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ABSTRACT

The construction of knowledge-based systems of a
size large enough to be useful has led to problems
of knowledge acquisition. A way of solving this
is to enable the computer to automatically generate
its own knowledge from sets of sample data. This
becomes further complicated when the sample data
may have errors or noise in it.

This paper describes a system that generates
knowledge in the form of rules from uncertain data,
in the domain of computer vision. The way inwhich
the uncertainty arises and is processed is dis-
cussed, and some sample results are presented.
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INTRODUCTION

The construction of knowledge-based systems of
a size large enough to be useful has led to problems
of data acquisition. Expert systems have relied on
the interaction between a knowledge engineer and a
domain expert to produce a set of rules that cap-
ture the expert's knowledge on a particular topic.
This process is very time-consuming, and as the
size of the knowledge base increases it becomes a
limiting factor. In computer vision, this method
has the additional problem that the language
necessary to represent the rules is not well-
defined. The information given to any vision
system is usually in the form of pixels, but
formulating rules in terms of pixels is computa-
tionally expensive and would be difficult for a
programmer to understand. A higher-level represen-
tation language is required in order to bring down
the computation cost and to aid comprehension.

This paper addresses the subject of 'machine
learning from examples', or equivalently of auto-
matically generating rules to describe a concept
from examples and counter-examples of that concept.
Desirable properties of such a generation process
are ease of inclusion of additional problem-
specific knowledge, and ease of comprehension by a
user or programmer. The representation of the
examples and rules is hence of primary importance,
since to a large extent this will determine the
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range of situations that can be expressed, and the
manipulations it is possible to perform.

The problem of interpreting uncertain data
has received considerable attention from people
building expert systems, e.g. MYCIN (Shortliffe
Buchanan 1), but the problem of learning rules to
describe uncertain data has been studied less. In
computer vision there is uncertainty due to imper-
fect image processing and noise. Here this has
been modelled by the technique of fuzzy sets.

EXAMPLES AND COUNTER-EXAMPLES

Objects are made up of sub-objects called
'primitives'. The primitives have properties that
are called 'attributes', and there are connections
between the primitives which are expressed as
relations. For the purposes of computer vision,
these primitives are the regions, and the attri-
butes may be properties such as shape, size and
colour; the relations are 2-D spatial relation-
ships such as 'above' or 'surrounds'. This
representation corresponds to a semantic net or

graph.
Shape=
Triangle

[:] on top of above

Shape=
Square

hape=
surrounds
Square

Here shape, size and height are the unary
descriptors used and these take values of, for
example, shape=triangle, size=medium and height=6.
This illustrates the use of two types of unary
descriptors:

. nominal descriptors, where the values
have names.
linear descriptors, where the values
are numbers.

The two types of unary descriptor are treated

in different ways. More restrictions are placed
on linear descriptors since it is assumed that
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they are ordered in a meaningful way, and that
integer values differing by a small amount give
rise to ‘similar properties and can be grouped
together.

Nominal descriptors have discrete names with
no ordering implied on them. For example, it is
not meaningful to describe a shape as halfway
between a circle and a square, although as will be
shown later, it is possible to express equal
uncertainty as to whether a primitive's shape is
‘circle' or 'square'.

The only binary descriptor used at present is
'is spatially related to'. This takes values of),
for example, 'surrounds' and is a nominal descrip-
tor. Each value has an inverse, e.g.,
*is-surrounded-by"'.

GENERAL METHOD

The central idea in the learning algorithm
described here is one of 'generate and test'. The
method is an extension of the INDUCE algorithm
(Michalski 2) where a series of trial descriptions
is generated using a 'seed' example, and tested
against examples and counter-examples. The seed
example provides the descriptors from which the
trial descriptions are constructed. After a
description has been tested, if it is ranked better
than those before it in the series, according to
some criterion, it is retained and used to produce
several more descriptions. The new descriptions
are produced by specialising the old description.
If it is no better than those before it, the trial
description is discarded.

This guided generation process is equivalent
to a search. The search is over a space of all
possible descriptions, consisting of properties of),
and relations between sub-objects, and this is
guided by a set of examples of a concept and a set
of counter-examples. These representatives are
very important to the working of the algorithm, and
so a good choice of examples, and more critically
counter-examples, is essential (Winston 3).

