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Abstract 

A computation procedure for detecting 
arbitrary two-dimensional signals 
embedded in scenes and independent of 
orientation / size is developed using 
pipe-line pixel processor procedures. 
Signals are encoded as edge-only 
features and cross-correlated with 
edge-only versions of the input 
scenes--both in cartesian and log-polar 
coordinates. These processes are 
incorporated into a robot visual system 
capable of locating, moving towards, and 
~ointing to a target signal, again, 
lndependent of its size and orientation. 
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1. Introduction. 

Many claims have been made as to 
the importance of edge information in 
coding images (Marr, 1982), pattern 
recognition (Rosenfeld & Kak, 1982) and 
fast computational vision in general. 
Secondly, convergent results from human 
psychophysics (Watt & Morgan, 1983) , 
vertebrate physiology (Pollen, Andrews & 
Felden, 1978) and comput ional edge 
processing (Marr & Hildreth, 1980; 
Leclerc & Zucker, 1983) point to the 
"optimal" edge extractor as the logical 
intersection of band-pass Gaussian 
filters or pseudo-gamma function 
band-pass filters (Marr & Hildreth 
1980) approximated by V'Ga operator~ 
(Watt & Morgan, 1983; Leclerc & Zucker, 
1983): a Laplacian operator following 
low-pass Gaussian filters of specified 
bandwidths. In this paper we are 
concerned with using edge information 
for pattern recognition or pattern 
matching, as restricted to the 
~wo-di~ensional environment--though 
lncludlng the problem of matching 
independent of signal orientation and 
size--required in our robot pattern 
recognition system (Figure 1). 
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Edge-based matching techniques are 
particularly useful in the context of 
pipe-line pixel processors where the 
execution time for convolution 
operations is critically dependent on 
kernel size, and the frame memories are 
restricted to 8- or 16-bit pixel sizes. 
Though our general model involves the 
correlation of edge-only pattern 
features at various levels of resolution 
according to a strict Laplacian pyramid 
format, in the present simulations we 
h~ve restricted our analyses to the 
highest level of resolution: the 
original 512x512 input format. 

A typical pipe-line pixel processor 
(Arithmetic. LO~ic Unit: ALU-512) maps 
frame memories Into frame memories with 
respect to the logical operations of 
(OR, exclusive OR, AND, 2's complement) 
and usual addition and subtraction 
operations. Each pass takes 33 rnsecs and 
operates on the full image, except when 
pixel protects are active. Information 
passes through a 16-bit register and the 
device also has an Bx8 bit 
multiplier--which enables convolution 

Figure 1 

Robot and restricted visua7 
environment used in simu7ations. Various 
image montages were p7aced about the 
wa7ls and the robot's task was to detect 
where a specified signa7 was, move 
towards and point to it, based on visua7 
information. 
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operations on 512x512 images with 
nxm-sized kernels, and so taking nxmx33 
msecs per convolution. 

The robot was controlled by 
interrupt-driven subroutine calls 
capable of moving it in any horizontal 
direction and operating a three-joint 
arm according to the processed image 
information, as shown in Figure 1. Both 
image processing (Imaging Technology) 
and robot (RB Robots, Colorado) systems 
were controlled by a PDP 11/23 computer 
operating in RTll. 

2. Edge-extraction, invariance codes, 
and matching techniques. 

As implied above, the V2G(a) 
operator (on an image I) is an adequate 
representative of band-pass filtering 
used in recent edge-extraction 
techniques. Defined by 

II 'G(a)(I) = II' G( a : x,y)(I) + v ' G( a:x , y)(I) (1) 
- aX2 - ay2 

where G( a :x,y) = e -Cl' «x -x , )'+(y-y , )') (2) 

Here (Xo,Yo) defines all convolution 
centers over the image. This filter is 
simple to approximate in a pipe-line 
pixel process by two convolution 
kernels. First, the Gaussian low-pass 
filter (2) can be approximated by the 
recursive use of an averaging kernels of 
the form: 

A 
1/4 [: : ] 

(3 ) 

After n recursions, it produces the 
bivariate binomial coefficients on an 
(n+l)x(n+l) kernel as: 

G : B(n;x,y) = (n ! ). 
x!y!(n-x)!(n -y )!), X, y =O, .. n (4) 

This takes nx132 msecs to complete and 
in the simulations to be reported here n 
was set at 10 (a total of 33x4xl0=1.32 
sec) . 

