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Abstract 

The need for increased computing power for rendering 
computer imagery is motivated and the sources from which it 
might de derived surveyed. Increased power can come from 
parallelism, as well as faster technology, implying new machine 
architectures and new algorithms. Surveys sketch early 
att~mpts at using available parallel architectures and look at the 
limitations and strengths of some existing architectures. 
Finally, potential parallel algorthms for the rendering process 
are sketched including rough analyses of potential performance 
bottlenecks. 
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Introduction 

Choosing a computational base for doing computer graphks is 
not getting simpler. In addition to networked workstation 
computers of various sorts, a wide variety of special-purpose 
graphics processors, more general-purpose vector machines, 
multiprocessors, and general-purpose supercomputers are now 
commercially available. An even wider variety of 
computational bases have been promised or proposed. 
suggesting that the choices will be even more varied in the 
future. 
Historically, use of concurrency in rendering systems has been 
the province of special-purpose hardware, chiefly that used in 
the flight simulator business. However, it has always seemed 
clear that more general-purpose massively parallel processors 
could easily be applied to rendering computer-generated 
imagery. 
Furthermore, as more potent computing resources have 
become widely available, it has been discovered that, by 
squandering processor cycles (using teraflops per image). 
spectacular imagery comes relatively easily. The result is that it 
has become acceptable. even fashionable in some circles, to 
make images which require days of computing time. 
FurthernlOre. the resulting images demonstrate that orders of 
magnitude more time could be used effectively in improving 
the realism or richness of the images. 

MOli ,alions/or more power 

We ha.ve seen a repeating pattern recently in the field of 
computer graphics. (1) a new technique for improved realism 
is developed. (2) the technique proves to be extraordinarily 

expensive. (3) the conferences for the next few years are 
replete with papers on how to improve the performance of the 
technique. We have seen this happen with surface texturing. 
radiosity, and most noticeably with ray-tracing 
There appears to be no end to the computational power that 
can be expended in pursuing ever-increasing realism. 
Computation times on the order of a week on a 
superminicomputer for a single image have been seen 
[Wallace87]. Furthermore, the models from which images are 
made today are still vastly short of the detail needed to 
approach the richness of natural images [Snyder87]. Our 
techniques for modeling and rendering surface texture and 
complicated surfaces such as fur, forests, or clouds are still 
woefully primitive 
To make imagery practical, a general ,ule of thumb has been 
that an image should be produced in 3-6 minutes. That allows 
10-20 frames per hour, or 3-8 seconds of animation overnight 
Computation time per frame has been increasing lately as more 
resources are poured into commercial computer graphics. 
Howe~er, it is necessary in the limit to be able to produce 
animation in a small fraction of the total amount of time 
available to a given project in order to complete anything on 
time. There are always reasons why modifications are needed 
in mid-stream. 
Given that we wish to be able to do in minutes computation 
that now takes days to months, how much faster do we have to 
go? There are 720 hours in a 30-day month. Therefore. we 
need 3-4 orders of magnitude more power to realize in a few 
minutes images that we would like to be able to make on a 
regular basis. To make such images interactively (once every 
few seconds) we need to speed up by yet another 2 orders of 
magnitude and to do them in real time (30 frames a second) we 
need another 4 orders of magnitude. To make. in real time. 
images that we can now actually produce, we need to speed up 
our computations by up to 8 orders of magnitude. 

