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ABSTRACT 

We propose a framework for image flow analysi s 
consisting of three major stages; i.e . : 

- determine moving edges by some local process; 
- integrate motion information along linkedcontour~ 
- propagate motion estimation through homogeneous 
regions obtained inside these contours. 

This paper is concerned with the two first sta
ges . A procedure , based on some local mode ling and 
maximum l ikelihood scheme, bas been designed to per
form the first step. After some linking process, 
constraints provided by the measurements gained from 
the first stage can be combined to compute the velo
city field along contou r s , by minimizing some simple 
functional . To this end, a g radient algorithm is 
used with a recursive estimation from one point to 
its successor in the chain. 

RESUME 

Nous proposons un schema d'obtention du champ 

des vitesses dans ·une sequence d ' images s 'articulant 
en trois etapes , a savoir : 

- determiner localement les elements de contour en 
rnou vernen t; 
- integrer l'informatio n de mouvement le long des 
lignes contours chainees; 
- propager l'estimation du mouvement a l'interieur 
des z ones homogenes delimitees par ces lignes con
tours . 

Le papier traite des deux premieres etapes. Une 
procedure, basee sur une modelisation locale et un 
critere de maximum de vraisemblance, a e te con9ue 
afin de realiser le premier point. Apres chainage, 
les mesure s issues du premier niveau peuvent etre 
combinees afin de calculer le champ des vitesses 
compl e t l e long des lignes contours via la minimi
sation d'une fonctionnelle simple. A cette fin, un 
algorithme de gradient est mis en oeuvre avec une 

r ecurrence de point en point le long de la chaine 
contour. 

KEYWORDS: image sequence , moving edge determination, 
motion estimation , local modeling, maximum likeli
hood test, stochastic gradient. 
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I INTRODUCTION 

Image sequence analysis has received more and mo
re attention since 70's. In particular substantial 
studies have been concerned with motion estimation 
accross changing two-dimensional images. Two main 
rnotivations have subtented there research efforts. 
First , motion computation represents an attractive 
challenge in order to design some r obust, tractable 
and general - purpose method. On the other hand , ap
plication areas never stop broadening, 11 I. 

Meteorological applications (determining wind 
fields owing t o cloud motion estimation, 121) , mi
litary domain (target tracking ) were among pioneer 
ones . Then came inter frame image coding for broad
cast television or videoconferencing purpose 13,41. 
For a few years, other potential applications have 
appeared: biomedical (e'9" angiocardiography 15 1,) 
r obotics (mobile r obot , 161 ), traffic monitoring, 
graphics .. . These n ew domains are not o nly interes
ted in two-dimensional motion as it is, but as in
trinsic features conveying information about the 
depicted 3D-scene. Indeed motion in the imaging pla
ne provides primary cues to relative depth, struc
ture and 3D-movements of objects in space 17, 81 . 

The motion in the imaging plane is usually re
ferred t o as the "optic flow". Optic flow can be 
represented as a vector fi eld: the field of appa
rent velocities of brightness patterns in the image 
due to relative motion of camera and objects in 
space. (As one's uses a dicrete representation of 
an image sequence, displacement vector fields a nd 
velocity vector fields are usually confused, al
though mathematicall y of different nature) . 

Discriminating discontinuities in the velocity 
fie l d is a key problem in motion estimation sche
mes whatever they are . Indeed , feature-based methods 
require cooperative matching procedures 191 , and 
gradient-based me thods involve some smoothing cons
traint 110,111 . Thus, we have desiqned a method 
whose first task i s t o cope with these discontinui
ties, which are tied to cont0urs in the image, such 
as occluding contours, joint ones . .• 

We propose a framework for image flow analysi s 
consisting of three ma jor stages ; i . e.: 
determine moving edges by some local process; 
link these eges and integrate motion information a 
long contours; 
propagate motion estimation through homogeneou s re-

Vision Interface '88 



- 351 -

gions obtained inside these contour s . 

The two first i ssues are addressed in thi s paper . 

