
- 37 -

PORTRAY - AN IMAGE SYNTHESIS SYSTEM 

Darwyn R. Peachey 

Department of Computational Science 
University of Saskatchewan 

Saskatoon, Canada 

ABSTRACT 

PORTRAY is an image synthesis system which uses ray 
tracing to produce realistic images of three-dimensional 
scenes. Scenes are described to PORTRAY in a high-level 
description language. The basic geometric modelling 
technique is constructive solid geometry using primitive solids 
bounded by planes and quadrics. A variety of optical 
characteristics and phenomena may be specified. The scene 
description language allows the user to define object classes 
which may be used as if they were built-in primitives. 
PORTRAY uses a number of teshniques, including a novel 
technique exploiting bounding vofume coherence, to improve 
its ray tracing performance. PORTRAY is supported by an 
array of image manipulation tools which share a common 
image storage format. 

KEYWORDS : bounding volume coherence, constructive 
solid geometry, illumination models, image synthesis, ray 
tracing. 

1. Introduction 

PORTRA Y is an image synthesis system which generates 
realistic pictures of three-dimensional scenes. Scenes are 
described to PORTRAY using a high-level scene description 
language (SDL). The scene description is processed by a 
scene. compiler called "PRCOMP". PRCOMP produces a 
file which describes the scene in a lower-level language. This 
intermediate file is read by the rendering program, simply 
called "PORTRAY", which uses ray tracing to produce an 
image of the scene. Figure 1 illustrates the structure of the 
system. 

Figure 1 

Graphics Interface '86 

The PORTRAY image synthesis system is implemented in the 
C programming language, and runs under UNIX on V AX, 
Sun, and Pyramid computers. 

This paper describes the geometric and optical modelling 
techniques used in PORTRAY, the scene description 
language, the processes of scene compilation and rendering, 
and the image format and image manipulation tools used with 
PORTRAY. 

2. Scene Description Language 

The SDL is a critical part of the PORTRAY system, since it 
determines the ease with which a user of the system can 
model the objects he wants in a given scene. With a particular 
SDL, some scenes may be impossible to describe, and many 
more scenes may be impractical to describe. The PORTRAY 
SDL incorporates a powerful geometric modelling technique 
and a variety of optical modelling techniques to give the user 
a large amount of descriptive power [1]. 

2.1 Geometric Modelling 

The shapes of objects are described to PORTRAY by means 
of constructive solid geometry (CSG). CSG descriptions are 
expressions involving Boolean combinations of primitive 
solids. PORTRAY uses spheres, cones, cylinders, and cubes 
as primitive solids. These primitives have quadric and planar 
surfaces which make the problem of determining the 
intersection between a ray and the primitive quite simple. 
Primitives may be moved to arbitrary locations and rotated 
and scaled as desired. Unequal scaling may be used, for 
example, to turn a sphere into an ellipsoid, or a cube into an 
arbitrary rectangular block. 

Primitive solids are combined using regularized set operators 
[2], namely union, intersection, and subtraction. The 
combination of two solids is guaranteed to be another well
defined solid. Any two CSG expressions can be combined 
using any of the three operators to obtain another CSG 
expression. Quite elaborate objects may easily be constructed 
in this way (see Figure 2) . 

The use of solid modelling instead of surface modelling 
entails some additional cost. To ray trace a solid consisting of 
a combination of primitive solids, we must first find the 
intersections between a given ray and each of the primitive 
solids. The resulting lists of intersections are then merged in a 

Vision Interface '86 



- 38 -

way which depends on the semantics of the CSG operator. In 
general, we must find all intersections between a ray and the 
object, even though we only use the intersection nearest to the 
eye in most cases. This is because more distant intersections 
may affect the outcome of a merge. Ray tracing of surface 
models usually only requires that we find the nearest 
intersection between the ray and each surface. However, the 
additional cost of ray tracing solid models is justified by the 
geometric modelling power and simplicity of CSG. Solid 
modelling is also advantageous for simulating optical 
phenomena which involve light passing through the body of a 
solid. 