Commercial approaches to increased power 

Inevitably the most cost-effective way to render images will be 
with an architecture dedicated to the purpose. If all you want 
are images of a few thousand polygons using only bilinear 
smooth shading. you're in luck. Workstations with special 
hardware are available for 50 to 150 thousand dollars from 
several sources which can smoothly animate such images. 
The drawback, of course, is that if you want more elaborate 
imagery from a special-purpose machine. you must wait much . 
much longer, since there will be no help from the hardware. A 
more general-purpose machine of the same cost cannot be 
expected to deliver the same imagery as rapidly. However. the 
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compensating advantage is that the greater general-purpose 
power of the machine may be brought to bear on a wider 
variety of styles of imagery. 
The current economics of hardware make the most cost
effective general-purpose system, in terms of MIPS per dollar, 
that which can be made from a small number of commodity 
chips sold in the millions. Thus the computational component 
(processor and memory) of machines based on, say, the 68000 
family or 80x86 family is very inexpensive for the power 
provided. 
Why not just use a flotilla of standard workstation computers 
for all computing then? If you have 1000 images to compute 
by next week and everything has been worked out so that it can 
all run automatically, then that may be the right choice. On the 
other hand, if you are trying to develop the image and need 
feedback, or you are trying to interact with the imagery, then 
you will be severely limited in the scope of imagery possible. 
Furthermore, workstations come with a separate chassis, power 
supply, network connection, etc., and even a keyboard and 
display, for each processor. Clearly, a machine with many 
processors could be packaged more inexpensively. However, 
in a personal survey, I found a wide selection of parallel 
machines ranging from roughly 1.5 to 10 thousand dollars per 
32-bit processor or equivalent These figures bracket the 
roughly 5 thousand dollar cost of a minimal low-end 
work station with a standard 32-bit processor. The claimed cost 
per MIPS of the machines surveyed varies, but stays within 
half an order of magnitude. Unfortunately, multiprocessor 
machines are not yet made in the high volume which brings 
out the cost advantages of denser packaging. 
If general-purpose computing power is needed at all costs, the 
fastest available scalar processors are the supercomputers. 
However, it is still unusual to fmd a Cray or similar machine 
used for interactive graphics. 
The need for supercomputer power for interactive graphics is 
spawning a new generation of "crayola" [Curran88, McLeod88, 
Methias88, Rashid88] computers designed to mix a bit of 
supercomputer technology (eg. floating point vector pipelines, 
scoreboarding) with powerfull graphics 110. These machines 
will till a niche and drive the level of the practical up to an 
order of magnitude higher for well-matched applications. 
Another developing class of computers are the "massively 
parallel" machines. These include: (1) a specialized frame 
buffer architecture with a a quarter million single-bit 
processors, one per pixel [Fuchs85], (2) a SIMD architecture 
with up to 64k single-bit processors intimately connected in a 
cleverly designed network [fMC87], (3) a MIMD architecture 
with up to 256 32-bit processors communicating over a multi
stage network to shared memory modules [ReUberg86], and (4) 
a handful of MIMD architectures with up to a thousand or 
more 32-bit processors communicating over networks with 
multiple connections per processor (supplied by NCube, 
Ametek, Meiko, and Intel Scientific Systems). At the moment 
there is no way to get more than about 3 orders of magnitude 
more speed over a standard workstation just by spending more 
money. 

Power to be expected/rom unavoidable technological 

improvements 

Twenty years ago, in the mid Sixties, the fastest scalar 
computers available ran at about 10 MIPS [Thomton64]. Just 
over a decade later the Cray 1 [RusseIl78] was running nearly 
an order of magnitude faster. After another decade, today's 
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supercomputers have yet to achieve an additional half order of 
magnitude speedup. By comparison, today's high-volume 
single-chip processors are approaching the 10 MIPS of the 
fastest computers of the mid sixties. Industry forecasters see an 
order of magnitude improvement over that speed in less than 
ten years. However, there is little being said about when we 
will manage the second order of magnitude. 
The preceding indicates that we can expect, at best, 2 orders of 
magnitude improvement in computational speeds from our 
on rushing semiconductor technology within the forseeable 
future. We can easily make use of another 2-6 orders of 
magnitude speedup which will have to come from parallelism. 
As seen above, commercial parallel machines are offering up to 
3 orders of magnitude potential speedup through parallelism. 
Moreover, reports of real problems attaining very close to 3 
orders of magnitude speedup on such machines are beginning 
to surface. Proposed machines with serious chances of actually 
being built are intended to involve over a hundred thousand 
32-bit processors [Ranade88, Ptister85, Gottlieb83]. 
There seem to be no good technical reasons (ignoring 
organizational and economic issues) why a million-processor 
machine won't be realized within 5 or 6 years. Therefore, the 
possibility exists of coming very close to the raw computational 
power needed to realize today's most ambitious images in real
time. Whether that power can be harnessed to the task of 
generating images quickly enough is a more complicated 
question. 

