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Abstract

An algorithm is developed to segment arbitrary boundary
images into sets of boundaries which represent a single object, and
to group together lines which correspond to a single object or
object part. The algorithm is based on features which were found
to used by humans in the early stages of visual processing, and
which have a high correlation with perceptually significant
aspects of images. In addition, the data structure used is based on
the image representation used in the primate visual cortex.

By using perceptually valid features, the algorithm is able to
enhance the perceptually significant edges in an image using sim-
ple, local, parallel] computations. It demonstrates that selective
processing can occur in the parallel stages of early visual process-
ing, without domain specific knowledge, iterative processing, or
top-down control of some mechanism to shift attention.
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1. Introduction

Images contain too much information for humans or
machines to process all of it in detail. The human visual system
solves this problem by performing a initial, cursory analysis of
the entire image which allows it to pick out automatically what
is important in the image (Treisman, 1986), and then to selec-
tively process that information in preference to the rest of the
information. That is, a rapid, parallel analvsis of the entire image
indicates which regions are likely to contain the most useful
information. Then the following stages of analysis, which
require more focused, serial processing can concentrate primarily
on the preselected regions. This can also be a useful approach for
a computer vision system, and in fact the parallel computation of
intrinsic images can be viewed as an example of the first stage
(Barrow and Tenenbaum, 1981). This paper describes another
type of processing which enables the early visual processing to
indicate which regions of an image are likely to contain the most
useful information, and to selectively process such regions in
parallel. This is accomplished by selectively processing image
features which have a high correlation with perceptually
significant aspects of an image. This is not a new approach. For
example, edge detection techniques pick out object boundaries and
other edges which are more perceptually significant than more
uniform image regions (Marr, 1982). However, the research in
this paper presents a new set of features which can enable strong
inferences about which regions of an image contain the most per-
ceptually relevant information.

Determining which aspects or features of an image contain
the most useful information, and should therefore be preferen-
tially processed is difficult because there are nearly an infinite
number of potential features. The dimensions of physics cannot
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necessarily be used to determine which features are relevant, as
perceptual features may lie along some other dimensions. For
example, the perceived color of a region depends not only on the
wavelength and intensity of the light reflected from it, but also
on the relative contrast between it and neighboring regions. So
how can perceptually relevant features be found?

The question is further complicated as one set of features
may be ideal for one task, but useless for another. One basic
machine vision task is to segment an image into different regions
which correspond to different objects, or object parts. This may be
possible based on the color, shading, texture and shape informa-
tion. But, are the color and shading information necessary for
image segmentation? Not always, as humans can readily segment
simple line drawings or boundary images  which lack that infor-
mation. So one way to study image segmentation is to study line
drawing perception, and as line drawings are much simpler than
natural images, this should make the selection of features easier.
Once features are found from line drawings, then it is possible to
test them in the analysis of natural images.

But even for simple line drawings, it is not obvious which
features should be used. As the goal is to find perceptually
significant aspects of an image, and then to determine which
features correlate with those aspects, it is desirable to determine
what aspects of an image have perceptual significance for humans.
It is not possible to just introspect about possible features, as the
relevant preattentive stages of human visual processing are not
available for conscious introspection (Julesz & Schumer, 1981).
I'he approach taken in this paper is to use psychophysical exper
ments to explore preattentive vision and to discover image
features used by humans. Once potential features are found. their
esefulness is tested by developing a computational algonthm
nased on them, and then testing the algorithm. The algorithm
developed here can segment arbitrary boundary images containing
both straight lines and curves. It 1s a simple, data-driven,
hottom-up approach, which requires no domain specific
knowledge, and demonstrates the importance of using perceptu-
ally valid features.

