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Abstract 

The apparent spatial frequency and orientation organiza­
tion of the primary visual cortex is used as a basis for 
texture description. A Frequency, Orientation, neural 
firing Rate, and spatial Phase (FORP) representation is 
proposed for the analysis of natural textures and the 
synthesis of test textures. Higher order texture analysis 
such as discrimination and segmentation in this FORP 
space is discussed . 
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Introduction 

Many researchers have tried to duplicate the ability of 
the human visual system to segment natural scenes 
based on the different texturing of surfaces. We choose 

to define texture as that property of surfaces that can be 
described by the local pattern of spatial variation of 
intensity . We also take as different textures those that 
can be differentiated by human perception. [n this light, 
we base ou r analysis of texture on a model of the early 
human visual system. In partic ular , we choose a model 
of the primary visual cortex since both o rientation and 
spatial frequency information exist here. 1 

We use this information in an orthogo nal feature 
extraction space to generate simple test textures and 
analyse natural textures. 

Texture and the Visual Cortex 

Given that the primary visual co rtex is well suited to 
texture co mputations, is there any evidence t hat it actu­
ally perfo rms them? The followi ng evidence indicates 

that this co uld indeed be true. 

First of all, Julesz 2 mentions the high speed 

discrimination ability of human subjects. This implies 
that texture discrimination is a low leve l visual function 
and must be early in the visual chain . Kimc hi and 
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Palmer,3 through the use of perceptual experiments 
found that texture is processe d separately in the visual 
system from shape and structure. Lastly, Berlucchi and 
Sprague 4 use lesion studies to deduce that shape and 
structure encoding does not exist in the primary visual 
cortex. They suggest the primary visual cortex could be 
used for texture analysis. 

The primary visual cortex appears well suited for 
texture analysis, it appears to actually perform texture 
compu tations, and it can use this information to improve 

image segmentation. 

A Visual Cortex Model 

Pollen and Ronner l describe a model of the primary 
visual cortex which outlines various functions of co rtical 
neurons. These fun ctions include the retinotopic spatial 
map, ocular dominance, orientation, spatial frequency 
and spatial phase. Hubel and Wiesel5 first described a 
small separate processing region in the primary visual 
cortex as the hypercolumn. The hypercolumn was 
responsible for analysing a small area of the visual field 
for orientation informatio n. The hypercolumn has 
become the name for the 0.5 mm wide co rtical area that 
contains orientation and frequency selectivity neurons 
for a small visual region. There exist hypercolumn 
regions to cover all of the visual field. 

Our model of the primary visual cortex is based 
on this hype rc olumn structure. One hyperco lumn is 
modeled as a thr ee dimensional space. The space con­
sists o f a spatial frequency a xis , an orientation axis, and 
a spatial ph ase aXIs. Each point m this space 
co rrespo nds to a neuron that is selective to a particular 
set of frequency , orientation , and phase. A magnitude 
component is also included in this space to acco unt fo r 
the st rength of response to this particu lar set. The mag­
nitude is coded by the neuro n as a neural firing rate . 
This model is a modified two dime nsional Fo urier space 

with all symmetric regions re moved. The model has been 
named FORP (spatial Frequency, Orientation, neural 
firin g R ate, and spatial Phase). 
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The FORP based tools that were developed 
allowed us to both sy nthesize and analyse textures. On e 
of the tools a llowed a window o f a textu re image to be 
chosen and be represe nted in FORP space. The othe r 
a llowed the expe rimente r to place individual points o r 
group of points in the space and then have the textu re 
ge nerated t hat corresponded to this pattern of riring 
neurons . Figures 1 thru 6 are outputs of these pro­
gra ms . 

Figure 1 shows a repre sentation of FORP space 
and the corresponding synthesized textu re. It shows the 
t hree axes o f fre.quency (range of 0 to Fs / 2), orientatio n 
(range of 0 0 to 180 0 ), a nd neural firing rate (normalized 
to a range of 0 to 1). There is a grid on the 
frequ ency /o rientation plane, and the intersection o f two 
grid lines cor respo nds to a neuron or a set of ne urons . 
The intensity of the bar at a fr equency / o rientation point 
represents the phase. The lowest inte nsity corre spond s 
to a phase of 0 and the highest to a phase of 2;;. If 
there were a set of phase sensitive neu rons then the bar 's 
intensity would represent which phase neuron in this set 
was respond ing maximally. The image beside the graph 
co ntains a homoge neous texture generated fr om the 
FO RP space data. The li ttle square in the bottom left 
corner of t he image delineates t he local region that is 
rep resented by the FORP space . The remainder of the 
texture image is a mosaic-like repetition of this small 
su bimage . 

To demonstrate the nature of FORP space we 
have perfo rmed a number of simp le texture syntheses. 
In Figure 1, a single point is placed at a frequen cy of 

Fs / 16 (tha t is 1/1 6t h of t he spatial samplin g frequ ency), 
and an orientation of llO 0 (note that O· is vertical ). 

