
REAL-TIME 4D ANIMATION ON A 3D GRAPHICS WORKSTATION 1

Clifford M. Beshers
Steven K. Feiner

Department of Computer Science
Columbia University
New York, NY 10027

Beshers@CS.Columbia.Edu
Feiner@CS.Columbia.Edu

Abstract

We describe the general structure of a real-time four di
mensional animation system and its implementation on a
3D graphics workstation with hardware support for trans
formations. Our focus is not on four dimensional geome
try, but on techniques of exploiting the graphics hardware
and software for this application. Real-time performance
is achieved by employing the hardware matrix multiplier
to do 4D modeling transformations. Gouraud shading is
used to perform 4D depth cueing by relating the color in
tensity to a function of the fourth coordinate. An O(n)
software clipper is described that clips the 4D object be
tween near and far clipping hyperplanes. A constant time
method employing color map manipulation and 4D depth
cueing is described as a useful high-speed approximation to
the hyperplane clipping.

KEYWORDS: Four dimensional transformations, real
time animation, scientific visualization.

Introduction

Mathematicians have long been fascinated with the ge
ometry of higher dimensional objects and spaces, attempt
ing to understand and analyze extremely complicated and
non-intuitive structures. Computer graphics provides an
excellent means. for exploring these objects visually. As
early as 1967, N 011 used a pen plotter was used to create
images of hypercubes [NoI67]. In the mid 1970's, Banchoff
[Ban78] explored four dimensional geometry in real-time
using BUGS , a multiprocessor, microprogrammable vector
graphics system with special microcode for 4D transfor
mations [vDSH74] . With raster graphics, solid, shaded im
ages became possible, but at the sacrifice of real-time speed
[FSB82]. Modern raster workstations have again achieved
real-time performance, now with three dimensional shaded
images, and this paper describes how to exploit the archi-

l This work supported in part by DARPA grant # N00039-84-C-0165
and an equipment grant from Hewlett-Packard Labs - AI University
Grants Program.

tectl1l'e of typical 3D workstations to regain the real-time
animation of four dimensional objects.

We describe the general structure and implementation
of our four dimensional animation system and provide a
small catalog of graphics techniques for exploring four di
mensions . 2

Euclidean Four Space

A great deal i3 3ugge3ted by analogy, but while
analogy i3 often a U3eful guide and 3timulu3,
it provide3 no proof3, and may often lead one
a3tray if not 3upplemented by logical rea30ning.
[Som58, p. 2]

We begin by giving a brief description of four dimen
sional space and the hyperobjects residing there, relying
heavily on analogy between two and three dimensions to
motivate the jump from three to four, despite the warning
above. More elegant and fuller descriptions can be found in
[Abb52]' [Gar77] and [Dew86] . Our description is intended
to clarify the mathematics and organization used in the
implementation of this program. For more complete math
ematical descriptions see [Cox69], [Som58] and [Nol67], the
last providing an especially useful and concise description
of the mathematics required to implement four dimensional
animation.

The mathematics of two and three dimensions general
izes to n dimensions quite simply, assuming a fourth axis
perpendicular to each of the familiar three axes of three di
mensions. One can imagine an infinity of parallel 3-spaces
or hyperplanes all perpendicular to this fourth axis, just as
we imagine an infinity of planes parallel to the XY plane
and perpendicular to the Z axis. P oints residing in 4-space
are naturally represented as ordered 4- tuples, (x,y,z,w).
It is important to realize that we are considering a fourth
spatial dimension, not time as a fourth dimension, although
it is interesting to consider a 3D object changing over time
as if it were 4D .

2We have recently learned that Banchoff has independently devel
oped a similar system [Ban87J.

Graphics Interface '88

Because any object of dimension n cannot fit into a
space of dimension n - 1 (e.g., a cube cannot fit in the
plane without being flatt ened), we need to reduce a 4D
object to a 3D one using projection. Similarly, we need
to further reduce the dimension of the 3D object by pro
jecting it onto a 2-dimensional screen for viewing. The
simplest projection to consider is orthographic. Given the
plane z = c as the image plane, the 3D to 2D orthographic
projection of any point (x, y , z) is (x, y , c) . Similarly, given
a projection hyperplane defined by the equation w = c, the
4D to 3D orthographic projection of any point (x,y,z,w)
is (x,y,z,c). Notice that, in terms of a computer imple
mentation of orthographic projection, we need only ignore
the last coordinate.

Perspective projection from 4D to 3D is also possible.
Given a 4D eye point on the w axis a t distance d from the
origin and a projection hyperplane w = c, the projection
pi of a point P = (x,y,z,w) is given by

pl= ((d- C)X, (d-c)y, (d-C)Z,w)
d - w d-w d-w

[NoI67].

