
- 43 -

An Adapti"e Subdi"ision by Sliding Boundary Surfaces

for Fast Ray Tracing

Keij i NEMOTO and Takao OMACH!

C&C Systems Research Laboratories, NEC Corporation

4-1-1 Miyazaki, Miyamae-ku, Kawasaki, Kanagawa, 213 Japan

(044) 855-1111

ABSTRACT

This paper presents an adaptive subdivision
algorithm for fast ray tracing implemented on
parallel architecture using a three dimensional
computer array. The object space is divided into
several subregions and boundary surfaces for the
subregions are adaptively slid to redistribute
loads of the computers uniformly. Since the shape
of the subregions is preserved as orthogonal
parallelepiped the redistribution overhead can be
kept small. The algorithm is quite simple but can
avoid load concentration to a particular computer.

Simulation resul ts reveal that the adaptive
space subdivision algorithm by sliding boundary
surfaces reduces the computing time to 3/4-1/5 as
much as that for the conventional space subdivision
algorithm with no redistribution, which reduces the
computing time almost proportionally to the number
of the computers.

KEYWORDS: sliding, adaptive, parallel, ray tracing,
subdivision, boundary.

Introduction

Among general image synthesis methods
available today, ray tracing1 is probably the most
realistic technique, because it models a wide range
of natural phenomena. However, it requires a large
amount of computing time. The calculation for ray
object intersections requires 15-95 percent of the
total computing time1.

Various approaches have been attempted toward
speeding up of ray tracing. Previous research
reports are categorized as follows:

(1) Mul ticomputer system by image
subdi v ision2: An image to be generated is divided
into several subimages and each of the computers
generates one or more sub images independently.

(2) Vectorization3: Since the ray-object
intersection calculations belonging to the
different pixels and the intensities of the

Graphics Interface '86

different pixels are calculated completely
independently, the calculations can be vectorized.

(3) Space subdivision 4 ,5,6: The three
dimensional space of a scene to be rendered is
divided into subregions. The rays which are cast
into each subregion are tested for intersection
with the objects contained within the subregion.
Data on rays that exit a subregion are passed to
the appropriate neighbor.

The first two ways do not reduce the number of
ray-object intersection cal culations, but speed up
the intersection process itself, by parallel
processing and specialized hardware.

On the other hand, the space subdivision
method can reduce the number of calculations,
because it tests rays for intersection only with
the objects contained within the subregions that
rays pass through, instead of all obje c ts in the
entire scene.

Recent work has applied a parallel
architecture to this space subdivision algOrithm4.
This architecture uses a three dimensional computer
array, each computer of which is assigned to one or
more subregions. The shapes of the subregions are
"general cubes", which are general hexahedron, and
the shapes are adaptively controlled to realize a
roughly uniform load distribution. Thi s algorithm
has the following problems:

1) Load is transferred among the subregions by
moving corners of a general cube indicating the
subregio~ The moving operation to distribute the
load is quite difficult because moving one corner
affects the loads of the eight subregions holding
it in common. The problem is how to select the
corner to be moved and how to determine th e
direction and the length to move the corner in a
three dimensional space in order to distribute the
loads of the eight subregions a t once.

2) When rays exit th e s u bre g i o n, th e
neighboring subregion that r ays a re pa s sed to i s
determined by boundary-int e r s e c ti on calcul a tion.
However, boundary-intersection testing for general
cubes is a significant overhead.

3) When a corner of the subregion is moved, aQ

Vlalon Interface '86

- 44 -

appropriate part of the object descriptions
contained within the subregion are determined and
pertinent data is passed to the neighboring
subregions. This operation is as expensive as
boundary-intersection testing.

A moving corner method would greatly affect
the performance of this algorithm. However, the
problem how to move the corner to distribute the
load cannot be easily solved because of the
difficulties mentioned above.

This paper presents a new approach to sol ve
the problems above. The shapes of the subregions
are limited to brthogonal parallelepipeds, and load
is transferred by sliding boundary surfaces of the
subregions.

The following sections will discuss a simple
subdivision algorithm for parallel architecture and
gi ve simul ation resul ts.

Nev Space Subdivision Algoritt.