In simple set terms, if we consider a space of
all possible objects, then we may represent POS,
the set of examples, and NEG, the set of counter-
examples, by the sets shown in the figure below:

A trial description will cover a number of
possible objects. Three descriptions are
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represented by the sets in dashed lines, each of
which has a different property. The set----covers
all the examples and is called a 'complete des-
cription', and the set ---- covers none of the
counter-examples and is called a 'consistent
description'. The aim of the learning algorithm
is to produce a number of complete and consistent
descriptions, for example, the set ...., which can
then be used on unknown objects to identify them
as members of the concept.

The difference between this type of learning
and a decision tree is the inductive process,
whereby descriptions of a class of objects are
induced from the sets of examples and counter-
examples. The induction in this case is performed
by generalisation rules which act on a description
to produce a more general description. 1In terms
of the set diagram above, generalisation increases
the range of objects that the description covers.

GENERALISATION RULES

Generalisation is performed only on con-
sistent descriptions generated by the learning
algorithm (i.e. those descriptions which do not
cover any of the counter-examples). The reason
for this is that the aim of the algorithm is to
produce a series of consistent descriptions that
are as simple as possible. Hence when a consistent
(but not complete) description is produced, it is
generalised, hoping that the new description will
cover more examples in POS whilst maintaining the
consistency property.

There are really only two generalisation rules
used in the implementation, and they correspond to
internal disjunction of values of the two types of
descriptor. They are:

(i) Adding alternative (or range of
alternatives).
(ii) Closing interval.

(Only the first of these will be described in
detail.)

(i) The adding alternative rule works on nominal
descriptors, using two values of the same descrip-
tor, one of which is in the description already,
and the other which it is desired to include.
Values of the descriptor may already be grouped
together, either by the programmer or by the
system when it has learnt a rule in the past, to
form a structure. The existing structure of the
descriptor is searched to find all existing
groupings of values that include both of the
required values. For example, the 'shape' des-
criptor may have the structure shown below:

polygon
quadrilateral
square rectangle triangle

Here 'quadrilateral' is defined as 'square or
rectangle' and 'polygon' as 'quadrilateral or
triangle' by the user of the program. The struc-
ture is in this case a tree which can be used as a
convenient means of generalisation, so that square
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is-a-kind-of quadrilateral is-a-kind-of polygon.
However, this restricted generalisation has the
disadvantage that the user has to supply all the
structure, and that if the combination 'rectangle
or triangle' (but not square) appeared repeatedly
this could not be expressed efficiently. An
alternative structuring technique adopted by this
work is a 'group if useful' technique, where
initially the user can specify as much or as little
grouping as he sees fit, and the program will group
together values if it repeatedly finds such a
process useful. Thus if no structure were supplied
to the 'shape' descriptor, but the combinations
'square or rectangle' and 'rectangle or triangle'
occurred frequently as the algorithm ran, then the
structure of the descriptor would look like the
figure below:

squ rec rec tri

square rectangle triangle

The language being used here is clearly less
comprehensible than that used in the previous
structure, but for display purposes the original
'square or rectangle', etc. may be used. It has
the advantages of being easier to manipulate and
being able to express a wider variety of combi-
nations of values.

Each of the groupings containing the two
values is used to form a generalised description
which is tested for consistency, starting with the
largest grouping (corresponding to the most general
description) and going on to the smallest. When a
consistent generalised description is found the
process stops. It is only required to test this
series of descriptions on the counter-examples to
establish the consistency property. If no con-
sistent generalised description is found, a group
consisting of the two values only is created and
the corresponding description is tested. If this
fails, the two-value group is deleted and general-
isation of this descriptor is abandoned.

(ii) The closing interval rule works in much the
same way on linear descriptors, using intervals
including the two values rather than on groupings.

STRUCTURE AND ATTRIBUTES

The way that the algorithm is implemented is
to process the binary descriptors first, generating
structure-only descriptions. Each of these struc-
ture descriptions is then used as a framework in
which to run the algorithm for the unary descrip-
tors. There are two effects arising from the
separation of the unary and binary descriptors.
These are:

(1) Since structure is treated first, the
algorithm preferentially generates
solutions with structural conditions
rather than attribute conditions.