2. Psychophysical Experiments

The psychophysical experiments are based on the perceived
contrast of lines phenomenon (Walters and Weistein, 1982a). The
patterns in Fig. 1 can be used to illustrate this phenomenon.
When viewed at low contrast the lines in the cube (Fig. 1a)
appear to have higher contrast than the lines in Fig. 1b. If these
differences in perceived contrast can be correlated with the pres-
ence of particular image features, it would suggest that stimuli
with those features are processed differently from stimuli lacking
the features. In particular, stimuli having features associated
with high perceived contrast may be preferentially processed.
The aim of the psychophysical experiments was to isolate such
features. The experiments have been reported elsewhere (Walters
and Weistein, 1982b; Walters, 1984, 1985), so only a brief descrip-
tion is included here.
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Figure 1

By looking: at lots of pairs of patterns designed to differ in
terms of various global and local properties, it was found that the
difference in perceived contrast did not correlate with any of the
global features. For example, closure, global connectivity, per-
ceived 3-dimensionality and objectness did not correlate with per-
ceived contrast. Local features were also explored, and the pres-
ence of angles, and the number of free line ends were ruled out.
The only two features that did correlate with perceived contrast
were line length, and the local connections between the ends of
the line segments. For lines which subtended less than one degree
of visual arc, perceived contrast was a positive function of line
length. For longer lines, there was no correlation between per-
ceived contrast and length. The other local property is the way in
w hich line ends are connected, and experiments show that there is
actually a hierarchy of énd connections. Figure 2 shows the
results of one such experiment. The brightness of varieus patterns
formed of 30 minute line segments was measured relative to a
line which subtended 60 minute of visual arc. Some of these pat-
terns could be referred to as the "L", "Fork", and "T" junctions
from the Huffman-Clowes tradition (Huffman, 1971; Clowes,
1971; Waltz, 1975). But it turns out that that is not the most use-
ful classification. As section 3.2 explains, it is better to classify
these patterns in terms of the spatial relations between the ends of
the lines.

From the results in Fig. 2 we can see that line segments
joined at their ends have higher contrast than segments where one
end abuts the middle of the other segment. And these abutting
lines have higher contrast than lines that intersect, while inter-
secting lines have higher contrast than unconnected lines.

Further experiments found one additional pattern in the
hierarchy, as shown in Fig. 3. Two lines connected end-to-end
(pattern A) have higher contrast than three lines connected end-
to-end (pattern B), which have higher contrast than lines which
connect end-to-middle (pattern C), which have higher contrast
than the lines which intersect, which in turn have higher contrast
than parallel lines.
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3. Computer Model of Contrast Enhancement

The psychophysical experiments provide evidence that the
length o' lines . and the connections between the ends of lines, are
hasic teatures for human vision. This hvpothesis was further
tested by implementing it as a computer model. The model
receives a boundary image as its input, and outputs the "per-
ceived” contrast of the pattern. .

Graphics Interface '86

/
v v
x T2

Figure 3

3.1. Enhancement Rules

The model uses the presence of the different types of end
connections to implement the following enhancement rules. 1)
Each section of line with length L is enhanced by amount "1". 2)
Lines terminating at Type A connections are enhanced by amount
"a". 3) Lines terminating at Type B connections are enhanced by
amount "b"”. 4) Lines terminating at Type C connections are

enhanced by amount 'c”’. 5) Amount "a' > amount 'b" >

amount ¢ .

3.2. Detection of Features

The presence of the features can be detected in an image by
defining the different end connections in terms of a discrete
geometry (Rosenfeld, 1979). The first step is to determine
whether each point in the image is part of a line. Thus points can
be labeled as either non-line or line points. The line points can
then be further broken down into end points and non-end (mid-
dle) points. But consider the intersection of two lines. The point
that lies on the intersection can be considered to be a middle point
of one-or the other line, or can even be considered an end point of
each of four shorter line segments. Thus some way of defining
the point is needed which avoids these ambiguities. An edge
detection technique could be used to label each point in the image
with the orientation and amplitude of the best line or edge cen-
tered on that point. But at the intersection point, it is not so clear
what the best line would be. Some edge detection techniques give
the orientation of either one or the other line, while others give
an average of the two orientations. So, just at a point that pro-
vides lots of information about the scene, the edge detection
methods don’t give sensible answers.