The essential algorithm characteristics are:

,) The three dimensional space of a scene to
be rendered is divided into several subregions by
planes perpendicular to a coordinate axis(Fig.').
Positions xi' Yi' and zi of the div i ding planes
have integer coordi na te val ues. Thus, each
subregion is an orthogonal parallelepiped which
consists of several unit cubes. A unit cube is a
cube whose size is , and whose edges are parallel
to each coordinate axis.

2) Each computer of three dimensional
computer array is assigned to one subregion and
maintains only the ob j ect descriptions contained
wi thin that subregion.

3) Each computer has 6 connections to
neighboring computers in order to pass messages

Y

z

"- "- "-""'~
f',. "' "' "- "'-

~
i'- "'- "- "'-, "'- "'-
" \ , z.

" ~

),
Yi

. 'T
Un~t c ube

"-
"'-

)

x .
~

~

64 subre g i ons

r<- subregi
-'"

on

x

Figure 1 . Th r ee dimensional space division

Graphics Intertace '88

(Fig.2), which consist of information about rays
and redistribution. Each computer also has a
direct connection to a host computer and to a frame
buffer. Messages regarding object descriptions are
directly sent from a host computer to all computers
as broadcast messages. Each computer determines
which object is contained within its own subregion
and preserves only its description.

4) Initial rays from the eye point are created
by all computers in parallel. An image to be
generated is div ided into subimages and each
computer is assigned to one of the subimages. Each
computer creates the initial rays which pass
through its own subimage. Then each initial ray is
transferred to the appropriate subregion where the
initial ray starts. After each of the rays has
reached to the appropriate subregion, it is tested
for intersection with those objects within the
subregion.

5) Rays that exit the subregion are passed to
neighboring subregions via connection between
computers. The three dimensional digital line6 is
generated for efficient tracing of rays. The three
dimensional digital line is an array of unit cubes
pierced by the ray (Fig.3).

To determine the the array of unit cubes, two
DDAs (Digital Differential Analyzers)6 generate
two digital lines synchronously which are the
projections of the three dimensional digi tal line
to two coordi na te pI ane s. The error v al ues of two
DDAs are compared to decide the correct direction
of the three dimensional digital line (Fig.4).

Since the subregion consists of several uni t
cubes and the three dimensional digital line is
generated only by addition of integer values, rays
can rapidly traverse the subregion and also enter
the appropriate neighbori ng subregion by using the
three dimensional digital line.

6) For redistribution, the boundary surface
between two subregions is sI id by one uni t and a

ne ighboring
compu ter

Figure 2 . 6 connect ions f r om a compute r

Vision Intertace '86

- 45 -

part of the load for one subregion is transferred
to the other subregion; The following section gives
more details about sliding boundary surfaces.

Sliding Boundary Surfaces

The adaptive subdivision by sI iding boundary
surfaces is as follows:

1) At the beginning, one of three coordinates
axes is set as a driving axis (e.g. x axis in
Fig.5). Boundary surfaces for the subregion
perpendicular to the driving axis are slid by one
uni t along the dri v ing axi s to transfer the load
from one subregion to a neigh boring subregion.

The subregion load is related to the number of
the objects contained within the subregion.

Figure 3. Three dimensional digital line

z

Error

Unit cube

y

x

Figure 4. Error values of two DDAs

Graphic. Interface '86

Therefore, the axis along which the numbers of the
objects in the subregions are most varied is set
as a driving axis.

2) Each computer counts the running time while
the computer actually proceSdes the rays . Each
computer also counts the waiting time while the
computer has no ray to be processed and is waiting
the rays passed from the neighboring computers.
The ratio (running time) / (waiting time) is
defined as a parameter to indicate the load for the
subregion.

3) For redistribution, loads for two
subregions on both sides of the boundary surface
are compared by the computers assigned to these two
subregions at intervals of the given time. If the
load for one subregion is lower than that for the
other subregion and the lower load is under the
given threshold value, the boundary surface is slid

1 unit A boundary surfacp

I~
1\..&

z~
x

New surface region Object

Driving axis

Figure 5. Sliding a boundary surface

Ray data message flow

A boundary surface
)

Driving axis

/ Subregion

Figure 6. Boundary surfaces discr epancy
(Two dimensional view

Vlalon Interface '88

- 46 -

by one unit along the driving axis from the lower
load su bregion to the hi gher load su bregion. By
this operation, a part of the subregion with the
higher load (called the transferred region) is
cut away and added to the lower one.
Simultaneously, the object descriptions contained
within the transferred region are transferred.
Thus, the load is simply and efficiently
transferred. These operations are locally executed
by the computers assigned to these two subregions.

