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Abstract 

We describe the general structure of a real-time four di
mensional animation system and its implementation on a 
3D graphics workstation with hardware support for trans
formations. Our focus is not on four dimensional geome
try, but on techniques of exploiting the graphics hardware 
and software for this application. Real-time performance 
is achieved by employing the hardware matrix multiplier 
to do 4D modeling transformations. Gouraud shading is 
used to perform 4D depth cueing by relating the color in
tensity to a function of the fourth coordinate. An O(n) 
software clipper is described that clips the 4D object be
tween near and far clipping hyperplanes. A constant time 
method employing color map manipulation and 4D depth 
cueing is described as a useful high-speed approximation to 
the hyperplane clipping. 

KEYWORDS: Four dimensional transformations, real
time animation, scientific visualization. 

Introduction 

Mathematicians have long been fascinated with the ge
ometry of higher dimensional objects and spaces, attempt
ing to understand and analyze extremely complicated and 
non-intuitive structures. Computer graphics provides an 
excellent means. for exploring these objects visually. As 
early as 1967, N 011 used a pen plotter was used to create 
images of hypercubes [NoI67]. In the mid 1970's, Banchoff 
[Ban78] explored four dimensional geometry in real-time 
using BUGS , a multiprocessor, microprogrammable vector 
graphics system with special microcode for 4D transfor
mations [vDSH74] . With raster graphics, solid, shaded im
ages became possible, but at the sacrifice of real-time speed 
[FSB82]. Modern raster workstations have again achieved 
real-time performance, now with three dimensional shaded 
images, and this paper describes how to exploit the archi-

l This work supported in part by DARPA grant # N00039-84-C-0165 
and an equipment grant from Hewlett-Packard Labs - AI University 
Grants Program. 

tectl1l'e of typical 3D workstations to regain the real-time 
animation of four dimensional objects. 

We describe the general structure and implementation 
of our four dimensional animation system and provide a 
small catalog of graphics techniques for exploring four di
mensions . 2 

Euclidean Four Space 

A great deal i3 3ugge3ted by analogy, but while 
analogy i3 often a U3eful guide and 3timulu3, 
it provide3 no proof3, and may often lead one 
a3tray if not 3upplemented by logical rea30ning. 
[Som58, p. 2] 

We begin by giving a brief description of four dimen
sional space and the hyperobjects residing there, relying 
heavily on analogy between two and three dimensions to 
motivate the jump from three to four, despite the warning 
above. More elegant and fuller descriptions can be found in 
[Abb52]' [Gar77] and [Dew86] . Our description is intended 
to clarify the mathematics and organization used in the 
implementation of this program. For more complete math
ematical descriptions see [Cox69], [Som58] and [Nol67], the 
last providing an especially useful and concise description 
of the mathematics required to implement four dimensional 
animation. 

The mathematics of two and three dimensions general
izes to n dimensions quite simply, assuming a fourth axis 
perpendicular to each of the familiar three axes of three di
mensions. One can imagine an infinity of parallel 3-spaces 
or hyperplanes all perpendicular to this fourth axis, just as 
we imagine an infinity of planes parallel to the XY plane 
and perpendicular to the Z axis. P oints residing in 4-space 
are naturally represented as ordered 4- tuples, (x,y,z,w). 
It is important to realize that we are considering a fourth 
spatial dimension, not time as a fourth dimension, although 
it is interesting to consider a 3D object changing over time 
as if it were 4D . 

2We have recently learned that Banchoff has independently devel
oped a similar system [Ban87J. 
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Because any object of dimension n cannot fit into a 
space of dimension n - 1 (e.g., a cube cannot fit in the 
plane without being flatt ened), we need to reduce a 4D 
object to a 3D one using projection. Similarly, we need 
to further reduce the dimension of the 3D object by pro
jecting it onto a 2-dimensional screen for viewing. The 
simplest projection to consider is orthographic. Given the 
plane z = c as the image plane, the 3D to 2D orthographic 
projection of any point (x, y , z) is (x, y , c) . Similarly, given 
a projection hyperplane defined by the equation w = c, the 
4D to 3D orthographic projection of any point (x,y,z,w) 
is (x,y,z,c). Notice that, in terms of a computer imple
mentation of orthographic projection, we need only ignore 
the last coordinate. 