This provides a limited viewing model that is sufficient for
most purposes: the 4D eyepoint lies on the w axis; the
viewing hyperplane is perpendicular to the w axis; paral
lel projection is a lways orthographic with the direction of
projection coincident with the w axis; the perspective view
volume is the 4D analog of a right pyramid.

We proceed to the modeling transformations, rotation,
scaling and translation, in four d imensions. Just as in 3-
space, four dimensional rotations occur in a plane. Four
axes taken two at a t ime gives six planes of rotation, namely
XY, YZ , XZ , XW , YW , and ZW. The rotation matrix
M for any pair of axes a, b has entries: M[i, i] = 1 except
for M[a, a] = M[b, b] = cos(B) and M[i, j] = 0 except for
M[a , b] = -M[b,a] = sin(B), i -# j. For example, a matrix
for the YW rotation has the form

o
cos(B)

o
-sin(B)

o
o
1
o

Si~(B) 1 o .
cos(B)

Scaling matrices are just like 3D scaling matrices, with en
tries along the diagonal

(

SX

5= 0
o
o

o
Sy
o
o

o
o
S z
o

Translation is also simply generalized, but requires a 5x5
matrix

T~(~
0 0 0

n 1 0 0
0 1 0
0 0 1

Tx Ty Tz Tw

These modeling transformations are followed by projec-
tion from 4-space to 3-space, producing a 3D object, what

2

we will call the intermediate image, which can then be ren
dered in the standard fashion with 3D modeling and view
ing transformations. As the object is rotated in 4-space,
this 3D intermediate object continually changes shape, just
as the projection of a rotating cube on a plane continually
changes, and it is partly this constant change that makes
these objects so baffling to view. It is important to notice
that these 3D modeling transformations can be thought of
as image transformations of the intermediate object, i.e. ,
fixing the 4D and changing the 3D modeling transforma
tions produces different views of a static 3D object. Image
rotations can be immensely enlightening, especially because
these objects a re unfamiliar and one often misinterprets
their structure with a single view.

In summary, the 4D rendering pipeline consists of the
following stages:

• P erform rotation , scaling and translation (modeling
transforms) in 4-space.

• Project the object into 3-space to obtain the interme
diate image.

• Apply any 3D modeling transforms.

• Apply 3D viewing transforms.

Transformation System

Our implementation has been geared for the increas
ingly common high performance 3D graphics workstations
[Cla82], [ST86]. The important feature of these machines is
the hardware matrix multiplier and an associated transfor
mation stack of 4x4 homogeneous matrices. The top matrix
on the stack can be overwritten, or pre- or post-multiplied
by another matrix. In normal use, a ll graphics operations
such as move(x, y , z) and draw(x, y, z) are sent to the hard
ware pipeline, where all coordinates are multiplied by the
top matrix, and then passed a long to clippers , scalers, and
finally to the scan conversion system which draws the prim
itives into the frame buffer. A good graphics library will
make it possible for an application to multiply points by the
top matrix without sending them down the pipeline. The
result is that the programmer has access to a high speed
4x4 matrix multiplier, which can multiply two matrices to
gether and transform a la rge number of 4-coordinate points
very quickly.

Recall that in three dimensions, rotation and scaling can
be described with only a 3x 3 matrix, but that translation
and perspective projection require the fourth row and col
umn of a 4x4 homogeneous matrix. To get translation in
4-space and perspective projection to 3-space with only ma
trix multiplication we would need a 5x5 matrix. If we are
willing to sacrifice 4D t ranslation and agree to perform 4D
to 3D perspective projection in software, then the remain
ing operations can be performed entirely with the hardware
multiplier.

Graphics Interface 'SS

Thus, the program performs all transformations and
projections in a two stage process. First, a 4x4 matrix de
scribing rotation and scaling in Euclidean 4-space is placed
on the matrix stack, and all 4D vertices are multiplied by
that matrix, producing a new set of coordinates that repre
sents the object transformed in 4-space. This accomplishes
the 4D modeling transformations described earlier.

Next, the vertices are projected from 4-space to 3-space,
using either orthographic or perspective projection, pro
ducing the intermediate image. No work need be done for
orthographic projection because of the simple 4D viewing
model; the fourth coordinate is simply ignored. The re
sulting set of vertices, along with the edge and polygon
descriptions, now describes a 3D object. A standard 3D
modeling and viewing transformation is then placed on the
stack, and the vertices and polygons sent down the pipeline
to be drawn, using the pipeline as it was intended.