4) As each boundary surface is slid for the
redistribution, some discrepancy in the boundary
surface occurs (Fig.6). However, since the
connections between computers are fixed, there
could be a case wherein a computer has no direct
connection to another computer assigned to the
neighboring subregion. In this case, data
concerning the rays that exit the subregion cannot
be directly passed to the appropriate computer
assigned to the appropriate subregion, so that
data on rays are passed to the direct connected
computer which is assigned to the subregion located
on the same driving axis with the appropriate
subregion (shown by a dotted line in Fig.6).
After that, data on rays are passed along the
driving axis where they can finally reach the
appropriate computer.

Essential characteristics of the method are as
follows:

1) For redistribution, only the loads for two
subregions on both sides of the boundary surface
perpendicular to the driving axis are compared.
Thus, the redistribution between the subregions is
easi I y determined.

2) The shape of the subregions is preserved as
an orthogonal parallelepiped. Since boundary
surfaces are rectangul ar and perpendicul ar to
coordinate axes, boundary-intersection testing is a
small overhead.

3) Only the boundary surfaces perpendicular to
the fixed driving axis are slid along the axis by
one unit and the object descriptions contained
within that transferred region are transferred. So
the redistribution does not cause a significant
overhead.

4) Since the given threshold value stops the
sliding between the highly loaded subregions, a
thrashing whereby the object descriptions are
repeatedly moved between the highly loaded
computers is avoided. A thrashing between the
lightly loaded subregions does not matter to the
total performance.

5) Because of the simpl ici ty of this method,
it can be easily implemented on a three dimensional
computer array.

Graphics Interface '86

Results

The proposed adaptive subdivision algorithm by
sliding boundary surfaces is simulated to evaluate
the redistribution effect. The simulation results
for redistribution are compared with that for no
redistribution when the load is concentrated to
some particular computers.

Beforehand, the effect of the conventional
space subdivision algorithm without redistribution
is evaluated by simulation.

~ Simulation Methods

The algorithms have been written in a C
program and tes ted on a Vax-l1 1780 under the t1 nix
operating system. A parallel process simulator7

has been crea ted to ev al ua te the al gori t.hIns. The
simulator virtually causes the computers to run in
parallel and counts the running time and the
waiting time of each computer to calculate the
load. The simulator also counts the computing t~e
for generating an image by parallel architecture.

Objects are only spheres. These spheres are
described by their center poSition, radius, color,
and reflecting parameters and these parameters are
generated as uniform random numbers. Thererore, the
objects are located in a space at rando~

L. ~ Subdivision ~

First, the effect of the conventional space
subdivision algorithm is evaluated.

Figure 7 shows the computing time of the space
subdivision algorithm without redistributi~n.

Result A shows the computing time when only a
single computer is assigned to all subregions. The
algorithm implemented on a single computer reduce$
the computing time on the order of S2/3 (s = the
number of the subregions).

Result B shows the computing time when each
computer of three dimensional computer array is
assigned to one subregion but initial rays are
crea ted by the computer whose subregion con tains
the eye point. The difference between results A
and B means the parallel processing effect using
the three dimensional computer array.

Result C shows the computing time ~hen the
initial rays are also created by all computers in
parallel. This space subdivision method with the
parallel initial ray creation reduces the computing
time on the order of S1.5. The difference betlieen
results Band C means the parallel creati~n ef~ect
of the initial rays. The parallel initial ray
creation is effective when S is large.

Figure 8 shows the computing time when t he
number of objects is changed in the case of result
C in Fig. 7. The computing time can be reduces on
almost the same order even if the number of the
objects is changed.