Although the three CSG operators are inherently binary 
operators which take exactly two operand expressions. the 
PORTRAY SDL allows the use of "m-ary" (associative) 
union and intersection operations as a notational convenience. 
This reduces the need for the user to fully parenthesize 
complex descriptions to explicitly indicate the operands of 
every operator. 

There is nothing sacred about the particular set of four 
primitive solids which are used by PORlRAY. In fact, the 
programs are designed so that a new primitive can be added 
simply by programming routines to find intersections, normal 
vectors, and texture coordinates for the new primitive, and by 
adding a line to a single table which links the new routines 
into the rest of the system. In future, primitives may be added 
to PORTRAY to more easily describe irregular, natural 
objects. CSG with simple quadric primitives is an effective 
means of describing most man-made objects, bllt the great 
complexity of natural objects would be modelled better by 
primitives such as fractal surfaces. 

2.2 Optical Modelling 

Shape is only one aspect of an object which must be modelled 
by an image synthesis system. We Ilse the term " optical 
modelling" to refer to the other attributes of an object (color, 
texture, reflectance, transmittance, etc.) which determine how 
a ray of light interacts with the object. PORTRAY provides a 
wide variety of optical modelling techniques. 

One of the most basic optical characteristics is color. The 
PORTRAY user may specify colors using an English-like 
scheme which is a simplified version of the color naming 
system (CNS) described in [3] , or more precisely in terms of 
hue, saturation, and value. Both the CNS and HSV color 
models are generally believed to be easier for people to use 
than the RGB color model which POR TRA Y uses for its 
internal computations. 

The "shininess" attribute is used to specify the reflectance of 
a surface. The user may specify shininess in a pseudo-English 
fashion, using the keywords SHINIEST, SHINIER, SHINY, 
DULL, DULLER, and DULLEST. Alternatively, the 
reflectance of a surface may be specified numerically. The 
"smoothness" attribute controls the size of specular 
highlights which appear on a surface. A shiny smooth surface 
has smaller, sharper highlights than a shiny rough surface. 
The optical model simulates smoothness variations by 
controlling the parameter m in the Beckman function that 
determines the directional distribution of surface microfacets 
in the Cook-Torrance reflection model [4] . Ex.tremely smooth 

Graphics Interface '86 

surfaces (specified as SMOOTHEST by the user) have ray 
traced reflections and transmissions. 

Transmission and refraction of light through objects is 
controlled by the "transparency" attribute. The user may 
specify the index of refraction and a light scattering factor for 
each transparent object. The light scattering factor is 
expressed as a distance which a li'ght ray would have to travel 
through the material in order to be reduced to one-half its 
original brightness. The relative contribution of the reflected 
and transmitted rays at an interface between transparent 
materials is determined using the Fresnel equations of 
physical optics. Figure 3 is an image of a scene containing a 
wine glass, which illustrates the use of reflection and 
refraction. If the index of refraction is specified as FAKE, 
PORTRAY allows rays striking the surface to be transmitted 
straight through without. refraction. 

The "pure" attribute is used to distinguish between composite 
materials such as plastics, where the color of highlights 
depends only on the color of incident light, and pure materials 
such as metals, where the color of highlights is influenced by 
the body color of the material. 

The "paint" attribute is used to specify a variety of texturing 
techniques. For each texture, the user specifies a built-in 
texture function and a texture color. PORTRAY interpolates 
between the normal object color and the paint color according 
to the texture function. Some of the tex.ture functions make 
use of disk files of textural information. In such cases, the 
user specifies the texture file by name. Texture files are stored 
in the same format as the images produced by PORlRA Y (see 
section 5) and PORTRAY may use several texture files during 
the rendering of a single scene. The scene depicted in Figure 
4 makes use of nine texture functions and seven different 
texture files. 

PORTRA Y has been used to experiment with a new texturing 
technique called "solid texturing" [5] . Solid texture 
functions proved to be easy to add to the library of built-in 
texture functions. The left and right spindles in Figure 5 show 
the application of two of these solid texture functions_ 

2_3 SDL Statements 

A scene description in PORTRAY SDL consists of a sequence 
of statements. There are several types of statements, which 
are described in the following paragraphs. 