Another problem in edge detection arises because many of
the popular approaches to edge detection in computer vision are
based on the use of the mathematics of continuous functions. This
creates problems in detecting the Type A connection, which is
defined in terms of a tangent discontinuity, as in the mathematics
of continuous functions, discontinuities are problematical. Poggio
et al. (1985) have suggested that the solution to this problem is to
regularize the computation. For example, get rid of the discon-
tinuities by convolving the image with a gaussian, and then look
for edges in the blurred image. The advantage of this technique is
that patterns can then be represented as smooth continuous func-
tions, but it is rather unfortunate from the contrast enhancement
point of view, as it gets rid of the the tangent discontinuities,
which appear to be such important features for early vision. So
edge representation methods based on continuous functions are not
very useful for this model.

The solution to these edge representation problems can be
found by looking at how edges are represented in the primate
visual cortex. If an amplitude/orientation scheme were used,
there would need to be two "edge’’ neurones in the primary visual
cortex for each retinal ganglion cell: one to signal the amplitude
of the edge at that point, and another to signal the orientation of
the edge. But the cortex does not have that organization, instead
there is a whole column of edge neurones for each spatial location,
and each neurone is sensitive to edges with a narrow range of
orientations (Hubel and Weisel, 1968). So, instead of just signally
the ""best” amplitude and orientation, the orientation column sig-
nals the amplitude at many orientations. This representation has
several advantages over the amplitude/orientation scheme. For
example. at the intersection of two lines, both orientations can be
represented. which would disambiguate the pattern.
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Ihgure 4

The data structure used in the general enhancement algo-
rithm, is based on the orientation representation of the mam-
malian visual system. Figure 4(a) shows the basic form of the
data structure. It is an orientation plane representation. It is a 3-
d space where each point represents a short piece of line having a
specific orientation and located at a specific x-y location. An image
is transformed into this representation by convolving the image
with a separate oriented edge kernel for each orientatiom plane. It
is possible to construct any number of separate orientation planes
for this representation. In the current implementation 8 or 16
orientation planes are used. In addition, if boundaries are present
at different scales in the image, then a separate orientation plane
structure is needed for each scale. This would be required for
grey-level images, though not for line drawings contaiming a sin-
gle width of line.

One advantage of the orientation plane representation is that
it makes it easy to define lines and find tangent discontinuities. A
line is defined to be a set of dark pixels such that each pixel is
connected to neighboring pixels of similar orientation. The specific
definition of ’connected’ is orientation dependent. Line pixels can
only be connected to other line pixels which lie within a certain
X,y distance, and a certain orientation distance, and the greater the
x,y distance, the greater the possible orientation distamce which
can yield a connection. These definitions can be used to label all
the pixels in an image as either nonline, end ‘¢’ or middle ‘m’
points.

Connections can be defined in terms of these ‘¢’ and ‘m’
labels. For example, for a Type A connection located at point
(x1,y1), examining the x1,y1 position in each plane would yield
exactly two ‘e’ labels, and no others. (Actually, the examination
may involve a small neighborhood around the (x1,y1) point.) This
suggests how to define the different connections in terms of the ‘e’
and ‘m’ labels.

3.3. Completeness of the Feature Set

Another question that needs answering is, are these features
geometrically complete? Does it cover the space of all possible
connections? This question can be answered in terms of all the
possible combinations of ‘¢’ and ‘m’ labels. Figure S shows all the
possible connections for straight lines of just three possible orien-
tations, in terms of the number of ‘e’ and ‘m’ labels at the center
of the connections. The upper left three are not connections. The
upper right two are both intersections, which receive no contrast
enhancement. Three of the connections were used in the psycho-
physical experiments, and there are two additional connections
needed to cover the space. The new connections are hypothesized
to belong to the classes as labeled.