Parallel architectures 

There are many ways to cause more than one operation to take 
place simultaneously. Today's processors often overlap the 
fetching of one instruction with the execution of the previous 
one, for example. Supercomputers have used such pipelining 
techniques to compute floating point operations on vectors for 
2 decades. However, predictions of faster commodity 
processors generally assume increasingly heavy usage of 
pipelining techniques. 
To get 3-6 orders of magnitude speedup, we will need to use 
massive parallelism. What architectures are capable of 
providing this? In the grossest terms, the architectures can be 
divided into three groups: (1) SIMD (Single Instruction stream 
Multiple Data stream) machines, in which all processors 
execute the same instruction in lock-step, (2) Machines in 
which all processors share access to a global memory, and (3) 
Machines or groups of machines in which processors 
communicate by sending messages to each other over 
interprocessor links. The last two types actually represent a 
continuum of architectures ranging over the amount of 
globally shared state in the system. 
SIMD machines have a long history as massively parallel 
architectures. Experimental machines such as IIIiac IV 
[Slotnick71], MPP [Batcher80], and most recently, Pixel Planes 
[Fuchs85] have demonstrated increasing numbers of active 
processing elements. 
Two reasons are usually given for pursuing SIMD designs. (1) 
A SIMD architecture provides more computational power for a 
given cost at any given moment because the instruction fetch 
and decode hardware need not be replicated for each 
processor. (2) SIMD machines are conceptually easier to 
program since all processors are doing the same thing. 
Furthermore, since the state of the machine changes in lock
step, debugging is relatively easy. 
The difficulty with SIMD processors is that for many 
algorithms it is very difficult to keep all processors doing useful 
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work all the time. Processor utilization may be low enough to 
offset the cost advantage due to the shared instruction unit 
The difficulty arises from the fact that in order to execute 
conditional code. all processors satisfying the condition must 
go idle while those who failed the condition execute the 
appropriate code. and vice versa. 
Fortunately. many of the operations in computer graphics can 
be done without conditional instructions in which the 
condition varies across the processors. 3-d vector and matrix 
operations supporting transforms have this characteristic. 
In MIMD (Multiple Instruction stream Multiple Data stream) 
machines each processor operates independently. However. 
there are vastly different ways in which to use the processors. 
The concept of task granularity is a useful way to rank different 
usage styles. 
Large grain parallelism is characterized by large tasks which 
run using little or no communication with other tasks. Each 
computing element might compute a separate frame from an 
animation. for example. Fine grain parallelism is characterized 
by very small tasks and much higher rates of intertask 
communication. A computing element might, as its task, input 
a vector. transform it. then pass the result to another 
computing element 
The spectrum of MIMD architectures useful for graphics spans 
a wide range of examples. The following is a list of 
architectural examples ranging from those useful for coarser 
grained parallism to those useful for finer grained parallelism: 
(1) mainframe computers connected by wide area networks. 
(2) workstations connected by local area nets. 
(3) multicomputers consisting of processors each with its own 
memory, communicating over multiple serial links, and 
(4) mUltiprocessors consisting of processors communicating 
through shared memory. 
At the finest end of the granularity spectrum are numerous 
experimental and proposed architectures such as data flow 
machines. neural networks, multiple functional unit machines, 
etc. These machines are designed for parallel execution at the 
machine instruction level. While very interesting, these 
machines are intended either to translate existing algorithms 
automatically or to use completely new programming 
techniques. They have little relevance to this discussion. 