CAMERA, TARGET, and FOCAL LENGTH statements 
specify the position, orientation, and focal length of the 
camera which is simulated by ray tracing. Since 35 mm 
cameras are popular and familiar, the simulated camera is 
designed so that the focal lengths of the lenses used with a 35 
mm camera can be used in the FOCAL LENGTH statement to 
obtain similar effects. 

OBJECT statements specify the CSG expressions and optical 
attributes which describe the objects in the scene. 

LIGHT, AMBIENT, and BACKGROUND statements specify 
the intensity, color, position, and type of light sources, and the 
color of the infinitely large background sphere which 
surrounds the scene. A direct light source may be specified as 
a point source, a beam of parallel rays from a given direction, 
or a focused spotlight with a particular concentration, 

Vision Interface '86 



- 39 -

Figure 2 Figure 3 

Figure 4 Figure 5 

Note: All images were originally in color. 

Figure 6 

Graphics Interface '86 Vision Interface '86 



- 4,0 -

direction, and solid angle [6]. The user may also indicate 
whether or not each light source should cast shadows . 

The FOG statement specifies atmospheric attenuation of light 
rays. Rays are faded toward the background col or as an 
exponential function of the distance the ray travels. The FOG 
statement can be used to simulate day or night fog, underwater 
conditions , haze, or aerial perspective, depending on the 
background color and fog density. The image shown in 
Figure 6 was made using the FOG statement with a light gray 
background color. This image is otherwise identical to Figure 
2. 

The INCLUDE statement allows scene descriptions to be 
broken up into several files, with a main description including 
sub-files as necessary. This makes management of complex 
scenes easier, particularly in cases like animation, where 
object descriptions may be the same from scene to scene, with 
only the positions and orientations changed. 

The CLASS statement allows a particular object description to 
be given a class name. Instances of the class may then be 
used as if they were built-in primitives. Stating it differently, 
the primitives are really built-in classes. A class instance may 
be scaled, rotated, positioned, colored, textured, etc. and may 
also be used as part of another class or object description . 

The following is the SDL description used to produce the 
image in Figure 3: 

r Description of the wine glass ... "' 
Object is (smoothest shiniest trans(1 000,1 .65) 

white cone at (0 ,100,0) scale (60.5,200,200) 
rotate (0,0,-90) + 
smoothest shiniest trans(1 000,1.65) 
white cylinder at (0,0,0) scale (40.5,200,200) 
rotate(0,0,90» + 
(smoothest shiniest trans(1 000,1.65) 
white cylinder at (0,350,0) scale (300,20,20) 
rotate (0,0, -90) + 
(smoothest shiniest trans(1 000,1.65) 
white cone at (0,300,0) 
scale (400,300,300) rotate (0 ,0,90) -
smoothest shiniest trans(1 000,1.65) 
white cone at (0,320,0) 
scale (400,300,300) rotate (0 ,0,90))) 

r ... and of the wine itself ... "' 
Object is smoothest shiniest trans(1 000,1 .36) red cone 

at (0,320,0) scale (280,210,210) rotate (0,0,90) 

r Description of the backdrop ... "' 
Object is white block at (0,-20,0) scale (2000 ,20,2000) 
Object is white block at (0,2000,-2000) scale (2000,2000,20) 

r Lighting and camera parameters ... "' 
Light spot (1,62) intensity 0.8 white 

at (0,1000,-100) toward (0,0,-2000) 
Ambient intensity 0.30 white 
Background light gray 
Camera at (0, 1500, 4000) target at (0, 400, 0) 

3. Scene Compilation 

The PRCOMP program uses a LALR(I ) parser, generated by 
the UNIX Y ACC utility, to parse the SDL description and 
build internal CSG expression trees for object and class 
descriptions. All instances of user-defined classes are 

Graphics Interface '86 

expanded by substituting the class definition in place of the 
instance. The intermediate file output by PRCOMP is entirely 
in terms of built-in primitives. PRCOMP also expands m-ary 
union and intersection operators into balanced trees of binary 
union and intersection operators . Analysis shows that ray 
tracing these balanced binary trees is considerably more 
efficient than ray tracing the m-ary operators directly 
(logarithmic versus linear· time complexity). 

