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Abstract 

In this paper we examine the idea that 
texture segmentation comes about by the 
differential outputs of detectors 
(non-linear a s sociative filters) 
computed at Ldc h resolvnble position on 
the textured surface. Further, we 
consider some of the conditions under 
which "primary" detector outputs are 
dynamically compared and associated to 
develop into a smaller set of "texton" 
profiles which capture the predominant 
differentiating features of the texture 
regions. Comparisons to human 
psychophysical results are made. 
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1. Introduction. 

segmentation, 
orientation 

For a biological visual system 
endowed with a multitude of cells which 
apparently act as feature extractors or 
filters, it seems reasonable to presume 
that visual texture segmentation may 
come about by the differential responses 
of such detectors over the textured 
region. This proposal has received 
experimental and mathematical attention 
over the past decade with 
one-dimensional grey-scaled textures 
(Richards, 1979; Harvey & 
Gervais, 1978) and two-dimensional 
textures (Caelli & Julesz, 1978; Caelli, 
1982, 1985). However, only until 
recently has a full computational model 
been proposed which produces 
segmentation as a function of such 
"texton" (Julesz, 1981) outputs, and 
this paper extends the above analyses in 
a number of ways (Caelli, 1985). 

Here texture segmentation is viewed 
as having three component processes: 
(1) spatial decomposition, (2) dynamical 
associative processing, and (3), 
classification of textured regions. The 
specific aims of this model are to 
enable segmentation when the textures 
consist of sparse micropatterns; to 
create networks which will extract, or 
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adapt to, the predominant features of 
the texture; and to use a classification 
procedure which is adaptive to the 
outputs of such detectors. 

2. The Model. 

2.1 Level I processing: Spatial 
decomposition and activity 
prof i les. 

The initial process of texture 
segmentation is envisaged to involve the 
registration of the input (foveal) 
texture through the parallel outputs of 
many detectors whose responses are 
determined by some non-linear 
transformation of their cross 
correlation with the input. Assuming a 
relatively fixed "retinal pre-processor7 
having opponent center-surround 
receptive fields, the primary 
information to be processed must have 
differential, or band-pass, components 
emphasized. Further to this, we assume 
the existence of a relatively fixed 
primary projection area where such image 
derivative information i s further 
classified (encoded) by cortical edge 
and bar detectors whose outputs are a 
non-linear function of the 
cross-correlation ' of the detector's 
profile with the input image . That is, 
we assume that the response Ri(x,y) of a 
detector di at retinotopic position 
(x,y) is determined by: 

ts di( a , s ) = const. (l) 
a , 

and Ri (x,y) = c on s t + Y ~{ diol ) , L co n s tan t. (2) 

o denoting cross-correlation between the 
detector and image (I) 

E di( a , S)I( x+a ,y+ S), 
a , S 

-1 :: ~ 6 (z) = 6 < + 1, 6 " cons ta nt. 
1 +e - Z -

In our simulations we have used 
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(3 ) 

(4 ) 



to fit in with an 8-bit response range. 
The non-linear transducer enables one to 
move smoothly from square wave ("ideal" 
edge and bar) to gaussian modulated 
sinusoid (Daugman, 1983) representations 
for edge and bar, or orientation 
detectors, via 5 in (4). Orientations 
and sizes of the detectors were chosen 
to fit with a large number of 
experimental results on human texture 
discrimination showing the inability of 
observers to resolve image orientations 
to better than ±5° (Caelli, 1982; Beck, 
1983). With evidence that such 
receptive, or "perceptive~ fields are 
limited in size to ±1/8 octave, or 1 1/2 
cycles to l / e decay of a gaussian 
aperture, we have generated 24 
fundamental orientation detectors over 
7x7 pixel kernels (relative to 128x128 
pixel textures) satisfying these profile 
constraints for both edge (odd) and bar 
(even) detectors. 

We secondly assume that the 
response profile for each detector is 
'rectified' into an "activity" profile. 

