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ABSTRACT 

The retina is an approximately spherical structure. In 
order to gather information such as the density of rods and 
cones it is necessary to flatten the retina. It is desirable to 
project these measurements back onto the original spherical 
form of the retina, interpolate the sampled data, and 
display the results. This paper is a sununary of techniques 
which we have developed to perform these tasks . 

La retine pe ut etre approximee par une surface 
spherique. Pour recueillir certaines informations conune 
la densite des cones et des batonnets, il faut aplatir la 
retine . Nous aimerions reprojeter ces mesures sur la surface 
spherique originale, interpoler les donnees recueillies et 
afficher les resultats. Cet ouvrage est une synthese des 
techniques que nous avons developpees pour effectuer ces 
taches. 

KEYWORDS: human retina, recontruction, spherical 
geometry, interpolation. 

This work 'vas suppor ted in part by t he National Science Foun­
dation "!lder g' ant number DCR - 8505713, by a Lions Northwes t 
Training Fellowship , and by the Nat ional Institutes of Health under 
grant number EY04536. 

Graphics Interface '86 

U.S.A. 

1. Introduction 

The topography of the constituent cells and efferent 
pathways of the retina is important for understanding how 
the visual world is sampled and how it is represented in 
the central nervous system. The retinal whole mount is 
the histological method of choice for revealing these topo­
graphical relationships (Stone, 1981, for review) . Because 
the retina covers the major part of the sphere, it must 
be cut so that it can be flattened for viewing under a 
microscope. Thus, a general problem with whole mounts 
is that spatial relationships are lost across the cut edges . 
Furthermore, locations of features on the retinal sphere, 
which in theory could be specified with great precision , are 
not readily determined from their positions in the flattened 
tissue. 

These probleIDB may be solved by reconstructing the 
original spherical surface from the flattened tissue . Such a 
reconstruction has been accomplished manually by approx­
imating tracings of the tissue to the surface of a sphere of 
appropriate diameter (e.g., 0sterberg, 1935) . 

The advent of sophisticated and affordable computer 
technology has made digital reconstruction techniques pos­
sible. We report methods for specifying a retinal coordinate 
system, reconstituting the retinal sphere from a three-piece 
whole mount (Curcio, et al., in preparation), and displaying 
topographic data. 

Our key reconstruction step relies on the fact that one 
of the three pieces of the retina has a particularly easy 
mapping back to the sphere, based on natural landmarks. 
Once this piece has been placed on the sphere, the other 
two are positioned relative to it , using a small set of fiducial 
points . In the first case, we can assume that there has been 
little or no distortion of the tissue . For the second place­
ment problem, we cannot make this assumption . Instead, 
we assume that the tissue has been warped , and rely on an 
iterative relaxation procedure to place each point . 

The reconstructed retina is then used as the basis 
for display. We construct a triangular mesh connect ing 
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the sampled points. Measured quantities (rod, cone and 
gangion cell densities) are represented as intensities (usually 
false-colored) . The triangular mesh can be directly dis­
played to give a direct three-dimensional view of the retina, 
or projected onto the plane in the style of conventional 
visual field maps. To generate a true visual field map, we 
can back-project the retina through a standard model of 
the eye's optics. 

The display techniques have been applied to 0ster­
berg's data (1935), and have provided invaluable guidance 
in the design of the sampling scheme which we are using 
now. 

2. Coordinate Systems 

2.1 Retinal Sphere 

The retina is treated as the surface of a unit sphere . 
Any point on the sphere can be indexed by two coordinates, 
A (longitude, meridian) and </J (colatitude, eccentricity). 
This coordinate system allows us to make comparisons 
between eyes of different diameters. 

Eccentricity is measured from the center of the fovea. 
The nasal horizontal (0°) meridian is defined as the merid­
ian passing through the center of the fovea and the center 
of the optic disk . The superior vertical meridian is at 90°, 
temporal horizontal meridian is at 180° , and the inferior 
vertical meridian is at 270° . 

2.2 Microscope stage 

We developed a 3-piece whole mount dissection tech­
nique which results in a belt 60° wide roughly centered on 
the horizontal meridian, and two caps from the inferior and 
superior retina. These three pieces can be flattened without 
tearing the retina; the belt is only very slightly distorted. 

The locations of data points on the whole mount are 
expressed in terms of the X,Y coordinates of the microscope 
vernier. The raw data base consists of a collection of 
such X,Y points, along with measurements made at these 
locations, such as the density of rods or cones. 