There are only a limited number of orientations im Fig. 5.
For more orientations, the set would be extended, and the labels
can also be extended. Everything out to infinity in the top row is
a Type D connection. Everything out to infinity in the second
row is a Type C connection. And everything out to imfinity in
the other rows is a Type B connection. It is important to be able
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to label all possible types of end connections, but at the same time,
the probability of any of the higher order types occurring in a
natural scene are very small, thus they are not as important as
the few seen in Fig. 5. It can now be seen that the set of connec-
tions is complete, and that there is 2 means of detecting the pres-
ence of the features as all connections can be classifyed into the
four .perceptually valid classes using these rules. 1) All
connections with exactly two ‘e’ labels are of type A. 2) All con-
nections with two ‘e’ labels, and at least one additional ‘e’ or ‘m’
label are of type B. 3) All cornections with exactly one ‘e’ label
and one or more ‘m’ labels are of type C. 4) All connections with
no ‘e’ labels and two or more ‘m’ labels are of type D.

3.4. Dealing with Curved Boundaries

The examples thus far have dealt only with line drawings
containing straight lines. To be useful the algorithm should be
able to deal with curves as well. Does the perceived contrast of
curves also vary with the type of end connections present?
Further psychophysical experiments confirmed this hypothesis.
Figure 6 shows the hierarchy of end connections for curved lines,
with the lines on the right having the highest perceived contrast,
and the lines on the left having the lowest. The results for the
curved lines are identical to the results for the straight line seg-
ments, although curved lines have a possibility of one further
type of end connection, as shown in the A’ pattern. With curved
segments, tWo segments can merge Or join into one, without a
discontinuity of the tangent. So, one additional rule must added
to the algorithm to deal with such connections.

It is easy to see the relation between these curved connec-
tions and the straight line connections, but what is the relation
between a Type A connection, and the same pattern with the
discontinuity slightly smoothed, as in Fig. 4? The principle of sta-
bility argues for continuity of interpretation when small pertur-
bations are made in an image. Thus when the right angle of is
perturbed to form the smoothed angle, the interpretation should
remain similar. In order to have the same orientation plane
interpretation a means of defining the end connections of curved
lines is needed. The solution is that end connections occur when a
line passes through J orientation planes within K pixels; J and K
are variables which determine the sensitivity to curves.
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3.5. Model Implementation

The model can be implemented in parallel. Imagine a simple
processor at each pixel in an image, such that each processor
receives input only from a small neighborhood of pixels. Each
processor can compute whether a particular spatial relation
between the ends of lines is centered in its neighborhood, and if
so, can send the appropriate enhancement out along the appropri-
ate pixels. Note that it’s not the mechanism of contrast enhance-
ment that is being modeled - it’s the overall computation that is of
concern.

4. Model Results

Figure 7a shows the output of the computer model for four
of the psychophysical patterns. The results are displayed in terms
of a threshold. The highest threshold - that is the highest contrast
lines are at the top. The threshold becomes lower in each subse-
quent line. At the bottom is the lowest threshold where all of
the lines which were present in the patterns appear.

The model results agree with the experimental results for
all of the patterns used in the psychophysical experiments. Thus
the hypothesis that perceived contrast is a function of line length
and the type of connections between the ends of lines, is further
supported.

4.1. Uses of Features Suggested by the Model

A further use of the computer model is to go beyond the
psvchophysical results. One limitation with the human experi-
ments is that subjects are only able to make global judgements of
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contrast - thev can say pattern A was overall brighter than pat
tern B. but thev cannot say whether a particular line in pattern A
Was brighter than the others. But the computer model gives such
results. which can help in determining why such processing
might be useful.

Actually, some of the possible uses can be seen with these
simple stimuli of Fig 7a. Lines which are part of object contours
are enhanced relative to lines which form texture, or are per-
ceived as noise. And, the outer contours of objects are enhanced
relative to the inner contours.

Looking at another example (Fig. 7b) shows how the model
goes one step further. Figure 7b contains two distinct objects, one
partially occluding the other. At the highest threshold the lines
composing the two objects are not spatially continuous. The the
model selectively enhances objects in the foreground, and helps to
group lines into two sets which correspond to the two objects.