Vision Interface '86

10
4

10
3

tJ
Q)
Ul

Q)

I'i
• .-t

10
2,

CJ'
<:

. .-t,
::l
0.
I'i
0
tJ

10
Q)

..c:
E-<

1

The number of the subregions

Figure 7. Space subdivision effect

10
2

0 - no redistribution

• - r edistributi on

()
Q)
Ul

Q)

I'i
. .-t,

CJ'
10

<:,
::l g.
0
()

Q)

..c:
E-<

1

51 2 subregions

0 . 25 0 .50 0 . 75 1. 0

(the o b j ect r eg i on) / entire space

Figure 9. Redistribution e ff ec t f o r 1000 objects

Graphics Interface '86

- 47 -

u
Q)
Ul

Q)

I'i
. .-t,

CJ'
<:

. .-t,
::l g.
0
()

Q)
..c:
E-<

10
4

X - 4000 objects
0 - 3000 objects
J). - 2000 objects

103 .-1000 objects
tJ
Q)
Ul

Q)

I'i
. .-t,

CJ' 10
2

<:
. .-t,
::l g.
0
()

Q) 10 .<:
E-<

1

1

The number of the s ubregions

Figure 8. Space subdivision effect .for
several numbers of the objects

10
2 O - no redistribution

• - redistribution

64 subr egions

10

•

1 512 s u br egions

0.25 0 .50 0.75 1.0

(the objec t region) / (ent i re space·

Fisure 10 . Redistribu tion effect for 2000 objects

Vision Interface '86

- 48 -

~ Proposed Redistribution ~

In order to examine the redistribution effect,
the region where all objects are located is reduced
from the entire space to quart er of the entire
space. The smaller region the obj ects are located
in, the more load is concentrated to s ome
particular subregions.

Figures 9 and 10 show the comparisons between
the computing time for redistribution by sliding
boundary surfaces and that for no redistribution.
The horizontal axes of Figs. 9 and 10 means the
vol ume ratio of the region where all obj ects are
located against the entire space .

When the objects are uniformly located in a
space at random, the loads have been almost
uniformly distributed initially so that the
redistribution does not work so effectively. Even
so, the redistribution can reduce the computing
time to 3/4 as much as that for no redistribution.

The more concentrated the objects and the
loads are to a part of the subregions, the greater
the redistribution effect becomes. The effect
becomes up to 1/5 when the objects are concentrated
to the quarter of the entire space. these resul ts
mean that the redistribution by sliding boundary
surfaces has an equivalent effect to distribute the
concentrated objects to the entire space.

Moreover, Figs. 9 and 10 show almost same
redistribution effect, so that not the number of
the objects but the objects location in the space
controls the redistribution effect.

Conclusions

This paper has presented a simple adaptive
subdivision algorithm implemented on the parallel
architecture using a three dimensional computer
array. Boundary surfaces of the subregions are
adaptively slid to redistribute loads of the
computers uniformly. Since the shape of the
subregions is preserved as orthogonal
parallelepiped the redistribution overhead can be
kept small. By using this algorithm, the computing
time is reduced as much as 3/4-1/5 of that for no
redistribution.

Graphics Interface '86

Acknovledgllent

The authors would like to express appreCi ation
for continuous enco uragemen t from K.Niwa. They
also acknowledge the significant contributions of
S.Fukui and H. Ka naz a w a.

Ref'erences

1. T.Whitted, "An Improv ed Illumination Models for
Shaded Display," Comm. ACM, Vol.23, No.6, '80,
pp.343-349.

2. H.Nishimura, H.Ohno, T.Kawata, LShirakawa, and
K.Omuira, "L-INKS-l: A Parallel Pipelined
Multimicrocomputer System for Image Creation,"
Proc. of the 10th Symp. on Computer Architecture,
SIGARCH, '83, pp.387-394.

3. D.Plunkett and M.Bailey, "The Vectorization of a
Ray-Tracing Algorithm for Improved Execution
Speed, " IEEE CG&A, Aug. '85, pp.52-60.

4. M.Dippe and J.Swensen, "An Adaptive Sul>division
Algorithm and Parallel Architecture for Realistic
Image SyntheSiS," Computer GraphiCS, Vol.18, No.3,
Jul. '84, pp.149-158.

5. A.Glassner, "Space Subdi vision for E'ast Ray
Tracing," IEEE CG&A, Oct. '84, pp.15-22.

6. A.Fu jimoto and K.Iwata, "Accelerated Ray
TraCing," Proc. of CG Tokyo '85, Tl-2.

7. C.Binding, . "Cheap Concurre ncy in C," SIGPLAN
Notices, Vol.20, No.9, Sep. '85 .

Vision Interface '86

