at Level 2. Thus even 
at this early stage the segmentation is correct. Note that the seg­
mentation is performed without using either implicit or explicit 
models of objects, and the top-{\own processing that model match· 
ing requires. This is different from most current algorithms, and 

-enables any boundary image to be processed. 

9. Grouping Performance on an Arbitrary Line Drawing 

To demonstrate the ability of the enhancement and grouping 
algorithm, to deal with an arbitrary line drawing, a cartoon from 
the New Yorker was processed -in accord with the algorithm. Fig­
ure lla shows the original cartoon. In Fig. llb, only the mo.~t 

enhanced groups of lines are displayed - those involved in Ty pe A 
and A' connections. Only 61 of the total of 86 lines are present, 
yet object recognition is possible. If just the remaining 25 lines 
are displayed, object perception is not possible . which is weak 
evidence that the algorithm picks out the most perceptually 
salien t lines. 

The grouping at this stage is depicted by the different line 
styles. Sixteen of the twenty-three separate objects or object parts 

.are represented at this stage. (Due to reproduction limitations, 
only four line styles are used in the figure, however each instance 
of line style indicates a separate set of lines.) Again the algorithm 
is effective in reducing the complexity of the drawing in terms of 
the number of lines, ",'ithout diminishing the grouping capabili ­
ties. 

Figure Ilc shows the final grouping of the cartoon. The sets 
all correspond to ob_iect or ob_iect parts that are readil y named b:v 
humans: ie 'crown', 'robe', 'cuff', 'sleeve', 'foot', etc. There are no 
groups which w ould have to be described as "the upper right 
hand portion of ob.iect x". which again suggests thilt the grou ping 
has perceptual significance. The algorithm could be used as a 
powerful preproces.~or for a scene anal ysis system, as it accom ­
plishes a lot, given just a handful of simple rules. Later stages of 
analysis could use the enhanced sets of lines as input to an ob.iect 
recognition algorithm (Pentland, 1985; Biederman, 1985). 

10. Texture Boundaries 

Up to this point the spatial relations between the ends of 
curves and lines have been discussed, which are one type of boun ­
dary found in images. flut the algorithm could equally well be 
applied to other boundaries - for exa mple, texture boundaries. 
Instead of using lines or edges as the input to the algorithm, the 
boundaries defined by differen ces in texture could be contrast 
enhanced in accordance with the spatial relations between their 
ends. This is an interesting example, because it may be that the 
end-connections are used twice in this ty pe of analysis. lulesz has 
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many impressive experiments uesigneu to uncover the feu tu res 
used In' humans in texture segregation. which he calls te nons 
(J ules7. & llergen, 198.1). At last count. the texture features 
incluue color. elongated blobs (which includes lines). their free 
termina tors. and crossings. Julesl.· rejection of global properties 
sudl as closure. and global connectivit,v ror preattenti\'e texture 
discrimination agrees with m\ findin gs thut these Imlperties are 
nllt rele\'ant to changes in perceived contrast. And as there is a 
strong corre li,tion between the number or free tertll1n.,l<'r~ . and 
the tvpe (, I' end -connections. it ma\' he thut the hierilrc\l\ ,)1 enJ 
,"n n ~c' ti "n' founu to alter perceived wntrast. car. eq u.dlv \\ell 
~\I' I"ln texture segregation of patterns c(Imi""ed ('I l ine, und 
, d 1'\ e .... . 

1 J. Natural Images 

,~ technique for finding texture boundaries in natural images 
" necessary before the selective enhancement algorithm can deal 
with natural images which conta in regions defined by texture 
edges rather than intensity edges. But can the selective enhance­
ment algori thm work for natural images which do not contain 
texture boundaries' We are currently addressing this question by 
implementing the algorithm for natural images. 

There are two basic problems when applying line drawing 
algorithms to natural images. First is the problem of extracting 
the edges from the image. leaving the connection information 
intact. We are developing edge detection techniques, similar to 
those of Canny (1984), to a llevinte this prohlem. A related prob­
lem is that many spurious edges are found with many edge detec­
tion techniques. The lack of contrast enhancement for short edges, 
and the selective enhancement of end connected edges both reduce 
such problems. 

The other problem is that extracted edges are often noisy and 
contain large gaps. But a similar problem is found in man y car­
toons - end connections or lines are implied but not explicitly 
present. The selection enhancement algorithm uses the creation of 
v irtual edges to solve this type of problem, and it may be possible 
to extend this solution to natural images. 

12. Conclusion 

rhe end connections of lines and curves appear to be basic 
leiltures which allow bottom -up processing of boundary images 
using a "rigle set of simple rules. The contrast enhancement algo­
nth m suggests that certain selective processing can be performed 
In .he parallel st.ages of preattentive processing. It is a data-driven 
ilppril"ch which accomplishes tasks previously thought to requi re 
domain 'peclfic knowledge. Object models are ohviously necessary 
for some stages of object recognition, but the contrast enhancement 
algorithm demonstnltes that some steps which were previousl y 
thought to require model matching. do not. Th" sllll\\'s Iw\\' pro­
ductive bottom-up processing can be when rs,vchoph,\'sicall y v.did 
features are used in perceptuall ,v valid ways. 
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