Ai(x ,y ) = I Ri( x,y )-can stl , c anst = 12B . (6) 

2.2 Level 11 procesing: Adaptive control 
and selection of critical features. 

In contrast to representing texture 
codes by detectors defined at different 
size scales, in gaussian pyramids, etc. 
(see Burt & Adelson, 1983), which would 
be capable of responding to texture 
regions in areas greater than the actual 
micropattern size--the approach adopted 
here remains at the resolution of the 
basic texture--though this is not a 
necessary restriction. Further, the 
p:ocess . of t~xture region "filling-in" 
~lmple~lon} 1S seen as a dynamic process 
1nvolv1ng the iterative activity of 
activated detectors in terms of how 
their responses may spread over 
contiguous regions in a summative 
(averaging) fashion. This is analogous 
to relaxation in image processing 
(Hummel & Zucker, 1983) where the 
st:ength of a given spatial response is 
re1nforced or inhibited as a function of 
neighbouring collaborative or opposite 
evidence. In particular, it is assumed 
that the activity of a given detector d· 
determined by (6) is updated dynamicall~ 
by the following (associative) "texture 
processing equation": 

t+ Lit a B 
Ai 1x , y)=-- f. - A (x+ a --,y+8--) 

"Il Cl 2 2 

+ ~ t t ,. w .. A.(x ,y) (7) 
j = 1 lJ J 
itj 

whe:e (a,fi) corresponds to the "region 
of 1nflue~ce" at each iteration. wt . . is 
the COUp~l~g, or associativity, beEaeen 
two .act1v1ty profiles which can either 
be f1xed or adaptive. For the fixed case 
we have used the well-known 
"mass-action" formulation for detector 
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coupling (Grossberg, 1982), where we 
have set: 

t [k "' (i,j) being (edge . bar) pairs at the 
\ft, wij= same orientation 

_/1 \ k otherwise. \n:<) .. . . 
(8 ) 

for n detectors and k being the coupling 
strength such that 

n t 
Vi, L \~ i j O. 

j=i 
(9 ) 

ifj 

In general, it seems unlikely that 
the (neural) connectivity between such 
detector planes can be defined by a 
single stationary matrix Wii over space 
and time. Like Hebb (1949) And Fukushima 
(1984), we assume that the process of 
perceptual learning and adaptation 
involves the dynamic updating of Wij as 
a function of the detector's response 
strengths and correlations. For these 
reasons, our interests are also focused 
upon investigating formulations for wtj 
such as: 

W~l ' = r~ .{a . . A~(x,y) + b .. } (10) 
J lJ lJ J lj 

where ai j and bi' correspond to slope and 
intercept regre~sion coefficients of Ai 
on Ai" P to the degree to which thiS 
corre ated information is combined with 
the response of Ai to result in "new" 
detector profiles. This dynamical system 
converges to strong "attractor" 
detectors which (as will be shown) have 
receptive fields related to the first 
few eigenvalues of the coupling matrix. 
Using (10) in (7) requires normalization 
as: 

"I I [I t m ] 'j (x.y). -m-- - !: 'i (x+ •• y>s)' r 'J..p (~t ,t(x,Y»b t . ] 
( IH I.p J" n A .B j- I lJ J J lJ (11) 

j<1 lj i tJ 
itj 

for O~p and even. The first component: 
1 t 

_ l: z . (x+a ,Y+B) 
aB a3 1 

being an averaging process (moving 
spatial window), is clearly "local" and 
restricted to a given detector plane. 
That is, activity within a given plane 
spreads as a function of the 
neighbouring activi"ty of the same 
detector type and converges to a mean 
level of activity. Secondly, this 
activity is reinforced as a function of 
the degree to which other detectors 
exhibit similar graded responses over 
the ful~ texture regions--a global 
cooperat1ve component--represented by 
the last component in (11): "synergesis~ 

This has the effect of combining 
correlated detector responses and 
converging to common ("attractor") 
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profiles, so reducing the number of 
different detectors. Again, it should be 
noted that the solutions are critically 
dependent on the input signal. In the 
case of texture segmentation, where 
broad spatial regions have to be 
"labeled", inhibitory forms of Wii seem 
inappropriate as they different1ate the 
detector responses in further ways. 
This, in turn, would not produce the 
percept of contiguous spatial regions, 
and would be more useful in pattern 
recognition where it is precisely these 
differentiated dimensions which are 
needed. 