Parallel algorithms 

Granularity is a useful concept in terms of parallel algorithms 
as well. A fine grained task might accumulate surface data for 
a single pixel, doing depth comparisons and other operations to 
determine its col or. A coarse grained task might do the entire 
rendering task for a section of the image. or generate all the 
pixels for a given object. 
Thinking simplistically. one might want to organize the 
computing tasks by one or more of the following items: 
(1) pixel or group of pixels. 
(2) vertex or control point, 
(3) polygon, 
(4) patch. 
(5) object or subobject, or 
(6) frame or subimage. 
The lack of pixel-to-pixel coherence in the typical ray-tracing 
algorithm and the simplicity of its implementation has made it 
a popular early application for massively parallel architectures. 
It is relatively easy to broadcast the description of a simple 
scene and accompanying ray tracing program to a large 
collection of processors. then have each processor compute a 
pixel or group of pixels [Crow88]. 
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At the other end of the spectrum it has been easy to use a 
collection of computers. preferably networked. to compute 
individual frames for an animation (see below). 
To a large extent, these examples span the range of grain sizes 
for existing applications of parallel rendering. the individual 
pixel (or subpixel sample) being the smallest computable unit 
and the single image (or contiguous group of images) being the 
largest. 
It is interesting that the simplest implementations of parallel 
rendering lie at these extremes. In both cases. all computing 
units use identical programs and scene descriptions. only a few 
input parameters need be varied from unit to unit. This 
simplicity has its costs, however. I f the unit of computation is 
an entire frame, then the first frame is completed no more 
quickly with many computing units than with 'one. If the unit 
of computation is just a pixel or group of pixels, you would 
expect to get the first frame much more quickly. However, 
each pixel must be computed more or less independently of its 
neighbors. preventing use of efficient display algorithms. 
To compute each pixel independently. a process must execute 
with access to the entire scene description. Therefore, either all 
processors must have the scene stored in their memories 
(limiting the complexity of the scene) or the data must be in a 
shared memory (limiting the number of independently
executing processors). In practice this has meant that ray
tracing images may be fmished in minutes instead of hours. 
But real-time imagery still eludes the general-purpose machine. 
Other simplistic approaches have adapted scan line algorithms 
to compute scan lines or groups of scanlines independently 
[Kaplan79, Schachter83] or have broken the image into slices 
[Crow86]. Machines have also been proposed and built to 
operate on a polygon or rectangle at a time [Rougelot69, 
Sutherland74, Locanthi79, Whelan82]. 
Traditional approaches to rendering have broken the rendering 
process down to a fairly standard pipeline of tasks. (1) input 
data delivered to the head of the pipeline. (2) vertices 
transformed, (3) polygons clipped to the image limits. (4) 
polygons scan converted, and (5) scan segments shaded. This is 
especially true in hardware designs where pipelines may even 
be replicated for higher performance [Schumaker80, ,Clark82, 
Torborg87]. 
There is clearly a wide range of choices for mapping the 
rendering process onto multiple processors. Ideally. once the 
process is broken down to small enoug~ tasks. a standard 
algorithm, which rightly should be conSIdered part of the 
operating system. will manage distribution of the tasks to 
processors and forwarding of the results to succeeding tasks. 
Under such a system. performance should be primarily a 
matter of how many processors are available. Partitioning 
algorithms into such tasks and finding algorithms which thrive 
under such partitioning are current challenges. 

Early use of general-purpose architectures for parallel 
rendering 

Given the proliferation of human effort and computer 
resources devoted to computer graphics. it is inevitable that 
some efforts will be made to use multiple machines to get 
images made more rapidly. In recent years a number of 
researchers and practitioners have made use of modest levels of 
paralleism to make images faster and some have used 
substantial numbers of machines to produce animation. The 
following represents a personal survey of activity in the field. 
Note that this survey is by no means exhaustive and, like all 
such attempts. is out of date the moment it is printed. 
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Very Large-Grain Parallelism at Apollo 

Animation lovers lead by lames Arvo at Apollo have been 
making movies by distributing the computation over as many 
(up to a few hundred) idle computers as they can fmd on their 
net. This is a very efficient way to make animation, especially 
when each frame may take several hours to complete. Where a 
frame takes too much time to compute in the available time 
(usually overnight), frames have been divided. each computer 
getting a subset of the scan lines to compute. 

Ray tracing on the Arpanet 

Mike Muus at the Ballistic Research Laboratory in Maryland 
has been doing ray tracing using multiple machines on the 
Arpanet. in a manner similar to the Apollo effort. However. 
these images are being made on a smaller number of large 
time-sharing machines. 

Ray tracing with the Connection Machine 

Ray traced images were one of the first applications of the 16k
processor Connection Machine at the MIT Media Lab. Karl 
Sims has implemented an algorithm [Crow88] in which each 
processor handles a pixel. A simple scene description is 
repeatedly delivered to the processors in the instruction stream. 
Each processor goes idle when its initial or reflected ray fails to 
hit anything. Therefore, processors with simple pixels spend a 
good deal of time idle while waiting for the most complex pixel 
to complete. Grayscale non-antialiased images of a few 
spheres over a plane take a few minutes to produce. 
More recently, Hubert Delaney has built a space division ray 
tracer [Delaney88] in which space is divided by a cubic 
tesselation with tags for objects intersecting each cube. Objects 
are also stored one per processor and chains of tags associate all 
the objects intersecting a cube. Each processor traces a ray 
through the subdivided space. Scenes with many thousands of 
spheres and polygons can be ray-traced in minutes. 