The f irst s t ep can be considered as an early pro
cessing whos e output c ontains location and spatial 
direction of an e dg e element and component of its 
displacement in the direction perpendicular to the 
local o rie ntation of the e dge. It is well-known t hat 
onl y s uch parti al motion info rmation c an be reached 
by local operations (this point i s often referred 
to as the aperture problem). A maximum likelihood 
method , based o n some local modeling has beer. desi
gned fo r this purpose . 

Then constraints provided by these measurements 
gained from the first stage can be combined to com
pute the velocity fie ld along contours , if however 
variations in spatial ori entati ons occur along such 
contours . This computation results from the minimi
z a tion of some simple functional by a stochast ic 
gradient algo rithm . 

11 LOCAL DETERMINATION OF A MOVING EDGE 

11.1 - Modeling of a moving edge 

An image sequence is considered as a 3D- space 
(x , y ,t) . A spatia l 2D-edge in an image i s mode led 
as a small l ocal linear segment. Hence a moving 2D
edg e is locally mode led as a small planar patch in 
the spatio-temporal 3D-space (x , y ,t) . The direct i on 
e (w .r.t. the x - axis) of the 2D-edge centered in 
(xO , yO) in the x y- plane at time to and its velocity 
... dx dy 
V = ( dt ' dt' 1) determine t he orientation of 

t h i s planar patch (see figure 1). This planar mode 
l ing i s equivalent to the first order approximation 
that most gradient-based methods take into account. 

y 

Figure 1: 00cal modeling of a moving edge as a pla
nar patch . 
e E [o , IT[ W E LO, IT/2L 

Let us cons ider an elemen t a r y volume IT , in the 
3D- space (x , y , t) , located around point {=( xo , Yo , t O). 
Two hypotheses (or local configurations) can be ac 
ti ng : 
HO: the r e i s no spatio- t e mporal edge inside IT ; then 

the inten s ity dist r ibution within IT i s mode led 
as cO+b , where Co is a con s tant and b denotes a 
z e r o - mean Gaussian noise with variance 0 2

• 

there i s a spatio- temporal edge inside IT , i . e . 
a small plana r pa tch P splitting IT between two 
sub-regions , IT l and IT 2 . Then the intens ity d i s 
tribu tion is modeled as : c l +b within IT l; C2+b 
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within IT 2 , where Cl and c2 are two di ffe rent 
cons tants. 

The orientation of the planar patch can be defi
ned by the two following angles: e (w.r .t . to the 
x- axis) and W (w .r.t. to the t-axis) as illustrated 
in Figure 1. The component VL of V perpendicular to 
the spatial 2D- edge and projected in plane t =to, is 
given by: V1 =tan W. It is obvious that only this 
component V1 can be inferred from the local deter
mination of this planar patch. Note t hat tht case 
of a static edge belongs to hypothesis HI; V= (0,0, 1) 
and W=O . Indeed such an edge will be considered as 
a "moving" edge, whose displacement is zero. 

The problem now is how to select one hypothesis 
versus the other one. The test in order to decide 
between these two hypotheses will be designed using 
some maximum likelihood scheme. 

11 . 2 - Maximum likelihood test 

Details in mathematical developments can be 
found in 1121, concerning the maximum likelihood 
te s t designed for detecting moving edges along with 
estimating their parameters . It is expressed by: 

max 
.f., e , ljJ 

min LRV ~ A 

Co 

(1 ), 

where LRV is the log-ratio of likelihood functions 
Ll and LO ' respectively associated with hypotheses 
HI and HO. The likelihood function is merel y the 
joint probability density function of the intensi 
ties within elementary volume IT. It is easily deri
ved as Gaussian distributions are involved and in
dependent intensity random variables are assumed. A 
is a predetermined threshold . 

Clearly, hypothesis HI is selected i f the obtai
ned maximum value of LRV, is greater than A. Then 
Qne can conclude that a moving edge is located at 
1. with spatial direction e and 'perpendicular" velo
city VJ. =tan ~ ,where .f., e, ~ are precisely values 
of (.f. , e , ljJ ) which have satisfied the mentioned cri
terion (1). 

