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Abstract

The apparent spatial frequency and orientation organiza-
tion of the primary visual cortex is used as a basis for
texture description. A Frequency, Orientation, neural
firing Rate, and spatial Phase (FORP) representation is
proposed for the analysis of natural textures and the
synthesis of test textures. Higher order texture analysis
such as discrimination and segmentation in this FORP
space is discussed.
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Introduction

Many researchers have tried to duplicate the ability of
the human visual system to segment natural scenes
based on the different texturing of surfaces. We choose
to define texture as that property of surfaces that can be
described by the local pattern of spatial variation of
intensity. We also take as different textures those that
can be differentiated by human perception. In this light,
we base our analysis of texture on a model of the early
human visual system. In particular, we choose a model
of the primary visual cortex since both orientation and

spatial frequency information exist here. !

We use this information in an orthogonal feature
extraction space to generate simple test textures and
analyse natural textures.

Texture and the Visual Cortex

Given that the primary visual cortex is well suited to
texture computations, is there any evidence that it actu-
ally performs them? The following evidence indicates
that this could indeed be true.

First of all, Julesz? mentions the high speed
discrimination ability of human subjects. This implies
that texture discrimination is a low level visual function
and must be early in the visual chain. Kimchi and
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Palmer,3 through the use of perceptual experiments
found that texture is processed separately in the visual
system from shape and structure. Lastly, Berlucchi and
Sprague! use lesion studies to deduce that shape and
structure encoding does not exist in the primary visual
cortex. They suggest the primary visual cortex could be
used for texture analysis.

The primary visual cortex appears well suited for
texture analysis, it appears to actually perform texture
computations, and it can use this information to improve
image segmentation.

A Visual Cortex Model

Pollen and Ronner! describe a model of the primary
visual cortex which outlines various functions of cortical
neurons. These functions include the retinotopic spatial
map, ocular dominance, orientation, spatial frequency
and spatial phase. Hubel and Wiesel® first described a
small separate processing region in the primary visual
cortex as the hypercolumn. The hypercolumn was
responsible for analysing a small area of the visual field
for orientation information. The hypercolumn has
become the name for the 0.5 mm wide cortical area that
contains orientation and frequency selectivity neurons
for a small visual region. There exist hypercolumn
regions to cover all of the visual field.

Our model of the primary visual cortex is based
on this hypercolumn structure. One hypercolumn is
modeled as a three dimensional space. The space con-
sists of a spatial frequency axis, an orientation axis, and
a spatial phase axis. Each point in this space
corresponds to a neuron that is selective to a particular
set of frequency, orientation, and phase. A magnitude
component is also included in this space to account for
the strength of response to this particular set. The mag-
nitude is coded by the neuron as a neural firing rate.
This model is a modified two dimensional Fourier space
with all symmetric regions removed. The model has been
named FORP (spatial Frequency, Orientation, neural
firing Rate, and spatial Phase).
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The FORP based tools that were developed
allowed us to both synthesize and analyse textures. One
of the tools allowed a window of a texture image to be
chosen and be represented in FORP space. The other
allowed the experimenter to place individual points or
group of points in the space and then have the texture
generated that corresponded to this pattern of firing
neurons. Figures 1 thru 6 are outputs of these pro-
grams.

Figure 1 shows a representation of FORP space
and the corresponding synthesized texture. It shows the
three axes of frequency (range of 0 to Fg/2), orientation
(range of 0° to 180°), and neural firing rate (normalized
to a range of O to 1). There is a grid on the
frequency/orientation plane, and the intersection of two
grid lines corresponds to a neuron or a set of neurons.
The intensity of the bar at a frequency/orientation point
represents the phase. The lowest intensity corresponds
to a phase of 0 and the highest to a phase of 27. If
there were a set of phase sensitive neurons then the bar’s
intensity would represent which phase neuron in this set
was responding maximally. The image beside the graph
contains a homogeneous texture generated from the
FORP space data. The little square in the bottom left
corner of the image delineates the local region that is
represented by the FORP space. The remainder of the
texture image is a mosaic-like repetition of this small
subimage.

To demonstrate the nature of FORP space we
have performed a number of simple texture syntheses.
In Figure 1, a single point is placed at a frequency of
Fs/16 (that is 1/16th of the spatial sampling frequency),
and an orientation of 110° (note that 0° is vertical).
The resulting synthesized texture is a spatial sinusoid at
110° and has 2 periods in its 32 by 32 sub-window. This
point is moved along the frequency and orientation axes
(Figure 2). Note that the frequency change modifies the
sinusoidal spacing and the orientation change modifies
the sinusoid’s angle.