The V: or Laplacian kernel is 
defined (in finite difference form2) by 

11 ' ( 5) 

taking 9x33=297 msec to complete. 
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Though various options are 
available for extracting the image edges 
as (x,y) coordinates from the V2G 
images, we have used the following 
technique, since it only involves two 
passes through the pipe-line pixel 
processor. Since the output of the 
V2G(a) operator can be positive or 
negative, 127 was added to the output, 
followed by an .AND. with 128, giving 
the complete form: 

( [( x , y» • (all z(x,y»O, from [ G, [ Q'G,,(I)+127])nI28 ) (6) 

Here, also, a second smoothing operation 
(G 2 ) was employed to suppress isolated 
non-zero points resultant from the V2G,o 
operation. An illustration of these 
processes is shown in Figure 2, taking 
a total time of 1.75 sec. In our 
application the edge set of points (6) 
was (spatially) uniformly sampled to 
less than 256 points (rectangular area 
shown in Figure 2a), as shown in 
Figure 4\>. 

Figure 2 

(a) Input image (I and 
(b) edge-only version created by: 
G 2 (V 2 G , 0 ( I ) + 127 ) n 128 ( rect angu 1 ar area 
in (a) corresponds to signal used in 
matching process, Figure 3). 

Once this edge code has been 
established for a given signal, 
cross-correlation of the signal with any 
arbitrary scene can be reduced to a 
number of passes through the pipe-line 
processor equal to the number of signal 
points . That is, the cross - correlation 
function 
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J J s (a , S)g( x+a ,Y+ S)da dS (7) 
_ 00 _ 00 

reduces to 
Xh Yh 

Cs (x,y). L E $( n,m )9(x+n , y+m ), (8) 
9 n" x m=y 

t I 

(Xl, Yl' xh, Yh) corresponding to the 
sub-array containing the signal. For 
both sand g being binary valued 
(edge-only) images (B) reduces to 

L s(n,m)g(x+n,y+m). 
n,m c: E(x,y) 

(9) 

This correlation function can be 
executed by adding the image g to itself 
shifted ~ . t~e locus of poInts ~ 
values) deplctlng the signal, or 

L g( x+n,y+m) 
n, mc: E(n , m) (10) 

since s.g=l if, and only if, both signal 
and image edge components are present. 
(10) is readily executed via a series of 
passes through the pipe-line pixel 
procesor where the results are 
accumulated--as illustrated in Figure 
3b... 

Figure 3 

Edg~-only matching (cross-
corre~atlon) between sampled signal (a: 
see FIgure 2b) and image (b). Luminance 
corresponds to the I ikel ihood of signal 
presence. 

The problem with this matching 
technique, however, is that it is not 
invariant to size and orientation 
changes of the signal in the image. This 
is a particularly relevant problem in 
the case of robot vision studied here 
since movements of the robot towards the 
field wall introduces size and possibly 
small angular changes in the signal 
(Figure 1). 
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Techniques for matching which 
overcome rotations of signals have been 
recently developed by Hsu et al. ' using 
circular harmonic functions whereby a 
Fourier decomposition of the polar 
transformed signal and rotated version 
is enacted along the orientation 
parameter. Matching occurs since both 
i~ages have identical power spectra, 
wlth the phase glvlng the orientation 
differences between them. The problems 
associated with these techniques are 
(1) determining the initial estimate of 
the signal and image centers to enact 
the polar transforms, and (b) that the 
Fourier transform needs to be computed. 