Perspective projection from 4D to 3D is also possible. 
Given a 4D eye point on the w axis a t distance d from the 
origin and a projection hyperplane w = c, the projection 
pi of a point P = (x,y,z,w) is given by 

pl= ((d- C)X, (d-c)y, (d-C)Z,w) 
d - w d-w d-w 

[NoI67]. 

This provides a limited viewing model that is sufficient for 
most purposes: the 4D eyepoint lies on the w axis; the 
viewing hyperplane is perpendicular to the w axis; paral
lel projection is a lways orthographic with the direction of 
projection coincident with the w axis; the perspective view 
volume is the 4D analog of a right pyramid. 

We proceed to the modeling transformations, rotation, 
scaling and translation, in four d imensions. Just as in 3-
space, four dimensional rotations occur in a plane. Four 
axes taken two at a t ime gives six planes of rotation, namely 
XY, YZ , XZ , XW , YW , and ZW. The rotation matrix 
M for any pair of axes a, b has entries: M[i, i] = 1 except 
for M[a, a] = M[b, b] = cos( B) and M[i, j] = 0 except for 
M[a , b] = -M[b,a] = sin(B), i -# j. For example, a matrix 
for the YW rotation has the form 

o 
cos(B) 

o 
-sin(B) 

o 
o 
1 
o 

Si~( B) 1 o . 
cos( B) 

Scaling matrices are just like 3D scaling matrices, with en
tries along the diagonal 

(

SX 

5= 0 
o 
o 

o 
Sy 
o 
o 

o 
o 
S z 
o 

Translation is also simply generalized, but requires a 5x5 
matrix 

T~(~ 
0 0 0 

n 1 0 0 
0 1 0 
0 0 1 

Tx Ty Tz Tw 

These modeling transformations are followed by projec-
tion from 4-space to 3-space, producing a 3D object, what 
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we will call the intermediate image, which can then be ren
dered in the standard fashion with 3D modeling and view
ing transformations. As the object is rotated in 4-space, 
this 3D intermediate object continually changes shape, just 
as the projection of a rotating cube on a plane continually 
changes, and it is partly this constant change that makes 
these objects so baffling to view. It is important to notice 
that these 3D modeling transformations can be thought of 
as image transformations of the intermediate object, i.e. , 
fixing the 4D and changing the 3D modeling transforma
tions produces different views of a static 3D object. Image 
rotations can be immensely enlightening, especially because 
these objects a re unfamiliar and one often misinterprets 
their structure with a single view. 

In summary, the 4D rendering pipeline consists of the 
following stages: 

• P erform rotation , scaling and translation (modeling 
transforms) in 4-space. 

• Project the object into 3-space to obtain the interme
diate image. 

• Apply any 3D modeling transforms. 

• Apply 3D viewing transforms. 

Transformation System 

Our implementation has been geared for the increas
ingly common high performance 3D graphics workstations 
[Cla82], [ST86]. The important feature of these machines is 
the hardware matrix multiplier and an associated transfor
mation stack of 4x4 homogeneous matrices. The top matrix 
on the stack can be overwritten, or pre- or post-multiplied 
by another matrix. In normal use, a ll graphics operations 
such as move(x, y , z) and draw(x, y, z) are sent to the hard
ware pipeline, where all coordinates are multiplied by the 
top matrix, and then passed a long to clippers , scalers, and 
finally to the scan conversion system which draws the prim
itives into the frame buffer. A good graphics library will 
make it possible for an application to multiply points by the 
top matrix without sending them down the pipeline. The 
result is that the programmer has access to a high speed 
4x4 matrix multiplier, which can multiply two matrices to
gether and transform a la rge number of 4-coordinate points 
very quickly. 