Ye t one problem arises. No anal y tical closed
forms_ c~n be derived to expres s the optimal est ima 
tors e , W corresponding to the geometrical characte 
ri s tics of the model. Thus a predefined set of gi 
ven configurations e

j
, j=l , ... , ~ will be considered 

For a g iven geometr i c configuratio n ( ej , Wj)' the 
optimal es timators ci(i=0 , 1, 2) conce rning intensity 
aspec t s satisfy : 

aLRV(.f., e .) 
J 

dc. 
1 

wh i ch lead s to 

c O= ~ p~rr f (p) 

° 

I EIT f(p) 
P 1 

_ 1 
c = -

1 n
1 

(2 ), 

where f( p) are obse r ved intensity values within IT , 
n (resp . n

1
, n

2
) i s the number o f points within IT ; 

(resp . IT 1, IT
2

) . 

11. 3 Computational sch eme 

It turns out , 112 1, that maximizing LRV come s to 
maximizing the following expression: 
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; /n 1n2 
CRY (i'~j) 2n 1<\- 05

2 1 (3) 

Using (2) and (3), we can write function CRv(i'~j) 
in the form: 

CRv(i,~. ) 
) 

; I L a.(m) f(i+m)I 
mEM ) 

(4) 

where M is a set of vectorial indices such that 
{i+m, m€M} represent all points of volume IT , and 
coefficients aj 's only depend on a predefined confi
guration ~j. Indeed, the computational implementa
tion of this local estimation process merely con
sists of convolution operations. 

The process for determining moving edges between 
two successive images can be summarized as follows . 
For each point i in the first image: 
. calculate LRV(i'~j) for each mask {aj} correspon
ding to geometric configuration ~j 

select orientation ~k which max1mizes function 
LRV; if LRV(i'~k) ~A , then a moving edge is said t o 
be potentially present at point i,whose estimated 
parameters are ~k and associated likelihood value 
denoted by CONF(i);LRV(i'~k); else no moving edge 
is determined and CONF(i) is set to O. 

For each previously selected point i 
- If CONF (i»CONF (i 1 ) and CONF(i»CONF(i2 ), where 

points il and i2 are the two neighbours of iin 
the direction perpendicular to Sk , then 

conclude that a movihg edge is located at i=i, 
whose parameters are given by ~=~k . 

This last step could be interpreted as a thinning 
procedure. Indeed it corresponds to the local maxi
mization of CRY subject to location parameter i as 
expressed in (1) . 

If the volume IT intersects I images, CRY can be 
decomposed into: 

CRV(i'~J. ) =IJI L a.(m.)f(i+m.) 
miEMi ) 1 1 

= 1 L CRVi (i, ~ .) I 
iEI ) 

(5) 

where Mi is a set of vectorial indices such that 
{i+mi' mi€Mi } represent all points belonging to vo
lume IT and image i. Hence , this approach can embrass 
with the same formalism cases where two and more i
mages are considered . 

An additional heuristic is introduced to avoid 
false detections. Before concluding that a spatio
temporal edge is present at point i according to the 
criterion (1), the following constraint must be sa
tisfied: 

where ~1 and ~2 are two predetermined thresholds . 
More complex modeling, including for instance 

circle arc or rotation component, could also be 
handled by the same method. This will only lead to 
other sets of masks to be considered in expression 
(4 ) . 

One advantage of this method is to present no 
inherent re strictions concerning kinds of edges li
kely to be successfully handled (in particular, oc
clusion b oundaries) and concerning measurable motion 
magnitude. The same does not hold for differential 
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methods. The extent of measured motion is directly 
constrainteC by the smoothing extent used · to compu
te the spatial gradient of the image intensity. The
refore, the differential approach is more appropria
te for small displacements. Moreover, flow fields 
are often incorrect near occlusion, since assump
tions required for differentiation do not hold any 
longer in such areas. On the other hand,this maxi
mum-likelihood technique can be CPU-time consuming 
with a general-purpose computer, but CPU-time can 
be drastically reduced if an array processor is u
sed. 