Shading

If a workstation has hardware support for shaded poly
gons, the sticky question arises of how to shade these hyper
objects. One approach to shading hyperobjects is to view
the intermediate image as a 3D object shaded by a light
source. While this allows standard rendering algorithms
to be used, the surface normals have to be continually re
computed, because the intermediate image is continually
deforming as the hyperobject rotates in four dimensions.

Furthermore, in 4-space a hyperplane, and not a poly
gon, determines a unique perpendicular vector, so the sur
face normal of a polygon is not well-defined. Carey, et.
al., [CBC87] take the interesting approach of shading hy
perfaces with a 4D light source, taking advantage of the
fact that the geometrical criteria used in simple lighting
models, i.e., surface normals and inner-product of vectors,
generalize to hyperfaces and 4D vectors . .

We have adopted a different shading rule that provides
a more direct visual correlation to the fourth dimension
and which is better suited to these workstations, namely
4D depth cueing. While standard depth cueing relates the
color intensity to the z value of a particular pixel, 4D depth
cueing simply relates the intensity to the w value. This is
most effective with Gouraud shading, mapping the w coor
dinate of each vertex into a colormap value. For example,
if all 4D coordinates lie in the range [wmin, wmax] at all
times, then the expression (w(::,,;~:i~~n) maps all w values
into the range [0,1], suitable for a color value. With a
mono tonically decreasing intensity ramp, points closer in
4-space appear brighter while points further away appear
dimmer. As objects rotate in 4-space, this technique can
help the viewer track the action. See Figures 1 and 2 for 4D
depth-cued images of hypercubes under orthographic and
perspective projection respectively.

This is simply an image space variant of a well known
technique for clarifying the fourth dimension. Banchoff
[Ban78] describes a film with "water-level slicing", where
a hyperplane intersection is in one color, everything above

3

the hyperplane is another, and everything below is a third
color.

Hyperplane Clipping

Just as slicing a 3D object with a plane produces sur
prising cross sections, so does slicing a hyperobject. Rather
than finding the exact intersection of a 4D object with
an infinitesimally thin hyperplane, we have implemented
"near" and "far" clipping hyperplanes, analogous to those
used commonly in 3D graphics. In general, an n dimen
sional space is divided into two halves by an n - 1 dimen
sional space. In four dimensions a hyperplane, a single
3-space, divides 4-space into two halves, just as a plane
divides 3-space and a line divides a plane. Using two hy
perplanes perpendicular to the w axis, corresponding to the
equations w = near and w = far, allows for an efficient
implementation. Given two points Po = (xo, Yo, Zo, wo) and
PI = (XI,YI,ZI,WI), the line segment POPI can be written

P = (1 - a) Po + aPI , O~a~l.

The choice of clipping hyperplanes allows the visibility of
points to be determined simply with w ~ near and w ~
far. If the endpoints are on opposite sides of a hyperplane
w = k, then the value of a for the intersection point is
defined by

(k - wo)
a = -;,,---.:..:.,-

(WI-WO)

This is an adaptation of a standard parametric form used in
many clipping algorithms, e.g., Sutherland and Hodgman
[SH74].

We have implemented a simple software 4D "depth"
clipper, that clips to the hyperplanes described above. Its
performance turns out to be quite satisfactory. The clip
per is derived from the Sutherland and Hodgman polygon
clipping, chosen for its simplicity and extensibility [SH74].

The original algorithm clips against only one limiting
plane at a time, doing each in turn, in a simple pipelining
system; our version clips against one limiting hyperplane at
a time. Thus, the modification is straightforward, replacing
the clipping tests and intersection equations with the 4D
equations described above. Furthermore, clipping against
more general sets of hyperplanes can be implemented easily
by adapting the tests and adding more stages to the clipping
pipeline.

This clipper can be used in two different places in the
rendering pipeline, either before or after the 4D model
ing transformations. Although the two configurations are
equivalent in that every image produced by one can be pro
duced by the other, different effects occur as the object
rotates or the clipping hyperplanes are moved.

If the clipper is placed before the 4D modeling transfor
mation, the object will only be clipped in one orientation in
4-space, equivalent to clipping an object only with planes
perpendicular to one axis in the object's coordinate system.
To obtain slicing along an arbitrary axis, it is necessary to

Graphics Interface 'SS

perform a one-time 4D rotation of the object to align the
clipping axis with the w-axis. The resulting vertex set can
be used instead of the original one to explore the effect of
clipping hyperplanes along that axis.