In order to assist in the reconstruction, we also note the 
positions of the fovea, the optic disc, and several (about ten) 
key points (usually blood vessels) along each of the shared 
boundaries between the belt and the caps. 

2.3 Visual field 

It is important to be able to express retinal location in 
terms of functionally defined locations in the visual field . 
The projection of the visual field onto the retina has been 
deduced by tracing the path of rays through the optical 
apparatus of an average eye. The projection is nonlinear , 
such that a degree of visual angle subtends a greater extent 
of retina centrally than peripherally. The exact nature 
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of the non linearity varies among different schematic eyes, 
based on different underlying assumptions (e.g., Drasdo 
and Fowler, 1974). One advantage of our decision to 
keep all retina data in a retina-based coordinate system is 
that it remains available for transformation to visual field 
coordinates by any suitable schematic eye. 

3. Mappings 

3.1 Three Planar Patches ~ One 

The three separate planar patches (Belt, Inferior Cap 
and Superior Cap) are positioned in a common, planar 
coordinate system so that (see Figure 1): 

• the fovea is at the origin 

• the optic disc is on the positive x axis 

• the inferior and superior caps are attached to, and 
tangent to, the belt, at a common key point. 

3.2 Plane ~ Sphere 

Mapping the central belt to the sphere is relatively easy. 
The shape and extent of this patch was chosen so that it 
could be flattened easily, without appreciable distortion. 
The fovea and optic disc provide all the landmarks nec­
essary to orient the planar stage coordinates with respect 
to our spherical coordinate system. All that needs to be 
done is to wrap the rectangular belt around the sphere. 
First, we estimate the diameter of the retinal sphere by 
measuring the outer diameter of the eye, and the thickness 
of the sclera. The (x, y) coordinates can then be scaled from 
mm (as measured by the microscope vernier) to degrees of 
arclength (as measured on the unit sphere). They can then 
be considered to be two sides of a right spherical triangle. 
The (A, </J) coordinates are straightforward to calculate from 
this triangle. 

This calculation correctly maps all points in the belt 
(including the belt's version of the keypoints) onto the 
sphere. However, it provides only a very gross estimate 
of the position of a point in either of the caps. 

In order to position a cap point, we use an iterative 
relaxation process. In the planar stage coordinates, we 
calculate the distance between the cap point and each of 
the key points in that cap. After mapping to the sphere, 
we discard the key points associated with the cap, and look 
at the corresponding key points in the belt. These points 
have been correctly positioned on the sphere. We measure 
the (great circle) directions and distances between the cap 
point and each key point . Of course, the distances will 
be different than those measured in the plane. By taking 
the vector sum of these differences, and moving the cap 
point (on the sphere) until this sum approaches zero, we 
find a point on the sphere which minimizes our placement 
error. The process is observed to converge in some 10-30 
iterations. 
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It is very important to properly weight the effect of 
individual key points. On the one hand, each key point 
provides some information about the proper placement of 
a particular point. On the other hand, key points which 
are very far away are less reliable, primarily because the 
warping is likely to be very non-linear over large distances. 

Giving each key point equal weight results in obvious, 
gross errors. Weighting each key point by the inverse of the 
(planar) distance to the point to be placed is significantly 
better, but still produces an occasional misplacement. In­
verse square distance is currently in use, and appears to 
appropriately balance the contribution of each key point to 
the final placement. 

After this mapping, we have the original data points 
positioned in our canonical spherical coordinate system. 
See Figure 2. 

4. Triangulation 

Effective display of this data requires more than isolated 
data points. We would like to fit a surface to these points, 
and use that surface to provide estimates of the measured 
quantities everywhere on the retina. A first step in this 
direction is to tesselate the sphere with triangular patches, 
using the data points as vertices. 

The data points are connected into a triangular net by 
projecting them back into the plane and computing local 

. equiangular triangulation of the projected points, which is 
the completion of the Delaunay tesselation (Sibson, 1978). 
Given the relatively small size of our data (typically 200 
points), we directly calculate the equiangular triangulation. 

The projection to the plane used is the equidistant 
(polar azimuthal equidistant) projection (Frisen, 1970) -
achieved by treating the spherical (A, cP) coordinates as po­

lar coordinates. This projection preserves radial distances 
(eccentricity), while stretching tangential distances. The 
surface of the sphere maps into a disc of radius 1r. The 
worst distortion is at the opposite pole, which maps to the 
circle surrounding this disc. 