Recall that in three dimensions, rotation and scaling can 
be described with only a 3x 3 matrix, but that translation 
and perspective projection require the fourth row and col
umn of a 4x4 homogeneous matrix. To get translation in 
4-space and perspective projection to 3-space with only ma
trix multiplication we would need a 5x5 matrix. If we are 
willing to sacrifice 4D t ranslation and agree to perform 4D 
to 3D perspective projection in software, then the remain
ing operations can be performed entirely with the hardware 
multiplier. 
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Thus, the program performs all transformations and 
projections in a two stage process. First, a 4x4 matrix de
scribing rotation and scaling in Euclidean 4-space is placed 
on the matrix stack, and all 4D vertices are multiplied by 
that matrix, producing a new set of coordinates that repre
sents the object transformed in 4-space. This accomplishes 
the 4D modeling transformations described earlier. 

Next, the vertices are projected from 4-space to 3-space, 
using either orthographic or perspective projection, pro
ducing the intermediate image. No work need be done for 
orthographic projection because of the simple 4D viewing 
model; the fourth coordinate is simply ignored. The re
sulting set of vertices, along with the edge and polygon 
descriptions, now describes a 3D object. A standard 3D 
modeling and viewing transformation is then placed on the 
stack, and the vertices and polygons sent down the pipeline 
to be drawn, using the pipeline as it was intended. 

Shading 

If a workstation has hardware support for shaded poly
gons, the sticky question arises of how to shade these hyper
objects. One approach to shading hyperobjects is to view 
the intermediate image as a 3D object shaded by a light 
source. While this allows standard rendering algorithms 
to be used, the surface normals have to be continually re
computed, because the intermediate image is continually 
deforming as the hyperobject rotates in four dimensions. 

Furthermore, in 4-space a hyperplane, and not a poly
gon, determines a unique perpendicular vector, so the sur
face normal of a polygon is not well-defined. Carey, et. 
al., [CBC87] take the interesting approach of shading hy
perfaces with a 4D light source, taking advantage of the 
fact that the geometrical criteria used in simple lighting 
models, i.e., surface normals and inner-product of vectors, 
generalize to hyperfaces and 4D vectors . . 

We have adopted a different shading rule that provides 
a more direct visual correlation to the fourth dimension 
and which is better suited to these workstations, namely 
4D depth cueing. While standard depth cueing relates the 
color intensity to the z value of a particular pixel, 4D depth 
cueing simply relates the intensity to the w value. This is 
most effective with Gouraud shading, mapping the w coor
dinate of each vertex into a colormap value. For example, 
if all 4D coordinates lie in the range [wmin, wmax] at all 
times, then the expression (w(::,,;~:i~~n) maps all w values 
into the range [0,1], suitable for a color value. With a 
mono tonically decreasing intensity ramp, points closer in 
4-space appear brighter while points further away appear 
dimmer. As objects rotate in 4-space, this technique can 
help the viewer track the action. See Figures 1 and 2 for 4D 
depth-cued images of hypercubes under orthographic and 
perspective projection respectively. 

This is simply an image space variant of a well known 
technique for clarifying the fourth dimension. Banchoff 
[Ban78] describes a film with "water-level slicing", where 
a hyperplane intersection is in one color, everything above 
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the hyperplane is another, and everything below is a third 
color. 

Hyperplane Clipping 

Just as slicing a 3D object with a plane produces sur
prising cross sections, so does slicing a hyperobject. Rather 
than finding the exact intersection of a 4D object with 
an infinitesimally thin hyperplane, we have implemented 
"near" and "far" clipping hyperplanes, analogous to those 
used commonly in 3D graphics. In general, an n dimen
sional space is divided into two halves by an n - 1 dimen
sional space. In four dimensions a hyperplane, a single 
3-space, divides 4-space into two halves, just as a plane 
divides 3-space and a line divides a plane. Using two hy
perplanes perpendicular to the w axis, corresponding to the 
equations w = near and w = far, allows for an efficient 
implementation. Given two points Po = (xo, Yo, Zo, wo) and 
PI = (XI,YI,ZI,WI), the line segment POPI can be written 

P = (1 - a) Po + aPI , O~a~l. 