PRCOMP uses the location, rotation, and scaling information 
provided in the SDL description to generate a transformation 
matrix for each primitive (leaf node) in the output CSG 
description. PORTRAY uses this matrix to transfonn rays 
from the scene coordinate system to the local coordinate 
system of a particular pnmlllve during intersection 
calculations (see section 4). PRCOMP also generates the 
inverse of this matrix, which is used to transform normal 
vectors from the local coordinate system to the scene 
coordinate system. 

At its discretion, PRCOMP may generate a bounding volume 
for a given primitive instance or CSG expression subtree. 
PORTRA Y uses such bounding volumes in order to make 
quick comparisons between a ray and a CSG expression so 
that detailed intersection calculations need not be done for 
rays which obviously do not pass near the object described by 
the expression. At present, the bounding volumes are boxes 
aligned with the axes of the scene coordinate system, but 
some experimentation with other bounding volumes [7] is 
planned. 

4. Rendering 

PORTRA Y renders an image of a compiled scene description 
by tracing a ray from each image pixel to the scene [8] . These 
primary rays may generate subsidiary rays upon striking a 
surface which reflects and/or refracts the ray. This process 
may continue recursively to produce a tree of rays, whose 
depth is controlled by an adaptive scheme [9] and by a 
"hard" depth limit. Additional shadow rays are traced from 
each surface intersection to each shadow-casting light source, 
in order to determine whether or not light from the source 
reaches the intersection point on the surface. 

Anti-aliasing is perfonned by adaptively supersampling when 
adjacent pixel values differ sharply [8]. This anti-aliasing 
technique may overlook very small details that "fall between 
the cracks", but is much less expensive than supersampling 
throughout the image. Recently introduced stochastic 
sampling techniques [10,11] are being considered as an 
alternative anti-aliasing scheme for PORTRA Y. 

Ray tracing a CSG expression [12] involves a postorder 
traversal of the CSG expression tree. At each internal 
(operator) node of the tree, lists of intersections from the left 
and right subtrees are merged according to the semantics of 
the operator (union, intersection, or subtraction). When the 
root of a particular expression tree (object description) is 
reached, the intersection nearest the ray origin is chosen as the 
intersection between the ray and the object. In some cases, for 
example, when FAKE (non-refractive) transparency is 
specified, PORTRAY uses subsequent intersections in the 
intersection list to render an object. The earth hologram 
display in Figure 4 is one application of fake transparency. 

Vision Interface '86 



- 41 -

As mentioned earlier, intersections between a ray and a 
primitive are performed by transforming the ray from scene 
space to a local coordinate system in which the primitive has a 
simple, canonical form. For example, the spherical primitive 
is always a unit sphere centered at (0,0,0) in its local 
coordinate system, even though it might be positioned at 
(1000,2000,3000) and stretched into an ellipsoid by unequal 
scaling in the SOL description. It is straightforward to convert 
a ray into the local coordinate system using the transformation 
matrix supplied by PRCOMP. However, it is more difficult to 
convert the surface normal vector at the intersection point 
from the local coordinate system back to the scene coordinate 
system. The problem arises because angles are not preserved 
by unequal scaling, so that a vector perpendicular to the 
surface in the local coordinate system may no longer be 
perpendicular to the surface after the transformation. 
PORTRAY avoids this problem by generating three points in 
the plane tangent to the surface, transforming these points 
from the local coordinate system to the scene coordinate 
system, and then reconstructing the tangent plane and the 
normal vector in the scene coordinate system. 

PORTRAY uses a number of techniques to improve the 
performance of the rendering process. In its simplest form, 
ray tracing is very much a "brute force" technique, since it 
exhaustively computes all intersections between every ray and 
every object in the scene. PRCOMP computes a bounding 
rectangle in image space for each object, so that PORTRAY 
knows which pixels may contain a direct image of a given 
object. PORTRAY then uses the bounding rectangles to 
efficiently determine which objects can be intersected by a 
primary ray from a given pixel. Other objects are excluded 
from consideration during the tracing of that primary ray. 