In the plane, the Delaunay triangulation is optimal in 
the sense that the triangles are as compact as possible. 
When projected back to the sphere, this triangulation is 
very good near the fovea, and less so near the periphery. 
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5. Display 

The last problem is to display this spherical triangu­
lar mesh, with measured density values at each vertex. 
The customary method of presenting visual field data is 
to project to the plane (using the equidistant projection) 
and plot the density values as gray levels (or isodensity 
contours). It is easy to augment this display with gamma 
correction and false coloring (Sloan and Brown, 1979) . We 
have a choice of painting each triangle with an average in­
tensity value, or of interpolating the values measured at the 
vertices (see Figures 3-7). In either case, the triangulation 
developed above is exactly right for this projection. 

This display is similar to those that anatomists and 
ophthamologists are used to seeing, and have little trouble 
interpreting. We can also, of course, display the triangular 
mesh (colored as above) as a three dimensional, spherical 
surface. Going further, we can use the measured densities 
to deform the surface away from the sphere. Finally, we 
are beginning work on fitting a smooth surface to the data, 
using our triangular mesh as a control graph. The methods 
of (Farin, 1983) can be applied directly to our data. 

6. Discussion 

0sterberg's paper (1935) on the distribution of rods 
and cones in the human eye is one of the most widely 
cited studies in the vision literature. The findings most 
frequently cited and reprinted are the density of rods and 
cones along the horizontal meridian and the calculation of 
the total number of photoreceptors. His data on the overall 
topography of photoreceptors, illustrated by density maps 
(contours for rods, symbols for cones) are less well appreci­
ated, mainly because of the relatively less accessible nature 
of his maps. Our display techniques, applied to this data, 
provide much better intuiti~n about the gross topography, 
and have pointed out deficiencies in his sampling scheme. 

For example, look at lo'igure 6, which shows the central 
80 of 0sterberg's eye. Notice that he sampled very finely 

along the 00 meridian, but much more coarsely in other 
directions. When this sampling is displayed directly, it gives 
a distorted picture of the shape of the density map. If one 
assumes that the map is radially symmetric, then a better­
looking density map could be constructed (by duplicating 
the 00 points), but this "better-looking" picture would be 
more a product of the assumption than of the measured 
data. By comparision, look at Figure 7, which shows the 
same central 80 of a more recent eye. 

Vision Interface '86 



- 388 -

7. References 

1. Curcio, C.A., D. Meyers, and K.R. Sloan, Jr. (in prepa­
ration) computer methods for reconstuction, display, 
and analysis of whole mounts: applications to human 
photoreceptor topography. 

2. Drasdo, N. and C.W. Fowler (1974) Non-linear projec­
tion of the retinal maps in a wide-angle schematic eye. 
Br. J . Ophthalm. 47: 609-613. 

3. Farin, G. (1983) Smooth Interpolation to Scattered 3D 
Data. in Surfaces in CAGD, ed. Robert E. Barhhill and 
Wolfgang Bohm, North-Holland Publishing Company, 
Amsterdam, pp. 43-63. 

4. Frisen, L. (1970) The cartographic deformations of the 
visual field. Ophthalmologica 161:38-54. 

5. Graham, R. L. (1972) An Efficient Algorithm For De­
termining The Convex Hull Of A Finite Planar Set. 
Information Processing Letters 1: pp. 132-133. 

. 6. 0sterberg, G.A. (1935) Topography of the layer of rods 
and cones in the human retina. Acto Ophthalm 13 
Suppl. 5 pp. 1-102. 

7. Sibson, R. (1978) Locally Equiangular Triangulation. 
The Computer Journal 21:3 pp. 243-245. 

8. Stone, J. (1981) The whole mount handbook. Sydney: 
Maitland. 

9. Sloan, K.R. and C.M. Brown (1979) Color map tech­
niques. CG&IP 10, 296-316. 

Figure 1. the three-piece dissection. The belt is roughly 
rectangular, and can be positioned on the sphere using the 
fovea and optic disc as landmarks. The inferior (superior) 
cap is positioned relative to the belt by means of key points 
which can be located in both the belt and the cap. 
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Figure 2. Sample points from a typical reconstruction, 
displayed using the polar azimuthal equidistant projection. 

Figure 4. A rod map from a different eye, with the 
triangles shaded according to the average density at each 
vertex. 

Figure 6. The central 80 of 0sterberg's cone density 
data. Note the anisotropic sampling, and the "kite-shaped" 
pattern. 
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Figure 3. A display of 0sterberg's rod density data, 
smooth shaded (in the plane) and false colored. 

Figure 5. The same rod map as in Figure 4, displayed 
smooth shaded. 

Figure 7. The central 80 of one of our recent eyes . 
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