Finally, we consider the network to 
"complete" its activity when it reaches 
near equilibrium state; as measured by: 

1 

naS 

a , S 
1: 

X,y [
Ai"!;,y )-Ai! ' ,1 )1 ~ ,. 

A;(X,y) J 
( 12 ) 
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o being near zero (in our case o=O.02). 
Here n corresponds to the number of 
detectors and (a,p) to the image size. 

It should be noted that formulation 
(11) is an example of an associative 
network whose coupling undergoes 
adaptation, and, if we consider the 
problem of texture segmentation as 
primarily involving the extraction of 
the main dimensions for segmentation, 
then it is the eigenvalues of Wii which 
are critical. Further, we coula also 
claim, like Kohonen (1977) and Anderson, 
Silverstein, Ritz and Jones (1977) that 
Wtj--the network associativity at time t 
is the primary attribute of the model 
rather than the detector states, per se. 
However, the author feels these claims 
to be too strong since both {Ai} and 
{Wij} are mutually dependent. However, 
in the simulations to be reported we 
shall observe the behaviour of the 
eigenvalues of Wi ' to investigate how 
these adaptive pro~esses are changing 
the dimensionality of the problem. 

2.3 Level III processing: Region 
classification and decision criteria. 

Since textured regions are proposed 
to appear as a function of position 
response differences in "feature space~ 
the appropriate classification process 
seems to be the minimum distance 
classifier (MDC, Ahmed & Roa, 1975). 
This method determines whether a pixel 
falls into one of two textured regions 
as a function of whether it is closer to 
the centroid of the texture or not. The 
MDC determines the discriminant 
(function) hyperplane which constitutes 
the locus of points equidistant betwen 
both centroids, and of the form: 
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n _ _ I n -z n Z 
g(al· .. · ·a) . r [ai' -az ,]a , --z [ r alj - r az ' ] 

n j=l J J J J =l j=l J ( 13) 

where (a1 .. an) correspond to the feature 
dimensions--in this case detector 
outputs. ai ' corresponds to the mean 
value for gr6up (texture) i on feature 
j, while ai corresponds to a given input 
~exture p~x~l feature weights. The pixel 
1S class1f1ed as a function of the sign 
of g(a1 .. an)' 

To introduce a degree of 
"fuzziness~ or "segmentation strength~ 
into this procedure, it would be 
adequate to use the distance between the 
means over the standard deviation of 
both sets (or average t statistic): 

(14 ) 

where n"n2 correspond to the number of 
pixels in each textured region, s~i to 
the appropriate variance statistic. 

This function not only indicates 
that adding common features to the 
textures would decrease perceptual 
segmentation, but would also decrease if 
more variability in detector outputs was 
observed over either, or both, regions. 

3. Simulations and Conclcusions. 

We first summarize the main 
properties of the model: 
(T,) Detector activity is determined by 

the rectified response profiles as a 
result of detector cross-correlation 
with the incoming texture, according 
to (1}-{7). 

(T 2 ) The activity of a given detector at 
time t and position (x,y) is 
determined by the degree to which 
neighbouring regions are also active 
with respect to this detector and 
the activity of others. 

(T 3 ) The associativity between detector 
arrays (i,j) is adaptive to their 
responses. 

(T 4 ) A perceptual classification is made 
after this system of dynamically 
responding detectors reaches 
equilibrium. 

(Ts) Classification of pos~tion~l 
information into textured reg10ns 1S 
accomplished by a weighted form of 
the minimum distance classifier, 
weighted by the total texture 
"entropy: 

We have implemented all three 
proposed processes {convolution, 
impletion/cooperativity, and 
classification} to quantitatively 
observe the behaviour of the system with 
four critical texture pairs consisting 
of grey-scaled textures differing in 
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9ranul~ritY"simple textures differing 
l~ orlentatlon, and those differing in 
mlcropattern space characteristics: T,L, 
etc. We have chosen these latter two 
pairs since it has been (a) shown that 
they differ in discriminability and 
(b) ,it has been proposed that' they 
regulre "end-of-line" and i ntersection 
detectors to discriminate (Julesz, 
1984)--the latter we can disprove. These 
are shown in Figure 1 together with the 
ou~puts of the classification procedure, 
uSlng (13) to represent the relative 
"strength" of d i scrimination: 
Convergence usually occurred within 5-7 
iterations. 