The benefits of the bounding rectangles are limited to primary 
rays. PORTRAY also uses bounding boxes generated by 
PRCOMP to quickly exclude objects from consideration in 
tracing any given ray. If a ray does nol intersect the bounding 
box of an object, then the ray cannot intersect the object at all. 
Checking a ray against a bounding box is only slightly faster 
than generating the intersections between a ray and a 
primitive. However, bounding boxes really payoff for objects 
with complex CSG descriptions. A single bounding box test 
may exclude from consideration an entire tree or subtree, thus 
saving dozens or hundreds of primitive intersection 
calculations. 

Testing a ray against a bounding box is fruitful only if the test 
proves negative and the object within the box is excluded 
from further consideration. If the bounding box test is 
positive, the program must go on to intersect the ray with the 
object, so the box test is a wasted operation. (This is why it is 
desirable for the bounding volume to fit the object as tightly as 
possible [7] .) PORTRAY exploits a property which we call 
bounding volume coherence to reduce the number of positive 
bounding box tests. Bounding volume coherence is based on 
the observation that rays traced from adjacent pixels follow 
similar paths, even down through subsidiary levels of the ray 
tree. Thus, there is a high probability that a bounding box test 
which was positive for the previous ray tree will be positive 
for the current ray tree. When a bounding box tests positive, 
PORTRAY flags it with a value indicating the ray tree 
position of the ray being traced. On the next ray, flagged 

Graphlca Interface '86 

bounding boxes are assumed to test posItIve at the same 
position in the ray tree, and the bounding box test is not 
performed. There is a performance penalty if the assumption 
is false, but the appearance of the image is unaffected. 

PORTRAY ray traces about 10% faster when bounding 
volume coherence is used. This is particularly interesting, 
since an attempt to make more general use of ray coherence, 
reported in [13], indicated that no performance benefit was 
obtained. 

PORTRAY generated the image in Figure 3 at 512x512 
resolution in 70 minutes on a Pyramid 90x, tracing a total of 
606 thousand rays. The more complex image in Figure 4 was 
rendered at the same resolution in 324 minutes. Fewer rays 
(502 thousand) we~ traced in this case, because fewer pixels 
contained reflective or refractive objects. 

5. Image Format and Tools 

At a conceptual level, PORTRAY images are rectangular 
arrays of pixels. Each image consists of several UNIX files, 
including an image description file (IDF). The IDF is a file of 
ASCII text which describes the image and each of the other 
files which form part of the image. Table 1 lists the various 
files which may exist as part of an image. A particular image 
need not contain all of these files. The height, width, and 
depth of each of the image data files is described in the IDF; 
the data files themselves contain only the pixel intensity 
information. Data files may optionally be run-length encoded 
to reduce storage cost. 

The multiple-file image representation was chosen to provide 
a high degree of flexibility in the manipulation of image data. 
For example, an RGB image with 24 bits per pixel (bpp) 
would be stored in three separate files, each with 8 bpp. The 
red, green, and blue data could be accessed separately or as a 
single RGB image. The format of the IDF reinforces this 
flexibility, since the IDF can be modified with an ordinary text 
editor when special handling is needed. Thus, it is not always 
necessary to build a new image manipulation tool, even when 
unforeseen needs arise. 

Table 1: Image File Types 
Filename Suffix Description of Contents 

idf image description file 
red . red image data 
gm green image data 
blu blue image data 
cvg pixel coverage data [15] 
gry gray-scale image data 
lut color lookup table (LUT) 
enc image encoded for LUT 
log history of image (text) 

Several tools have been developed to process PORTRAY 
images, including the following: 

• iencode, which generates an 8 bpp image using a given 
color lookup table, from a 24 bpp RGB image, using the 
algorithm described by Heckbert [14]. 

Vlalon Interface '86 



• ilut, which generates a color lookup table containing 
colors which are appropriate for displaying a given 24 bpp 
RGB image. The lookup table is generated from a color 
histogram of the RGB image, using the "median cut" 
color space subdivision algorithm, also described in [14]. 
ilut and iencode are used to prepare a 24 bpp image for 
display on an 8 bpp color graphics system, such as an 
AED terminal or a Sun workstation. PORTRAY generates 
all images in 24 bpp RGB form. 