(2) Any description obtained with a con-
sistent structural part will be
consistent.
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PREFERENCE CRITERIA

The progression of the learning algorithm is
influenced by two separate preference criteria.
These are now described, and their effect on the
type of description generated outlined.

Preference Criterion (1):

This is used on every description in order to
quantify how close to being a solution it is. The
measure used is simply:

Number of examples in POS covered by
description -

number of counter-examples in NEG
covered by description.

Preference Criterion (2):

The preference criterion used here is a cost
function which states how successfully a descrip-
tion satisfies certain requirements. It is
evaluated as a weighted sum of the 1length, cost,
and degree of generalisation of a description.
These weights are user defined according to the
type of description it is wished to generate (e.g.
long and specific or short and general). The
contribution from each characteristic will be
represented by a number between O and 1, defined
as follows:

(i) Length of description
(ii) Cost of generating description
(iii) Degree of generalisation of
description

The features used in this preference criterion
are not exhaustive; for example, in a more complex
system, computational simplicity, least possible
memory used in storage and overall comprehen-
sibility may be important characteristics for a
description to exhibit.

UNCERTAINTY

The main difference between this system and
those previously implemented is the way the
quality of data relating to examples is treated.
For example, a square might be a perfect example
of a certain concept, but due to the imaging system
it may not actually have a representation that
exactly satisfies the axiomatic requirements for a
square. Nevertheless it may have a certain per-
ceptual similarity to a square, and may well be
one in the actual scene which has become distorted
in the imaging system.

There are several alternatives for represent-
ing uncertainty. In the majority of systems,
Bayesian Probabilities have been favoured;
however, Fuzzy Sets and the Shafer-Dempster
approach (4) have also received attention in recent
literature. Fuzzy sets (Zadeh 5) were selected to
represent the uncertainty in the system.

Each fact is assigned a Fuzzy Truth Value
(FTV) from O to 1. This value represents the
degree of membership of the fact in the fuzzy set
of true facts. Hence, a description which matches
a series of facts from an example or counter-example
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will have a list of FTVs associated with it. These
are then combined to give an overall fuzzy truth
value for the description. If the description is
made up of n descriptors, and the jth descriptor
matches a fact in a specific Example with FTVw-
then the FTV of the entire description (or theJ
Degree of Fit of a description to an Example, E)
is defined as:

($j-0-5) =
Fi = 050 0§ 2 —geal—-) (05-)
WJ>05 \VJ‘QO'S 1)

The function F(E) has the following properties:

(i) Simple polynomial form.
(ii) Sensitive to all truth values (unlike
MAX or MIN).
(iii) Independent of order of truth values.
(iv) Facts with FTVs<0.5 aregiven greater
weight in the calculation than those
with FTVs>»0.5.
()

F(E)<q)j for n=1, 0.5<q;j<1 .
EFFECTS OF THE INTRODUCTION OF UNCERTAINTY

The definitions of Consistency and Complete-
ness now become dependent on the degree of fit.
A consistency threshold Tconsistent is set such
that a description will not be consistent if
F(CE)> Tconsistent for any counter-example CE. A
completeness threshold Tcomplete is also set. If
F(E)>Tcomplete for an example E then that example
is defined to be covered by that description.

The introduction of uncertainty into the
definitions of Consistency and Completeness affects
the evaluation of the Preference Criteria. With
Preference Criterion (1) the definition is unchanged
except that the number of examples in POS covered
by the description will be those examples with
degree of fit greater than the completeness
threshold. Similarly, the examples covered in NEG
covered by a description will be those with degree
of fit greater than the consistency threshold.