An alternate approach to the 
problem ~s simply to transform edge-only 
images lnto log-polar coordinates and 
enact matching using pixel processor 
operations. Again, this process has the 
problem of estimating the image center 
for the log-polar transform. For both 
~i9n~1 and .image the ' best a priori 
lnltlal estlmate of the center is the 
peak of the cartesian cross-correlation 
~uncti~ns;. though w7 are at present 
lnv7stlgatlng a pyramld search technique 
to ~mpr?ve the accuracy and the speed of 
estlmatlng the log-polar centre. 

The log-polar (conformal) mapping 
is: 

r'=77.B loge(ro+ l) ( 11) 

and 8=tan - 1 (Y-Yo / x-xo) 

where 

( 12) 

for ~Xo,Yo) corresponding to the peaks 
of slgnal autocorrelation and image 
cross-correlation images. 
Figure 4 shows an an example of 
signal and images transformed by the 
above procedure. Here, the peak of the 
log-po~ar cross-correlation function 
determl~es th7 particular signal size 
and orlentatlon detected--with respect 
to the center chosen by the cartesian 
cross-correlation procedure. 

(a) 
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(b) 

(c) 

(d) 

(e) 

Figure 4 

(a). (b) show cartesian edge-only 
image and sampled signal respectively. 
wh i le (c). (d) show correspond i ng 
log-polar versions of (a). (b). 
(e) Shows log-polar cross-correlation 
image where the peak defines the 
orientation and size of the signal 
embedded in the size which best matches 
the input signal. 
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Though the basic computational 
V1Slon procedures are defined and 
illustrated, a number of related 
problems to implementing these ideas 
into a pseudo-real time robot visual 
system must be resolved--particularly 
related to the analysis of error, 
setting of thresholds and adaptation 
procedures. Even in the restricted 
environment used in these simulations 
ambient luminance introduces photon 
fluxuations such that even redigitizing 
exactly the same image does not 
necessarily result in identical pixel 
values, albeit they are close. Of 
particular variability is the luminance 
projections around the field walls about 
which the robot moves. 

For these reasons a signal matching 
threshold was set by digitizing the 
signal and then redigitizing the same 
area and determining the edge-only 
cross-correlation function. The peak 
value could then be used to estimate the 
signal match threshold--which in these 
simulations was set at 60% the number of 
signal points. Due to the rounding 
errors associated with the log-polar 
transform, the polar signal matching 
threshold was typically set at 
two-thirds that of the cartesian. 
Although these thresholds seem 
remarkably low, the checking procedure 
resulted in no false alarms in our 
restricted simulations--though more 
detailed signal detection analysis is 
being pursued. 

5. Conclusions. 

In these simulations we have 
demonstrated how pipe-line pixel 
processor technology may be effectively 
employed to enact edge-only matching of 
arbitrary signals to images. Though to 
this stage the choices of thresholds are 
arbitrary, our results using the 
log-polar mapping procedure for matching 
under rotations and size change along 
with the cartesian procedure resulted in 
successful matches for alphabetic 
characters and relatively complex 
images. 

This log-polar matching procedure 
falls down when no evidence of a match 
occurs--that is, no discernible peak 
occurs in the cross-correlation 
function. In other attempts to solve 
this problem9 an adaptive procedure is 
used to establish the center. However, 
this is time consuming in that the 
procedure involves changing between 
polar and cartesian coordinates. The 
second limitation of the above procedure 
is the simple use of signal sampling to 
keep the number of signal pan and scroll 
values (coordinates) below 255. This 
does not necessarily result in the 
signal features which are more likely to 
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remain invariant to light fluxuations, 
image distortions, etc. However, these 
problems are currently under 
investigation, and the matching 
procedure and criteria are being 
analyzed from a signal detection 
perspective. Indeed, if pipe-line pixel 
processes could enact log-polar 
cross-correlations for every possible 
center, then these problems would be 
solved. 
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