• icomp, which combines images according to a specified 
composition operator [15]. Figure 4 is an example of a 
composite image produced using icomp. The starfield 
visible through the space station windows was separately 
generated, and then composited with the POR1RA Y 
image of the space station and planet 

• traditional image processing algorithms, including 
histogram equalization and gamma correction, are used to 
process texture images and to adjust contrast, brightness, 
and calor of images prior to photographing them with a 
film recorder. 

6. Conclusions 

PORTRAY is a flexible image synthesis system which derives 
much of its power from a high-level scene description 

language. Constructive solid geometry is an excellent, easy
to-use geometric modelling technique for man-made objects, 
but is less appropriate for natural objects. Ray tracing is an 
expensive rendering technique, but is well suited to CSG 
models and is capable of simulating a wide variety of optical 
phenomena. PORTRAY incorporates various techniques for 
speeding up the ray tracing of CSG models, including a novel 
technique for exploiting bounding volume coherence. To 
further speed up ray tracing, we are planning to experiment 
with parallel ray tracing algorithms on an experimental 16-
processor INMOS Transputer system, being constructed at the 
University of Saskatchewan. 

Acknowledgements 

This research could not have been performed without the 
support and facilities of the Department of Computational 
Science and the University of Saskatchewan. 

References 

[1] Peachey, D.R., "PORTRAY - An Image Synthesis 
System for Realistic Computer Graphics", Research 
Report 84-18, Dept. of Compu tational Science, 
University of Saskatchewan, December, 1984. 

Graphics Interface '86 

- 42 -

[2] Tilove, R.B., "Set Membership Classification: A 
Unified Approach to Geometric Intersecti()n 
Problems", IEEE Trans. Computers C-29, 10 (Dct. 
1980),874-883. 

[3] Berk, T., Brownston, L. and Kaufman, A., •• A New 
Color-Naming System for Graphics Languages", 
IEEE Computer Graphics & Applications 2, 3 (May 
1982),37-44. 

[4] Cook, R.L. and Torrance, K.E., HA Reflection Model 
for Computer Graphics", ACM Trans. Graphics 1, 1 
(Jan. 1982),7-24. 

[5] Peachey, D.R., "Solid Texturing of Complex 
Surfaces", Computer Graphics 19; 3 (July 1985), 
Proceedings of SIGGRAPH '85, 279-286. 

[6] Warn, D.R., "Lighting Controls for Synthetic 
Images", Computer Graphics 17, 3 (July 1983), 
Proceedings of SIGGRAPH '83, 13-21. 

[7] Weghorst, H., Hooper, G., and Greenberg, I).P., 
"Improved Computational Methods for Ray Tracing", 

ACM Trans. Graphics 3, 1 (Jan. 1984),52-69. 

[8] Whitted, T., "An Improved Illumination Model for 
Shaded Display" , Comm. ACM 23,6, 343-349. 

[9] Hall, R.A. and Greenberg, D.P., "A Testbed for 
Realistic Image Synthesis", IEEE Computer Graphics 
& Applications 3, 8 (Nov. 1983), 10·20. 

[10] Cook, R.L., Porter, T., and Carpenter, L., "Distributed 
Ray Tracing", Computer Graphics 18,3 (July 1984), 
Proceedings of SIGGRAPH '84, 137-145. 

[11] Dippe, M.A.Z. and Wold, E.H., •• Antialiasing Through 
Stochastic Sampling", Computer Graphics 19. 3 (July 
1985), Proceedings of SIGGRAPH '85, 69-78. 

[12] Roth, S.D., "Ray Casting for Modeling Solids", 
Computer Graphics & Image Processing 18 (1982), 
109-144. 

[13] Speer, L.R., DeRose, T.D. , and Barsky, RA., "A 
Theoretical and Empirical Analysis of Coherent Ray
Tracing", Proceedings of Graphics Interface '85, 1-8. 

[14] Heckbert, P.S., "Color Image Quantization for Frame 
Buffer Display" , Computer Graphics 16, 3 (July 
1982), Proceedings of SIGGRAPH '82, 297-307. 

[15] Porter, T. and Duff, T., • 'Compositing Digital 
Images", Computer Graphics 18, 3 (July 1984), 
Proceedings of SIGGRAPH '84, 253-259. 

Vision Interface '86 