Figure 7c shows the model results for an impossible object.
For the possible object, the model results at an early level (level 2)
show the main properties of the object - a blob with a hole in it.
That is, the model is giving the topological structure of the object
at a very early level. But with the impossible object, at the first
level it is represented as a single object, then as one object with
two sub-objects, or object components. The model again agrees
with our perception of one object if we look at one corner of the
drawing, and another if we look at the diagonally opposite corner,
and neijther we nor the model can get the perceptions to merge.

S. Uses of Image Features

The results of the computer model give more support to the
hypothesis that the length of lines, and the spatial relations
between the ends of lines, are perceptually valid features. But
how should these features be USED?

5.1. Current Approaches

Various theories concerning the use of features have been
proposed in computer vision. One conceptually simple use of
features is to represent objects in terms of a list of features (Feld-
man, 1985). A model of an object can be expressed in terms of
features and the relations between them, and then portions of an
image can be compared to the model to see if the object is present.
This is similar to the way line drawing junctions were first used
by Roberts (1965). But this use involves domain specific
knowledge, which is a major drawback as it is thus not easily
extendible to deal with arbitrary images.

Guzman(1979), Kanade (1981), Draper (1981), and Lee et
al(1985) have used very similar-line drawing features in their
boundary image interpretation algorithms. The features are used
in various constraint satisfaction systems. This paper presents
another, related use of end connection features, which is not lim-
ited to trihedral vertices, and accomplishes a somewhat different
task.

5.2. Selective Enhancement

A different use of features is suggested by the psychophysi-
cal experiments and computer model. Lines appear to be selec-
tively enhanced based on the presense of a few basic features.
(The potential usefulness of this enhancement is described in the
next section.) It appears that selective enhancement is possible,
even in the automatic parallel stages of processing. This requires
no top-down processing, no domain-specific knowledge, and no

iterative processing.
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6. Perceptual Significance of Selective Enhancement

W v should such parallel selective enhancement be useful?
I'he computer model provided some hints. The outer contours of
objects were enhanced more than the inner contours, and object
contours were enhanced more than lines interpreted as texture or
noise, and the highest contrast lines were correctly segmented.
But why would these results be helpful?

The selective enhancement of outer contours is important for
object recognition. An object can usually be recognized just from
1t's silhouette, which is simply it’s outer boundary - outer con-
tours have a special perceptual significance. And the edges of a
silhouette can only contain type A connections. This may be the
reason that end-to-end connections appear to receive the most con-
trast enhancement. And this supposed correlation between type A
connections and the outer contours of objects makes it possible to
infer that the most enhanced lines in an image have a high proba-
bility of having arisen from the occluding contours of objects.

The type B connections can arise from either an inner or
outer contour of an object, and thus do not have as strong a corre-
lation with outer object boundaries. Even when we divide the
type B connections into forks and arrows as Chakraverty and oth-
ers do (Chakraverty, 1979; Lee et al., 1985), they can still both
arise from both types of object contours.

Yet, if two simple assumptions are made, both type A and
type B junctions have a high correlation with object contours in
general.

The first assumption is:
Assumption 1: Viewing position is representative.

(This means we assume we are looking at an object along a View-
ing direction which is not one of the few viewing directions
which results in the accidental alignment of object boundaries or
wires in a scene. (Binford, 1981; Cowie, 1982))

Result 1: Two or more lines meeting at a junction should be
interpreted as two or more wires or object boundaries that meet.
Assumption 2: Object position is representative.
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(This means we assume objects or wires in a scene are not acciden-
tally aligned. The first assumption concerns looking at objects in
such a way as to make them appear to be accidentally aligned.
The second assumption concerns cases where the objects are in
some form of accidental alignment with each other, independent
of the viewing position.)

Result 2a: Line ends meeting at a point should all be interpreted as
having arisen from the same object.

Result 2b: Two or more line middles falling on a point should be
interpreted as wires or texture boundaries.

Result 2c: Connections containing both ends and middles are most
generally interpreted as object boundaries that either occlude or
meet other object boundaries.

Result 2d: The end line in a connection should be interpreted as
arising from a different object from the middle lines.