Preference Criterion (2) is affected by the
introduction of two new factors: the consistency
and completeness ratings of a description, defined
as follows:

(i) Consistency of description

If the consistency threshold is exceeded by
any counter-example then the consistency condition
is broken and the consistency rating is set to
zero. If the degree of fit for the ith counter-
example is F(CEi) (i=1..n) then:

Consistency Rating = 1 - 1 F(CEi) (2)
n T Tconsistent

(N.B. If F(CEi)=0 for all i
then Consistency Rating=1)

(ii) Completeness of description

If the degree of fit for the ith example is
F(Ei) (i=1..n) then:
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F(Ei) (3)

1

Completeness Rating =

A
n

F(Ei) Tcomplete

(N.B. If F(Ei)=1 for all i
then Completeness Rating=1)

Hence, the evaluation of the Preference
Criterion now becomes a weighted sum of five
features: length, cost, degree of generalisation,
consistency, completeness. The introduction of
Completeness and Consistency ratings has two
effects in guiding the system. By weighting in
favour of completeness the system can be biased to
include all positive examples. By weighting in in
favour of Consistency the system can be biased
against including any counter-examples.

RESULTS

This section shows the results of running the
algorithm on a synthetic image, before and after
adding Gaussian noise to it. The different
descriptions generated in each case are given:

A O

O

Processed Version of Perfect Input Data.

Rule Generated:

'There are two objects X and Y such that
(X surrounds Y and
Y is a square or a circle)"'

4 (%

T

€

Processed Version of Imperfect Input Data.

Rule Generated:

'There are three objects X,Y and Z such that
(X surrounds Y and
Y is a rectangle)
(X is right of Y and
X is right of Z and
X is a rectangle)'

or
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The result of adding the noise is that the
surrounded objects in the examples cannot be
reliably labelled as a square and circle as before.
The object in the top example is now considered
more likely to be a rectangle and the surrounded
object in the bottom example is too degraded to be
incorporated as part of a rule. This results in
the second half of the above rule being generated.

DISCUSSION

In its present form, the learning system
described has several problems associated with it,
due to the incorporation of uncertainty in the
algorithm. Some of these problems are described
below.

Coverage of Seed Example.

The INDUCE algorithm is guaranteed to give a
solution and terminate eventually (when working on
noise-free data), even if the rule obtained is a
disjunctive list of the examples in POS. (In this
case, no induction has been performed by the
system.) The reason why the algorithm terminates
is because all the descriptions generated using a
'seed' example are partial descriptions of the
example and hence cqover it. As the algorithm
builds up longer partial descriptions of the seed
example, the set of objects covered by the descrip-
tion become smaller, until eventually only the one
example is covered.

The use of the degree of fit measure defined
above means that partial descriptions of the
example will not necessarily 'cover' (in the fuzzy
sense) the seed chosen. A consequence of this is
that the algorithm cannot be guaranteed to give a
solution, unless some other constraints are placed
on it. If the situation occurs in which the seed
example may not be described without a counter-
example also being covered, then to all intents
and purposes the descriptors chosen do not dis-
criminate between this example and the counter-

example. This may be remedied in one of two ways:
(i) Alter the Tcomplete threshold to
discover whether any setting will give
discrimination.
(ii) Use a better set of descriptors.

Degree of Fit Measure.

The degree of fit measure as defined in
Equation 1 has the property that if two facts in an
example with truth values of O and 1 respectively
were matched to two descriptors making up a
description, then that example would have a degree
of fit of .5 to that description, in spite of the
FTV of O which is designed to represent the falsity
of that fact. This is resolved by making the
additional assumption that if the degree of member-
ship of a fact is less than a threshold value T
(e.g. T=0.3),then it is deleted from the data base.
This can prevent the matching of low membership
facts and cut down the processing done by the
algorithm.
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Interdependence of Certainty Values.

This problem is perhaps best illustrated by an
example. Consider the two primitives in the figure
below:

then it is not

square,

If primitive 2 is a
touching primitive 1.

If primitive 2 is a
touching primitive 1.

circle, then it is

In other words, the certainty of the relation
'l is touching 2' is dependent on the interpret-
ation of the shape of primitive 1. It is therefore
assumed for simplicity that the facts describing
the examples are independent of each other, to an
approximation.

CONCLUSIONS

In this work, a machine learning scheme for
computer vision that models the effects of intro-
ducing uncertainty has been implemented. At
present, this work is at an early stage and has
only been applied to simple, synthetic image data
to investigate the changes that occur when
uncertainty is present. From the resultsobtained
to date, it seems that the rules that are learnt
from perfect data may differ significantly from
those obtained from the imperfect equivalent.
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