Alternatively, when the object is rotated in 4-space be
fore clipping, the clipping planes remain in a single orien
tation and the object is continually sliced in different ways,
just as a rotating 3D object might be clipped in different
ways by the traditional near and far clipping planes. See
Figures 3, 4, and 5 for three different clippings of a hyper
cube.

The clipper is reasonably efficient, requiring 8 adds and
4 multiplies for every clipped point, and only one com
parison for unclipped points. However, some performance
degradation is seen, since the algorithm is O(n) in terms
of the number of vertices. We return to 4D depth cueing
to find an efficient, constant-time method to approximate
slicing. If the graphics architecture implements Gouraud
shading by interpolating color map indices, then 4D depth
cueing ensures that all pixels in a common hyperplane have
the same color index. Note that the converse is not true,
i.e., not all pixels with the same color index come from ex
actly the same hyperplane, but from a (hopefully) small
range of hyperplanes along the clipping axis . Highlighting
a particular color entry or band of entries causes a particu
lar "thick" slice to become noticeable, although the parts of
the object not in that band will still be visible. Often high
lighting a band of entries will be necessary due to aliasing
problems. For example, if the color indices range from 0 to
100, a polygon that covers this range but scans to a width
of 10 pixels will have approximately a ten color value jump
from pixel to pixel.

Thus, col or map manipulation can be a useful tool, espe
cially if employed as a "previewer" to locate quickly a par
t icular slice before employing the more expensive clipping
algorithm. See Figure 7 for a 4D object with a highlighted
hyperplane slice.

Hidden Surfaces and Hollow Polygons

Contrary to our expectations, filled and shaded poly
gons with hidden surface removal had severe drawbacks
when used to view hyperobjects. Two major problems oc
curred, first that 4D datasets often clash with the Z-buffer
a lgorithm, and second that much of the interesting struc
ture of the projection of a 4D object is obscured by the
hidden surface elimination.

The works tat ions we use all employ a hardware Z-buffer
for fast hidden surface removal. Though simple to use, the
Z-buffer a lgorithm can alias badly when two or more poly
gons lie approximately in the same plane. Unfortunately,
polygons tha t are disjoint in 4-space often project to poly
gons that a re nearly identical in 3-space, so this problem
occurs frequently. Short of adding checks to eliminate co
planar polygons, we have found no real-time solution to this
problem.

The second problem, that of decreased visibility, is es-

4

pecially true for polytopes such as the hypercube; what was
a fascinating line drawing becomes a dull set of quadrilat
erals. Hyperplane clipping provides one means of explor
ing the interior of the 3D projection, but obviously this
precludes viewing the whole structure. To retain the nice
shading that comes with filled polygons, and yet not ob
scure the internal structure so markedly, we employ the
simple technique of cutting the center out of the polygons.

For convex polygons, scaling down by s about the cen
ter of mass and then subtracting the result from the orig
inal polygon leaves a border of some width, if 0 < s < l.
This hollow polygon is easily described by a sequence of
quadrilaterals (Pi, PHI , P/+I , PI) for all adjacent vertices i
and i + 1, including the first and last pair. Adjusting the
parameter s controls the border width, giving wire-frame
at one extreme and solid polygons at the other. Interme
diate values of s give shaded images so that both 3D and
4D depth perception is easy, and yet all facets of the object
can be seen, as in Figures 1 and 2. If the workstation sup
ports smooth-shaded lines, a wire-frame rendering can also
have depth cueing. While this method is simpler than the
hollow polygons, it retains the inherent ambiguity in wire
frame drawings that the depth ordering of two crossing lines
is hard to determine visually.

Other Techniques

We mention briefly other graphics techniques which are
useful in exploring four dimensions, but which are well doc
umented elsewhere. Transparent polygons implemented by
stippling, if available on the workstation, could be used
instead of hollow polygons for adding clarity, but a finite
number of stippling patterns limits the usefulness of this
technique for complicated objects .

Stereo pairs, calculated from the intermediate image,
can aid a viewers comprehension tremendously, especially
when coupled with prodigious use of the 3D image transfor
mations; these projections often have surprising character
istics when rotated in 3-space. Implementations on slower
workstations can capitalize on this by generating several
frames of 3D transformations for each 4D transformation,
each additional 3D frame requiring only one pass through
the hardware pipeline instead of two. This results in better
response time and smoother animation.

Applications

Besides considering the regular polytopes, such as the
hypercube pictured in Figures 1-5, we have also explored
polytopes of importance in Information-Based Complexity
Theory, one of which is pictured in Figures 6-8 .