The assumptions about nonaccidental alignment do not mean
that images with accidental alignment cannot be enhanced or seg-
mented using this algorithm. It just means that the most general
interpretation for a basic feature will be utilized. Thus in the
majority of cases, the correct interpretation will arise, while a
few cases may exist where the algorithm gives an incorrect
interpretation.

From these assumptions we see that in Type A and B con-
nections the lines have a high probability of having arisen from
the same object. This result makes these connections the most use-
ful for grouping together lines which correspond to a single object
or object part. This result is also useful for segmenting the image
into sets of lines which represent a single object. Note that this
type of segmentation is different from Richards’ segmentation of
curves (Richards & Hoffman, 1983). His work shows how to seg-
ment the curves of an object into sets which correspond to various
object parts, but not how to segment an entire image into different
objects.

Contrast Levels A,

Input 1 2

(1 O O
-
b ()
|
Eﬂﬂ

|

Contrast Levels

55 8 8 &
7

e L

7' 3’ & &

6.

Figure 10

Graphics Interface ‘86

Vision Interface '86



So, from the contrast enhanced lines, certain inferences about
the line drawing can be made. Why would these inferences be
useful for a visual system? Well, as previously
mentioned, a major problem for a visual system is that there is
too much information in a visual image to process all of it in
detail. One solution is to have some automatic preprocessing sys-
tem which determines which lines or areas contain the most
important information, and then to concentrate the serial process-
ing on those areas, while ignoring other potentially less fruitful
areas. This model automatically enhances those lines which have
a high probability of being part of object contours, rather than
just part of texture or noise. If the next stage of processing has to
be selective, it can "attend” only to the enhanced lines and thus
not waste resources processing spurious edges. But note that some
stages of the selective processing can be done in parallel, and they
do not require the top-down control of some mechanism to shift
attention (Ullman, 1986).

7. Additional Perceptual Effects

Before describing the results of implementing the enhance-
ment algorithm for curves and straight lines, a couple of other
perceptual effects incorporated into the algorithm need to be
described. The connections between the ends of straight and
curved lines are basic features for the human visual system. The
human visual system is also sensitive to virtual edges such as the
ones seen in Fig. 8a. Thus the enhancement algorithm may be
improved by including the ability to deal with virtual edges.
Again the orientation plane representation makes it easy to
represent virtual edges, by allowing edges to grow perpendicu-
larly from the ends of lines. This is similar to the boundary con-
tour completion of (Grossberg and Mingolla, 1986).
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Figure 9 demonstrates one further trick of the human visual
system, which is incorporated into the algorithm. The figure is
perceived as representing a single diagonal line, which appears to
pass behind the surface represented by the vertical lines. Thus
pairs of Type C connections, when aligned and having a particu-
lar symmetry can be interpreted as occlusion of a single line. A
related approach ahs been used by (Lee et al., 1985) to find hidden
vertices in line drawings.

8. Segmentation Examples

The contrast enhancement algorithm can be implemented
using the orientation plane representation. Figure 10a shows some
examples of applying the segmentation algorithm to 2-D , origami,
and 3-D objects. The drawings are correctly segmented in all
three cases, as indicated by the different line styles for the
different objects. Again the outer contours of the objects are
enhanced more than the inner contours, and objects in the
foreground are enhunced rtelatine o owciuded vbects. Nete that
the one set af rules can deal with the three separate domains.

Another example 1s seen in big. 10b. where the first and
second 1mages Jiffer only by a single line segment, yet the second
alone is represented as two separate objects. Note that this segmen-
tation is indicated early in the process - ie. at Level 2. Thus even
at this early stage the segmentation is correct. Note that the seg-
mentation is performed without using either implicit or explicit
models of objects, and the top-down processing that model match-
ing requires. This is different from most current algorithms, and
enables any boundary image to be processed.