The re sulting sy n thesized texture is a s patial sinusoid at 
110 0 and has 2 per iods in its 32 by 32 sub-wind ow. T his 
point is moved along the freque ncy and orientation axes 
(Figure 2). Note that the frequ ency change mod ifies the 
sinusoidal spacing and the o rientation c hange modifies 
the sin uso id 's ang le . 

To answer the question, "What will natu ral tex­
tures loo k like in FORP space? " , we perfo rmed some 
texture analyses show n in Figures 3 thru 6. Images of 
the natura l textures orie ntal ratta n ,6 diatom,1 and 
J-Cloth <.. ... we re eac h samp led with 'windows at different 

positions. T he window size was 64 by 64 take n o ut of a 
256 by 256 image , exce pt the diatom samp les which were 

do ne with a 32 by 32 window. The most impo rta nt 
aspect of th ese FORP rep rese ntat ions is their similar ity 
in shape for the same texture , and their dissim ilar ity for 

different textures. In Figures 3 and 4, both FORP space 
rep rese ntations of or iental rattan look quite similar. The 
maj o rity of neural res ponse is along the 0 ' , 90 ' and 
180 ' lines. T his is understandable when one realizes 

that oriental rattan is co mpose d mostly of horiz ontal a nd 
vertical edges. In Figure 5 the F ORP space o f diatom 
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loo ks quite different from that of rattan. The neural 
res ponses are spread quite evenly in orientation. This is 
to be expected of a texture that is composed of circles, 
since a circle has edges o f all o rientations . Again, in Fig­
ure 6 the FORP space of J- C lo th ~1;) is quite different 

fr om previous o nes . 

D'Astous8 commen ts on this similarity of fre­
quency domain re prese ntations and its importance: 
the powe r spectrum is fairly invariant to minor changes 
in structure cause d by either low magnitude additive 
noise, o r by small deviations in the periodicity of the tex­
t ure . This is of particular relevance to the problem of 
disc riminating natural textures which tend to be noisy 

and, though many textures exhibit regularity to a certain 
exte nt, a re not strictly pe riodic." t 

Required Accuracy 

The ac curacy of the FORP paramete rs was studied to 
see how it affected t he representation of textures. A 
window of a texture was converted to FORP space at 
various fr equen cy and orientation accuracies. This 
re prese ntation was then used to generate a texture 
which was com pared to the original. 

The amount of orientation information required 
depended o n the ty pe o f texture. A synthetic texture 
with only ho rizonta l and vertical edges required only 2 
leve ls o f orientation whereas the diato m texture required 
at the least 18 levels (each 10 0 wide ). It was felt that 
20 or more orientation levels would be sufficient for most 
textures. 

The number o f spatial frequencies was changed by 
modifying the size of the disc rete fr equency transform. 
In all cases t he accuracy of the result was not affected 
but different amounts of the textures were captured. 
For a few spatial frequencies only a small piece of the 
texture would appear in the mosaic, and for many fre­
que ncies a large a rea of the original would appear. 

Does the above relate to the accuracy of the pri­
mary vis ual cortex? Hubel and Wiesel9 found the accu­
racy of the orie ntat io n neurons to be approximately 10 0 . 
But there is a major difference between the FORP 
model orien tat ion se nsitivities and t hose of the primary 
visual co rtex . The orientation se nsitivities of neurons 
ove rl ap much like t he spatial frequen cy sensitivities. It 
can be show n that t his may improve the actual o rienta­
tion accu racy in the hypercolumn by quite a bit. In 
terms of fr equency, nothing is los t as lo ng as the loc al 
analysis region siz e changes with fr equen cy accuracy. It 
has been shown t hat the rece ptive field sizes in the pri­
mary visua l co rtex are indeed propo r tio nal to their fre­

quency bandwidth. 1 

t O'Astous 1983, p, 55 
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A model of the hypercolumn in the primary visual 
cortex that has many of hypercolumn traits has been 
presented. The model seems to be useful for characteriz­
ing texture but more texture samples need to be 
analysed. 

Application of the Visual Cortex Model 

Our visnal system, if given the information contained In 

FORP space, could extract further information to 
characterize different textures. Neurons could be con­
nected to these frequency and orientation selective neu­
rons in suc h a way as to extract texture based features. 

Michael10 has described the method of inter­
neuron information transfer. The output of a nerve cell 
is transmitted along its axon and is then connected to 
the input of another nerve cell via a chemical junction 
called a synapse . The synapses can either inhibit the 
nerve cell or excite it. The receiving neuron performs a 
type of summation or integration of all its synaptic input 
which results in an overall excitation level. If this excita­
tion is above a threshold then the neuron will fire and 
transmit its excitation to other connected neurons. If 

the total inhibitory input is larger than the total excita­
tory input then the neuron will be inhibited from firing. 
Each synapse can also have an associated weight or a 
multiplication factor that emphasizes or de-emphasizes 
certain neural inputs. 

This structure of inter-neuron connection is an 
effective means of constructing pattern recognizers. 
When a certain pattern of excitations is present on the 
axons of the input neurons, the processing neuron can 
recognize it and fire proportional to the strength of that 
pattern. In the context of the FORP cortical model, 
higher level neurons will be able to recognize certain pat­
terns of firings of the frequency and orientation neurons, 
and as much as these patterns correspond to texture, 
these neurons will recognize textures. 