To answer the question, "What will natural tex-
tures look like in FORP space? ", we performed some
texture analyses shown in Figures 3 thru 6. Images of
the natural textures oriental rattan, diatom,” and
J-Cloth™ were each sampled with windows at different
positions. The window size was 64 by 64 taken out of a
256 by 256 image, except the diatom samples which were
done with a 32 by 32 window. The most important
aspect of these FORP representations is their similarity
in shape for the same texture, and their dissimilarity for
different textures. In Figures 3 and 4, both FORP space
representations of oriental rattan look quite similar. The

o

majority of neural response is along the 0°, 90° and
180° lines. This is understandable when one realizes
that oriental rattan is composed mostly of horizontal and

vertical edges. In Figure 5 the FORP space of diatom
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looks quite different from that of rattan. The neural
responses are spread quite evenly in orientation. This is
to be expected of a texture that is composed of circles,
since a circle has edges of all orientations. Again, in Fig-
ure 6 the FORP space of J-Cloth™ is quite different
from previous ones.

D’Astous8 comments on this similarity of fre-
quency domain representations and its importance: “...
the power spectrum is fairly invariant to minor changes
in structure caused by either low magnitude additive
noise, or by small deviations in the periodicity of the tex-
ture. This is of particular relevance to the problem of
discriminating natural textures which tend to be noisy
and, though many textures exhibit regularity to a certain
extent, are not strictly periodic.”t

Required Accuracy

The accuracy of the FORP parameters was studied to
see how it affected the representation of textures. A
window of a texture was converted to FORP space at
various frequency and orientation accuracies. This
representation was then used to generate a texture
which was compared to the original.

The amount of orientation information required
depended on the type of texture. A synthetic texture
with only horizontal and vertical edges required only 2
levels of orientation whereas the diatom texture required
at the least 18 levels (each 10° wide). It was felt that
20 or more orientation levels would be sufficient for most
textures.

The number of spatial frequencies was changed by
modifying the size of the discrete frequency transform.
In all cases the accuracy of the result was not affected
but different amounts of the textures were captured.
For a few spatial frequencies only a small piece of the
texture would appear in the mosaic, and for many fre-
quencies a large area of the original would appear.

Does the above relate to the accuracy of the pri-
mary visual cortex ? Hubel and Wiesel® found the accu-
racy of the orientation neurons to be approximately 10°.
But there is a major difference between the FORP
model orientation sensitivities and those of the primary
visual cortex. The orientation sensitivities of neurons
overlap much like the spatial frequency sensitivities. It
can be shown that this may improve the actual orienta-
tion accuracy in the hypercolumn by quite a bit. In
terms of frequency, nothing is lost as long as the local
analysis region size changes with frequency accuracy. It
has been shown that the receptive field sizes in the pri-
mary visual cortex are indeed proportional to their fre-
quency bandwidth.!

t D'Astous 1983, p. 55
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A model of the hypercolumn in the primary visual
cortex that has many of hypercolumn traits has been
presented. The model seems to be useful for characteriz-
ing texture but more texture samples need to be
analysed.

Application of the Visual Cortex Model

Our visual system, if given the information contained in
FORP space, could extract f[urther information to
characterize different textures. Neurons could be con-
nected to these frequency and orientation selective neu-
rons in such a way as to extract texture based features.

Michaell® has described the method of inter-
neuron information transfer. The output of a nerve cell
is transmitted along its axon and is then connected to
the input of another nerve cell via a chemical junction
called a synapse. The synapses can either inhibit the
nerve cell or excite it. The receiving neuron performs a
type of summation or integration of all its synaptic input
which results in an overall excitation level. [f this excita-
tion is above a threshold then the neuron will fire and
transmit its excitation to other connected neurons. If
the total inhibitory input is larger than the total excita-
tory input then the neuron will be inhibited from firing.
Each synapse can also have an associated weight or a
multiplication factor that emphasizes or de-emphasizes
certain neural inputs.

This structure of inter-neuron connection is an
effective means of constructing pattern recognizers.
When a certain pattern of excitations is present on the
axons of the input neurons, the processing neuron can
recognize it and fire proportional to the strength of that
pattern. In the context of the FORP cortical model,
higher level neurons will be able to recognize certain pat-
terns of firings of the frequency and orientation neurons,
and as much as these patterns correspond to texture,
these neurons will recognize textures.