The choice of clipping hyperplanes allows the visibility of 
points to be determined simply with w ~ near and w ~ 
far. If the endpoints are on opposite sides of a hyperplane 
w = k, then the value of a for the intersection point is 
defined by 

(k - wo) 
a = -;,,---.:..:.,-

(WI-WO) 

This is an adaptation of a standard parametric form used in 
many clipping algorithms, e.g., Sutherland and Hodgman 
[SH74]. 

We have implemented a simple software 4D "depth" 
clipper, that clips to the hyperplanes described above. Its 
performance turns out to be quite satisfactory. The clip
per is derived from the Sutherland and Hodgman polygon 
clipping, chosen for its simplicity and extensibility [SH74]. 

The original algorithm clips against only one limiting 
plane at a time, doing each in turn, in a simple pipelining 
system; our version clips against one limiting hyperplane at 
a time. Thus, the modification is straightforward, replacing 
the clipping tests and intersection equations with the 4D 
equations described above. Furthermore, clipping against 
more general sets of hyperplanes can be implemented easily 
by adapting the tests and adding more stages to the clipping 
pipeline. 

This clipper can be used in two different places in the 
rendering pipeline, either before or after the 4D model
ing transformations. Although the two configurations are 
equivalent in that every image produced by one can be pro
duced by the other, different effects occur as the object 
rotates or the clipping hyperplanes are moved. 

If the clipper is placed before the 4D modeling transfor
mation, the object will only be clipped in one orientation in 
4-space, equivalent to clipping an object only with planes 
perpendicular to one axis in the object's coordinate system. 
To obtain slicing along an arbitrary axis, it is necessary to 
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perform a one-time 4D rotation of the object to align the 
clipping axis with the w-axis. The resulting vertex set can 
be used instead of the original one to explore the effect of 
clipping hyperplanes along that axis. 

Alternatively, when the object is rotated in 4-space be
fore clipping, the clipping planes remain in a single orien
tation and the object is continually sliced in different ways, 
just as a rotating 3D object might be clipped in different 
ways by the traditional near and far clipping planes. See 
Figures 3, 4, and 5 for three different clippings of a hyper
cube. 

The clipper is reasonably efficient, requiring 8 adds and 
4 multiplies for every clipped point, and only one com
parison for unclipped points. However, some performance 
degradation is seen, since the algorithm is O(n) in terms 
of the number of vertices. We return to 4D depth cueing 
to find an efficient, constant-time method to approximate 
slicing. If the graphics architecture implements Gouraud 
shading by interpolating color map indices, then 4D depth 
cueing ensures that all pixels in a common hyperplane have 
the same color index. Note that the converse is not true, 
i.e., not all pixels with the same color index come from ex
actly the same hyperplane, but from a (hopefully) small 
range of hyperplanes along the clipping axis . Highlighting 
a particular color entry or band of entries causes a particu
lar "thick" slice to become noticeable, although the parts of 
the object not in that band will still be visible. Often high
lighting a band of entries will be necessary due to aliasing 
problems. For example, if the color indices range from 0 to 
100, a polygon that covers this range but scans to a width 
of 10 pixels will have approximately a ten color value jump 
from pixel to pixel. 

Thus, col or map manipulation can be a useful tool, espe
cially if employed as a "previewer" to locate quickly a par
t icular slice before employing the more expensive clipping 
algorithm. See Figure 7 for a 4D object with a highlighted 
hyperplane slice. 

Hidden Surfaces and Hollow Polygons 

Contrary to our expectations, filled and shaded poly
gons with hidden surface removal had severe drawbacks 
when used to view hyperobjects. Two major problems oc
curred, first that 4D datasets often clash with the Z-buffer 
a lgorithm, and second that much of the interesting struc
ture of the projection of a 4D object is obscured by the 
hidden surface elimination. 

The works tat ions we use all employ a hardware Z-buffer 
for fast hidden surface removal. Though simple to use, the 
Z-buffer a lgorithm can alias badly when two or more poly
gons lie approximately in the same plane. Unfortunately, 
polygons tha t are disjoint in 4-space often project to poly
gons that a re nearly identical in 3-space, so this problem 
occurs frequently. Short of adding checks to eliminate co
planar polygons, we have found no real-time solution to this 
problem. 