Figure 7 depicts a simple realization of such a pat­
tern recognizer. The hypercolumn is represented by a 
grid of small boxes. Each box corresponds to a neuron 
that is sensitive to a particular spatial frequency and 
orientation in one local area of the visual field. These 

neurons output to feature detector neurons through inhi­
bitor and excitor synapses . The feature neurons shown 
can recognize very simple patterns in the FORP space, 
and may also receive either inhibitory or excitatory 
input from neighbouring hypercolumns. In Figure 7 the 
Feature 1 neuron will detect a pattern of all one orienta­
tion with a strong low frequency component, a weak 
second frequency component, and a strong third fre­
quency component. The Feature!! neuro n will detect a 
pattern of one strong high frequency component and 
weak components on adjacent frequency and orientation 
neurons. These particular patterns might correspond to 
a particular textnre or to a particular characterbtic of 
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textures. 

Looking at Figures 3, 5, and 6 which are the 
FORP space representations of oriental rattan, diatom 
and J-Cloth':<"; respectively, it is easy to see how the 
neural mechanism described above could pick out pat­
terns characteristic of eac h of these textures. Many 
more neural connections and some careful choice of inhi­
bitory and excitatory synapse weights would be nee<\ed. 
A feature detector neuron could be designed to detect 
each of these textures since they are so different in 
FORP space. The implication is not that the primary 
visual cortex actually has a neuron for every type of tex­
ture, instead the suggestion is that a computer or electri­
ca l realization of such a mechanism could have separate 
texture recognizers if that was the end goal. In the visual 
cortex, the first level of feature extraction neurons would 
deal with texture attributes instead of specific textures. 
Second level neurons could combine these texture attri­
butes to further specify texture. This hierarchical organ­

ization would be more general and more flexible than 
having textures recognized at the first levels. 

One potential problem with this feature extraction 
mechanism is its sensitivity to orientation . A feature 
neuron that fires for a texture at one orientation may 
not fire when presented the same texture at a different 
orientation. People have little difficulty identifying the 
oriental rattan texture regardless of its rotation . 
Perhaps ours features should be orientation invariant. 

Jolicoeurll demonstrates through perceptual 
experiment that rotational invariance need not exist in 
low level visual processing. He states, <t ... this experiment 
reveals a clear-cut effect of orientation on identification 
time . .. . Thesz results allow us to argue against a general 
model of pattern recognition based solely on the extrac­
tion of 'orientation-invariant features'."t 

If texture is to be used in segmentation then 
orientation differences might be useful. Consider a cube 
with identically texture'd surfaces . When viewed, the 
main difference between the texture of the cube faces 
will be orientation, and hence orientation differences will 
play a major role in segmentation of the cube faces. 
Given these two insights, it would appear that these low 
level texture features need not be orientation invariant. 

Segmentation 

This feature extraction model can be extended to per­
form rudimentary texture based segmentation. Imagine 
the output of these feature cells being coded into a grey 
level depending on which cells were maximally excited . 
Then place these grey levels in a retinotopic map and 
generate a form of two dimensional image. Segmenting 
this image using grey level techniques such as thresholds, 

, Jolicoeur 1985, p . 293 
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region growing, or edge detection is equivalent to seg· 

menting the original visual scene by texture. The most 
probable candidate in human vision is segmentation via 

edge detection and shape recognition. Edge detection 
mechanisms that exist at this cortical level could be very 

similar to those found in the retina. An edge at this 

level will correspond to an edge between differently tex· 
ture regions . 

A combination of intensity edge maps, texture 

edge maps, colour differences, motion detection, and 
binocular depth cues can all be used in separating 

objects and performing image segmentation. Marr12 

discusses the use of multiple visual processes in providing 

accurate and stable decisions about surfaces. Each pro· 

cess involved in segmentation would provide its best 

information on surface boundaries, but only when all evi­

dence is studied and judged for strength and weakness 

will the segmentation process decide on the final separa­
tion of constituent objects. 

Summary 

The image segmentation computer of thE future will 

need to use various processes to mimic human success. 

It will use intensity and texture edges, colour differences 
as well as motion and depth cues. We have proposed a 

model of the primary visual cortex in which textu re 

discrimination and segmentation can be performed . 

Demonstrations of the model indicate that similar tex­

tures are represented similarly and dissimilar textures 

dissimilarly . With extensions of further neural process­

ing levels it may be possible to construct an effecient 

and efrec tive texture segementation processor. 
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Figure l : Sing le Point in FORP Space 

Figure 4 : S hifte d Orien tal Ra ttan - FORP Re presentation 

Graphics Interface '86 Vision Interface '86 



- 330 -

Figure 5 : Diatom Texture - FORP Representation 

Figure 6 : J-Cloth® Texture - FORP Representation 
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Figure 7 : Simplified Model of Hypercolumn Feature Extraction 

Graphics Interface '86 Vision Interface '86 