Figure 1. 
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Input textures ( left column) and 
segmentat ion result ing from the outputs 
of 24 detectors with no associativltles 
(second column), assoclativities as 
defined by (11) (column three) and 
Inhibitory mass action (column four, 
equation 9): K=O .05 In (8). Contrast 
reflects segmentation strength according 
to equat Ion (14). 

To illustrate the effects of 
associativities on decreasing the 
dimensionability of the classification 
process, Figure 2 shows the eigenvalues 
for the solutions shown in columns two 
and three of Figure 1. Such reductions 
in "dimensionality" are clearly related 
to the iterative process converging to 
common strongly active detector profiles 
and inhibiting less active and isolated 
ones. 
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Figure 2. 

Eigenvalues for the non-associative 
(sol id I ines: column 2, Figure 1) and 
asoc i at ive ( dashed lines: co I umn 3, 
Figure 1) segmentation processes. T, to 
T_ correspond to the 4 textures shown 
up Column 1 of Figure 1. 

What connects the texture 
processing equation (7) and the "texton" 
approach is that such cooperative 
networks decrease the dimensionality of 
the problem to the more strongly 
active--though "adaptively 
generated"--detectors or dimensions. 
That is, the profile of each detector in 
the process described by (8) is not 
stationary but, rather, is adapted by 
the energy it is designed to process and 
the activity of other units. Indeed, the 
actual profi17 at ~ny .time -rs 
recoverable £y lnverse fllterlnq. 

This model for texture segmentation 
is algebraically similar to a class of 
models for pattern recognition based on 
the associative (coupled) activities of 
large numbers of computational units 
whose activity profiles adapt to the 
signal and network states (see Kohonen, 
1977; Fukushima, 1984). The main 
difference lies in how each 
computational component is interpreted, 
and the involvement of a classification 
scheme at the end, which actually 
produces the textured regions. In this 
sense the model is not formally 
dependent upon the initial edge and bar 
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detectors chosen, but rather on the ways 
in which their outputs are correlated 
over space and time according to (7). 

In the present texture processing 
model the nature of the decomposition, 
and so dimensions, of a given texture 
segmentation task is dependent on the 
signal and the type of coupling 
operating between the computational 
units. If the visual system (or, indeed, 
the scientist) were to choose detectors 
which satisfied absolute orthogonality 
(di*dj=O, * being convolution) then, 
from a mathematical perspective the 
ideal detector conditions would be 
present and the cooperative processes 
defined by (11) and (12) would not be 
required. However, the Impletion process 
would be involved, along with the 
classification algorithm. However, one 
assumption here is that the visual 
system is not that precise in creating 
detectors which, a priori, are so 
independent. Rather, the idea is that 
the visual system converges on the 
central detector profiles by adaptation 
processes like those described 
here--being signal dependent and network 
speci f ic. 

In conclusion, then, we have 
extended an earlier model for texture 
segmentation initially related to the 
"heuristics" of Julesz and Bergen (1983) 
for "preattentive" and "attentive" 
visual processes in spatial vision . The 
model has three components: 
decomposition (via cross-correlation), 
local and global processing, and 
classification. Though many questions 
still remain unanswered, our results 
suggest that these mechanisms, in a 
psychophysical sense, represent the 
types of processing involved in texture 
segmentation. The main result here is 
that the enumeration of detector 
profiles is but one part of the texture 
discrimination process and that the 
detector profiles "attended to" by the 
visual system are signal dependent and 
not fixed and invariant over all texture 
types, but also resultant from the 
underlying cooperative processes which 
generate "texton" classes to optimize 
the classification process by as few 
dimensions as possible. The proposed 
model does not solve the apparent 
rotation invariance processing 
characteristics of texture 
micropatterns, nor does it propose on~y 
one form of cooperative process. In thlS 
case we have found that the global 
process defined by (7) is efficient in 
reducing the dimensionality of the 
classification problem and have proposed 
that such coupling cannot be inhibitory 
if some form of "filli.ng-in " is 
required. 
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