III COMPLETE ESTIMATION 
OF THE VELOCITY FIELD ALONG CONTOURS 

In the previous section, a procedure has been 
described which detects moving edges and,at the sa
me time estimates their local spatial direction and 
compone~t of their velocity perpendicular to the 
contour. The goal of the second stage is to compute 
component of velocity vectors tangent to the con
tour. 

In order to achieve the second stage of the ima
ge flow analysis, edge linking is perequisite. To 
this end, only local spatial directions of detected 
moving edges are taken into account. One-pixel gaps 
can be filled up. The linking technique is similar 
to the one presented in 1131. Then, we get a set of 
contours, i.e., a set of chains of linked spatio
temporal edges. 

To compute the entire velocity field along the 
contours, the second stage of analysis must combine 
the local measurements yielded by the first stage . 
This combination stage is efficient if enough va
riations in spatial orientation occur along obtai
ned contours. For instance, a straight line contour 
remains a singular case. 
Let ~ (w , w ) ; ( dx , ~ ) be the restriction 

x y 
dt dt 

of 
+ 
V ~~ , ~ , 1) to the plane (x,y) . Let us 

consider ei(~) 
T vj. 

!!.i - t (6) 

where w is the velocity field to be estimated , ~ 
is the-unitary vector normal to the local edge e le
ment at point i, ~ ;(-sin8i,cos8i) , ViLis the mea
sured perpendicular component of velocity at point 
i. ei(~) is supposed to be a stationary random va
riable. 

Then,the measurement of velocity field ~ along 
a given contour C is formulated as the minimiza
tion of the following function: 

(7) 

where lE denotes expectation. Motivations for s uch 
a criterion can be found in 1141. A stochastic gra
dient algorithm is used to minimize J(w) .The r ecur
sive estimation is pursued from one point to its 
successor in the chain. More precisely, it i s ex
pressed as follows: 

T T T 
~i+l ; ~i - y . Vw ei(~i) ei(~i) (8) 

where y is a gain matrix, and V denotes the gradi
ent. 
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e.e.(~) 
de.e. de.e. 

and V (-- a;;;-) , 
W dW 

x y 

de.e. 
(~) 

x 
- s in 6.e. dWX 

n.e. 

de.e. 
(~) nY 

6.e. a;;;- .e. 
= cos 

y 

The initial estimate can be given by !!!o=V ~ ~ . 

A theoretical proof of such a minimization formu 
lation is shown in 11sl. The obtained convergence 
is quite ' fast. Two recursion cycles around a given 
contour C are usuall y suffic i ent for a proper esti
mation of the velocity f ield {~ ,.e.€C } . Moreover, 
two recursions are performed in parallel , clockwise 
a nd counter- clockwise . Then , an average is computed 
between the two estimates at each point .e.. Smooth
ness constraint is not explicitly formulated in the 
minimization criterion as in 1161, but it is ensured 
by the recursion along the contour . 

IV RESULTS 

IV . l - Results concerning the first analysi s stage 

Experiments on computer-generated images have 
been performed in order t o warrant the estimation 
met hod of moving edges . Different kinds of motion 
h a ve been considered (translation of the camera a 
long its view axis, object rotation in the image 
plane) . Results are presented in 1121. 

The algorithm has also been applied to actual i
mages . Only two successive images are cons idered for 
each example reported here. Hence each mask corres
ponding to coefficients aj's for each predefined 
configuration ~"j=l, .. . ,G, divides into two sub
masks. Th ese G ~asks are computed once G geometric 
configurations are chosen . Then they are available 
when images are processed . Choosing angle ~ j is e 
quivalent to choosing displacement magni t ude v

4
, in 

the direction perpendicular to the local linearJed
ge element whose spatial direction is 6j . Therefore, 
t h e location of the second submask in the second i
ma ge with respect to location of the firs t one cen
ter ed at current point .e. in the first image is gi
ven by v J.j !2.j. 
Then , the G configurations can also be denoted as 
{ ( (6r'~q) , q=l , Q),r=l , R} with RxQ=G. Thus the func
t ion CRY can be written as follows: 

CRV (.e.,~rq) 

(9) 

I n order to save CPU-time, convolution operations 
wi t h the whole set of masks, as previously explai
ned , are not actually computed for each point .e. . If 
CRV1(.e. , 6r )<aA, with e.g . a=0.2S), computations cor
responding to the evaluation of CRV(.e.'~rq),q=l,Q, 
s t op and CRV(.e.'~rq)' q=l,Q are set to O. 