The second problem, that of decreased visibility, is es-
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pecially true for polytopes such as the hypercube; what was 
a fascinating line drawing becomes a dull set of quadrilat
erals. Hyperplane clipping provides one means of explor
ing the interior of the 3D projection, but obviously this 
precludes viewing the whole structure. To retain the nice 
shading that comes with filled polygons, and yet not ob
scure the internal structure so markedly, we employ the 
simple technique of cutting the center out of the polygons. 

For convex polygons, scaling down by s about the cen
ter of mass and then subtracting the result from the orig
inal polygon leaves a border of some width, if 0 < s < l. 
This hollow polygon is easily described by a sequence of 
quadrilaterals (Pi, PHI , P/+I , PI) for all adjacent vertices i 
and i + 1, including the first and last pair. Adjusting the 
parameter s controls the border width, giving wire-frame 
at one extreme and solid polygons at the other. Interme
diate values of s give shaded images so that both 3D and 
4D depth perception is easy, and yet all facets of the object 
can be seen, as in Figures 1 and 2. If the workstation sup
ports smooth-shaded lines, a wire-frame rendering can also 
have depth cueing. While this method is simpler than the 
hollow polygons, it retains the inherent ambiguity in wire
frame drawings that the depth ordering of two crossing lines 
is hard to determine visually. 

Other Techniques 

We mention briefly other graphics techniques which are 
useful in exploring four dimensions, but which are well doc
umented elsewhere. Transparent polygons implemented by 
stippling, if available on the workstation, could be used 
instead of hollow polygons for adding clarity, but a finite 
number of stippling patterns limits the usefulness of this 
technique for complicated objects . 

Stereo pairs, calculated from the intermediate image, 
can aid a viewers comprehension tremendously, especially 
when coupled with prodigious use of the 3D image transfor
mations; these projections often have surprising character
istics when rotated in 3-space. Implementations on slower 
workstations can capitalize on this by generating several 
frames of 3D transformations for each 4D transformation, 
each additional 3D frame requiring only one pass through 
the hardware pipeline instead of two. This results in better 
response time and smoother animation. 

Applications 

Besides considering the regular polytopes, such as the 
hypercube pictured in Figures 1-5, we have also explored 
polytopes of importance in Information-Based Complexity 
Theory, one of which is pictured in Figures 6-8 . 

This 4D object, which represents a unit ball in a Ba
nach space, is used as a model of computational complexity. 
Specifically, the "radius" of 3D slices of this object , defined 
here as a geometrical measure of polygons and polyhedra, 
provide a measure of "adaption". This object has the rare 

Graphics Interface '88 



property that the radius is larger for slices at two opposite 
extremities than for a slice from the middle; no object with 
a lower dimension has this property [KN88]. 

Figure 6 shows a 4D depth cued version of this unit balL 
Figure 7 shows another view with a hyperplane intersection 
highlighted by color map manipulation. Figure 8 shows one 
interesting slice of this ball. 

Work in progress involves studying a space-time model 
of animal and human skull growth using 3D skull data 
changing over time. The goal is to explore the geometry 
of growth curves and structure; the better the understand
ing of the growth process, the better techniques such as 
reconstructive surgery can be made [SM87]. 

Implementation 

We have implemented this 4D animation system on the 
Hewlett-Packard 9000 Series 300 workstations with 98710 
and 98721 hardware graphics accelerators, as well as the Sil
icon Graphics IRIS 1400 and 2400 workstations. Response 
for small objects, e.g., a hypercube, can be as fast as 10 
frames per second, while larger objects with approximately 
400 vertices can slow to a second or more per frame. 

Conclusions 

We have shown that real-time 4D animation is possi
ble using real-time 3D graphics workstations. As expected, 
the implementation has proven useful in exploring both old 
and new 4D polytopes and surfaces, functioning as a math
ematical educational tool, and as a research tool. Beyond 
simply studying pure geometry, we are now applying it to 
scientific data. 
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Figure 5 Figure 6 

Figure 7 Figure 8 
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