9. Grouping Performance on an Arbitrary Line Drawing

To demonstrate the ability of the enhancement and grouping
algorithm, to deal with an arbitrary line drawing, a cartoon from
the New Yorker was processed-in accord with the algorithm. Fig-
ure 11a shows the original cartoon. In Fig. 11b, only the most
enhanced groups of lines are displayed - those involved in Type A
and A’ connections. Only 61 of the total of 86 lines are present.
yet object recognition is possible. If just the remaining 25 lines
are displayed, object perception is not possible - which is weak
evidence that the algorithm picks out the most perceptually
salient lines.

The grouping at this stage is depicted by the different line
styles. Sixteen of the twenty-three separate objects or object parts

.are represented at this stage. (Due to reproduction limitations,

only four line styles are used in the figure, however each instance
of line style indicates a separate set of lines.) Again the algorithm
is effective in reducing the complexity of the drawing in terms of
the number of lines, without diminishing the grouping capabili-
ties.

Figure 11c shows the final grouping of the cartoon. The sets
all correspond to object or object parts that are readily named by
humans: ie ‘crown’, ‘robe’, ’cuff’, ’sleeve’, 'foot’, etc. There are no
groups which would have to be described as "the upper right
hand portion of object x", which again suggests that the grouping
has perceptual significance. The algorithm could be used as a
powerful preprocessor for a scene analysis system, as it accom-
plishes a lot, given just a handful of simple rules. Later stages of
analysis could use the enhanced sets of lines as input to an object
recognition algorithm (Pentland, 1985; Biederman, 1985).

10. Texture Boundaries

Up to this point the spatial relations between the ends of
curves and lines have been discussed, which are one type of boun-
dary found in images. But the algorithm could equally well be
applied to other boundaries - for example, texture boundaries.
Instead of using lines or edges as the input to the algorithm, the
boundaries defined by differences in texture could be contrast
enhanced in accordance with the spatial relations between their
ends. This is an interesting example, because it may be that the
end-connections are used twice in this type of analysis. Julesz has

Vision Interface '86



many impressive experiments designed to uncover the features
used by humans in texture segregation, which he calls textons
(Julesz & Bergen, 1983). At last count, the texture features
include color, elongated blobs (which includes lines), their free
terminators, and crossings. Julesz’ rejection of global properties
such as closure, and global connectivity for preattentive texture
discrimination agrees with my findings that these properties are
not relevant to changes in perceived contrast. And as there is a
strong correlation between the number of free terminators. and
the tvpe of end-connections, it mav be that the hierarchy o1 end
.onnections found to alter perceived contrast. can equally well
saplin texture segregation of patterns composed of lines and
SRTNES,

11. Natural Images

A technique for finding texture boundaries in natural images
1s necessary before the selective enhancement algorithm can deal
with natural images which contain regions defined by texture
edges rather than intensity edges. But can the selective enhance-
ment algorithm work for natural images which do not contain
texture boundaries” We are currently addressing this question by
implementing the algorithm for natural images.

There are two basic problems when applying line drawing
algorithms to natural images. First is the problem of extracting
the edges from the image, leaving the connection information
intact. We are developing edge detection techniques, similar to
those of Canny (1984), to alleviate this problem. A related prob-
lem is that many spurious edges are found with many edge detec-
tion techniques. The lack of contrast enhancement for short edges,
and the selective enhancement of end connected edges both reduce
such problems.

The other problem is that extracted edges are often noisy and
contain large gaps. But a similar problem is found in many car-
toons - end connections or lines are implied but not explicitly
present. The selection enhancement algorithm uses the creation of
virtual edges to solve this type of problem, and it may be possible
to extend this solution to natural images.

12. Conclusion

I'me end connections of lines and curves appear to be basic
features which allow bottom-up processing of boundary images
using a single set of simple rules. The contrast enhancement algo-
rithm suggests that certain selective processing can be performed
in rhe parallel stages of preattentive processing. It is a data-driven
approach which accomplishes tasks previously thought to require
domain specific knowledge. Object models are obviously necessary
for some stages of object recognition, but the contrast enhancement
algorithm demonstrates that some steps which were previously
thought to require model matching, do not. This shows how pro-
ductive bottom-up processing can be when psvchophysically valid
features are used in perceptually valid ways.
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