This 4D object, which represents a unit ball in a Ba
nach space, is used as a model of computational complexity.
Specifically, the "radius" of 3D slices of this object , defined
here as a geometrical measure of polygons and polyhedra,
provide a measure of "adaption". This object has the rare

Graphics Interface '88

property that the radius is larger for slices at two opposite
extremities than for a slice from the middle; no object with
a lower dimension has this property [KN88].

Figure 6 shows a 4D depth cued version of this unit balL
Figure 7 shows another view with a hyperplane intersection
highlighted by color map manipulation. Figure 8 shows one
interesting slice of this ball.

Work in progress involves studying a space-time model
of animal and human skull growth using 3D skull data
changing over time. The goal is to explore the geometry
of growth curves and structure; the better the understand
ing of the growth process, the better techniques such as
reconstructive surgery can be made [SM87].

Implementation

We have implemented this 4D animation system on the
Hewlett-Packard 9000 Series 300 workstations with 98710
and 98721 hardware graphics accelerators, as well as the Sil
icon Graphics IRIS 1400 and 2400 workstations. Response
for small objects, e.g., a hypercube, can be as fast as 10
frames per second, while larger objects with approximately
400 vertices can slow to a second or more per frame.

Conclusions

We have shown that real-time 4D animation is possi
ble using real-time 3D graphics workstations. As expected,
the implementation has proven useful in exploring both old
and new 4D polytopes and surfaces, functioning as a math
ematical educational tool, and as a research tool. Beyond
simply studying pure geometry, we are now applying it to
scientific data.

Acknowledgements

We would like to extend our thanks to Tom Rosenfeld
who co-authored the original implementation, Linda AI
tounian and David Radvany who have worked on the most
recent version, and to Mark Kon for his interest and appli
cations.

References

[Abb52] Edwin A. Abbott. Flatland. Dover Publications,
Inc., New York, 1952.

[Ban78] Thomas F. Banchoff. Computer animation and
the geometry of surfaces in 3- and 4-space.
In Proceeding3 of the International Congre33 of
Mathematician3 , pages 1005-1013, 1978.

[Ban87] Thomas F . Banchoff. Using computer graphics
to explore the generation of surfaces in four di
mensional space. Discovering the Fourth Dimen
sion, published by Prime Computer, Inc. , 1987.

5

[CBC87] Scott A. Carey, Robert P. Burton, and Dou
glas M. Camp bell. Shades of a higher dimen
sion. Computer Graphic3 World, 93-94, October
1987.

[Cla82] James H. Clark. The geometry engine: A VLSI
geometry system for graphics. Computer Graph
iC3, 16(3):127- 133, July 1982.

[Cox69] H.S.M. Coxeter. Introduction to Geometry.
John Wiley and Sons, Inc., New York, 2 edition,
1969.

[Dew86] A.K. Dewdney. Computer recreations. Scien
tific American, 14-23, April 1986.

[FSB82] Steven Feiner, David Salesin, and Thomas Ban
choff. Dial: A diagrammatic animation lan
guage. IEEE Computer Graphic3 and Applica
tion3, 43- 54, September 1982.

[Gar77] Martin Gardner. Mathematical Carnival, Chap
ter 4: Hypercube3. Vintage Books, New York,
1977.

[KN88] Mark Kon and Erich Novak. Bounds for the
adaption problem in complexity theory. Depart
ment of Mathematics, Boston University, 1988.

[NoI67] Michael A. Noll. A computer technique for dis
playing n-dimensional hyperobjects. Commu
nication3 of the A CM, 10(8):469-473, August
1967.

[SH74] Ivan E . Sutherland and Gary W. Hodgman.
Reentrant polygon clipping. Communication3 of
the ACM, 17(1) :32-42, January 1974.

[SM87] Richard Skalak and Melvin Moss. The analysis
of growth and form program project. 1987.

[Som58] D.M.Y. Sommerville. An Introduction to the Ge
ometry of N Dimen3ion3. Dover Publications,
Inc., New York, 1 edition, 1958.

[ST86] Roger W. Swanson and Larry J . Thayer. A
fast shaded-polygon renderer. In SIGGRAPH
'86 Proceeding3, publi3hed a3 Computer Graph
iC3, pages 95- 101, August 1986.

[vDSH74] A. van Dam, G. M. Stabler, and R . J . Harring
ton. Intelligent satellites for interactive graphics.
In Proceeding3 of the IEEE, pages 483-492, April
1974.

Graphics Interface '88

6

Figure 1 Figure 2

Figure 3 Figure 4

Graphics Interface '88

7

Figure 5 Figure 6

Figure 7 Figure 8

Graphics Interface '88