The first example i s extracted from a natural se 
quence acquired by a camera and depicting an urban 
s c ene. Figure 2 shows the first image . The set of 
masks consists of 66 masks including six possible 
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spatial directions: 6 = 0° , 30°, 60° , 90°, 120° , 
150 ° and eleven possible perpendicular d i splacement 
magnitudes , VL = - S , . .. ,-l , O, l, . .. ,S (G=66, R=6, 
Q=11). Submask s ize is 5xS pixels. The estimat ed 
perpendicular displacement field is presented in 
f i gure 3 along with spatial edges, for an image 
part. 

An evaluation of the correctness of the resul 
ting estimation 'is available. By means of some other 
tool, motion is known to be three pixels to the left 
in the whole image except for subparts corresponding 
to hung linen , some bushes. Quite satisfactory re
sults are obtained . 

The second example includes two images of a prin
ter acquired by a CCD camera (Figure 4). Only the 
printer has been moved from one image to the next , 
camera and background remain fixed . 84 masks have 
been consider ed , that is to say four possible spa
tial d irections 6 = 0° , 4So , 90° , 13So, and 21 pos
sible perpendicular displacements VL = -1 0, ... , -1, 
0 ,1, . •. ,1 0 . (Of cour se , metric is adapted when di
rections other than horizontal and vertical are con
sidered ). Determine d moving edges are shown in Figu
re S with their perpendicular displacement, which 
can eventually be none. 

IV . 2 - Resul ts concerning the second analysis stage 

Two sets of experiments are presented involving 
computer-generated images including a single poly
gonal object and two kinds of motion : uniform trans
lation and in-plane rotation. Superimposed s ilhou
ettes of the object in two successive positions are 
shown for both cases, r espectively in Fig. 6a and 
7a. Of course , the method is not restricted to such 
cases . 
In Fig. 6b and 7b is drawn t he perpendicular dis 
placement field. It has been estimated using the 
a lgor ithm presented in this paper . 
Fig. 6c and 7c show the resulting complete displa
cement field after two recursive estimation cycles 
around the boundary. The last example points out 
that varying displacement field can be successful ly 
handled . 

V FUTURE WORK 

Future research directions mainly include: 
- corner displacement estimation (as complementary 
processing aft er l inking) 
- detection of possible motion boundaries along con
tours in parallel with the recursive estimation 
(e . g., this may h appen if a boundary portion is an 
occlusion one ) in order to r e initialize the recur
sion . 
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Fig.2 : First image 
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Fig . 3 : Determined spatio- temporal edges with theh' 
perpendicular displacement (axes are sampled each 
5 pels) A;2500, ~ 1 ;0 . 8 , ~2 ; 1. 2 

Fiq . 4 : "Printer " sequence 
-- --- .- •• - _.- - \- /- --\ 1 --' 
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Fig . 5 : Detel~ined spatio- temporal edges with their 
perpendicular displacement A;3000 , ~1;0.75 '~2; 1. 2 5 
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Fig . 6a: Superimposed silhouettes of polygonal 
object 1 
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Fig . 6b : Perpendicular displacement field 

Fig . 6c: Resulting complete displacement field 
y = ( 0 . 03 0 . 0 1 ) 

0 . 0 1 0 . 03 
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Fig . 7a: Superimposed silhouettes of polygonal 
object 2 

Fig . 7b: Perpendicular displacement field 

Fig . 7c: Resulting complete displacement field 
y = ( 0 . 04 0 . 01) 

0.01 0 . 04 
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