Figure 7 depicts a simple realization of such a pat-
tern recognizer. The hypercolumn is represented by a
grid of small boxes. Each box corresponds to a neuron
that is sensitive to a particular spatial frequency and
orientation in one local area of the visual field. These
neurons output to feature detector neurons through inhi-
bitor and excitor synapses. The feature neurons shown
can recognize very simple patterns in the FORP space,
and may also receive either inhibitory or excitatory
input from neighbouring hypercolumns. In Figure 7 the
Feature 1 neuron will detect a pattern of all one orienta-
tion with a strong low frequency component, a weak
second frequency component, and a strong third fre-
quency component. The Feature 2 neuron will detect a
pattern of one strong high frequency component and
weak components on adjacent frequency and orientation
neurons. These particular patterns might correspond to
a particular texture or to a particular characteristic of
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textures.

Looking at Figures 3, 5, and 6 which are the
FORP space representations of oriental rattan, diatom
and J-Cloth™ respectively, it is easy to see how the
neural mechanism described above could pick out pat-
terns characteristic of each of these textures. Many
more neural connections and some careful choice of inhi-
bitory and excitatory synapse weights would be needed.
A feature detector neuron could be designed to detect
each of these textures since they are so different in
FORP space. The implication is not that the primary
visual cortex actually has a neuron for every type of tex-
ture, instead the suggestion is that a computer or electri-
cal realization of such a mechanism could have separate
texture recognizers if that was the end goal. In the visual
cortex, the first level of feature extraction neurons would
deal with texture attributes instead of specific textures.
Second level neurons could combine these texture attri-
butes to further specify texture. This hierarchical organ-
ization would be more general and more flexible than
having textures recognized at the first levels.

One potential problem with this feature extraction
mechanism is its sensitivity to orientation. A feature
neuron that fires for a texture at one orientation may
not fire when presented the same texture at a different
orientation. People have little difficulty identifying the
oriental rattan texture regardless of its rotation.
Perhaps ours features should be orientation invariant.

11

Jolicoeur demonstrates through perceptual

experiment that rotational invariance need not exist in

“... this experiment

low level visual processing. He states,
reveals a clear-cut effect of orientation on identification
time. ... Thesz results allow us to argue against a general
model of pattern recognition based solely on the extrac-

tion of ‘orientation-invariant features’.”t

If texture is to be used in segmentation then
orientation differences might be useful. Consider a cube
with identically textured surfaces. When viewed, the
main difference between the texture of the cube faces
will be orientation, and hence orientation differences will
play a major role in segmentation of the cube faces.
Given these two insights, it would appear that these low
level texture features need not be orientation invariant.

Segmentation

This feature extraction model can be extended to per-
form rudimentary texture based segmentation. Imagine
the output of these feature cells being coded into a grey
level depending on which cells were maximally excited.
Then place these grey levels in a retinotopic map and
generate a form of two dimensional image. Segmenting
this image using grey level techniques such as thresholds,

* Jolicoeur 1985, p. 293
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region growing, or edge detection is equivalent to seg-
menting the original visual scene by texture. The most
probable candidate in human vision is segmentation via
edge detection and shape recognition. Edge detection
mechanisms that exist at this cortical level could be very
similar to those found in the retina. An edge at this
level will correspond to an edge between differently tex-
ture regions.

A combination of intensity edge maps, texture
edge maps, colour differences, motion detection, and
binocular depth cues can all be used in separating
objects and performing image segmentation. Marr!?
discusses the use of multiple visual processes in providing
accurate and stable decisions about surfaces. Each pro-
cess involved in segmentation would provide its best
information on surface boundaries, but only when all evi-
dence is studied and judged for strength and weakness
will the segmentation process decide on the final separa-
tion of constituent objects.

Summary

The image segmentation computer of the future will
need to use various processes to mimic human success.
It will use intensity and texture edges, colour differences
as well as motion and depth cues. We have proposed a
model of the primary visual cortex in which texture
discrimination and segmentation can be performed.
Demonstrations of the model indicate that similar tex-
tures are represented similarly and dissimilar textures
dissimilarly. With extensions of further neural process-
ing levels it may be possible to construct an effecient
and effective texture segementation processor.
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Figure 2 : Point Moved in Orientation and Frequency

Figure 4 : Shifted Oriental Rattan - FORP Representation
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Fgure 6 : J-Cloth® Texture - FORP Representation
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Figure 7 : Simplified Model of Hypercolumn Feature Extraction
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