The Connection Machine goes to Hollywood 

Whitney IDemos productions is using a Connection Machine 
for commercial animation and special effects. Their emphasis 
is on scenes modeled with large numbers of polygons. 
Rendering algorithms are currently being developed and 
implemented [Crow88]. 

Ray tracing on the M eiko Computing Surface 

For the last few of years, Meiko has appeared at SIGGRAPH 
using a Computing Surface (an MIMD machine described 
below) to make ray traced images. Again, the scene is very 
simple (spheres over a checkerboard). In this case, each 
computer holds the scene description and program in its own 
memory and a supervisory processor distributes small blocks of 
pixels to be computed. 
Pixel blocks queue up behind each processor. It is the job of a 
controller processor to keep the queues full. All processors are 
kept optimally busy until the frame is close to completion. 
Many processors are then idled for a short time while the last 
few pixels, which had been enqueued behind very expensive 
pixels, are computed. Full-color anti-aliased images are 
produced in on the order of a minute. 
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Many Dorados make one picture at PARe 

I have been experimenting with using multiple computers on a 
local area network to generate optimally chosen subimages for 
merging at a specific workstation. The limited bandwidth of 
the network limits the practicality of this approach to fairly 
expensive images; each pixel has to take a good deal more time 
to compute than it does to transmit across the network 
[Crow86]. 

Scan conversion on a hypercube at Bell labs 

Researchers at Bell Labs have used a 64-node Intel Hypercube 
to scan convert polygons. Each processor runs a z-buffer tiler 
on a 64x64 pixel subimage. Performance is limited to about 
300 triangles per second by input/output constraints. A 
coarser grained algorithm would be more appropriate for the 
particular machine used [potmesil87]' 

Four pixels at a time at Pixar 

The Pixar Image Computer uses an architecture which can 
operate on a few pixels at a time in lockstep execution. Thus 
the power of the processor is well matched to the size of datum 
that the bus delivers. Low-level operations, like linearly 
interpolating between pixel colors and background colors to 
achieve transparency and antialiasing can be be done 
simultaneously for all color primaries. 

Pixel Planes at University of North Carolina 

While Pixel Planes is hardly a general-purpose architecture (see 
below), it is certainly a general-purpose pixel crunch er. A full
scale realization is able to scan convert, do depth buffer 
calculations and even shadow priority calculations much faster 
than the host workstation is able to feed polygons to it. Images 
involving on the order of a few hundred polygons have been 
manipulated in effectively real time [Fuchs85]. 

AT&T Pixel Machines sticks processors in theframe buffer 

Another semi-special-purpose machine has been demonstrated 
and is shortly to be available from AT &T Pixel Machines. A 
variety of imagery has been produced ranging from relatively 
simple real-time imagery to elaborate ray tracing in a few 
minutes. 

Demonstrated parallel architectures and their limits 

There are now a number of more or less massively parallel 
processors. some commercially available. Each has its limits as 
a rendering engine. The following is an attempt to survey at 
least the general classes of machines available and point out 
what those limitations might be. 

Pixel Planes 

Pixel Planes [Fuchs85] uses lock-step execution to allow a 
processor at each pixel to make a decision about its state with 
respect to a linear function (non linear functions have been 
proposed). Thus it can be used to scan convert by evaluating 
containment in a convex polygon. Containment is determined 
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by evaluating the edge equation for each bounding edge of the 
polygon in turn. The current realization of Pixel Planes is a 
512 by 512 array of single-bit processors. 

Pixel planes is a great machine for scan-converting large 
polygons. Furthermore, it is fast enough to scan-convert 
thousands of reasonably sized polygons in real time. However. 
processor utilization is very inefficient with complicated 
imagery involving lots of very small polygons. The bottleneck 
has been moved from the scan conversion process to the 
polygon feeding process. 

The capacity of the machine could be greatly increased if it 
could operate on non-overlapping polygons in parallel. 
However, until a host machine can feed it fast enough there is 
little motivation to move the architecture in such a direction. 
On the other hand, the more severe limitation of the current 
design is the inability to calculate non-linear shading functions. 

AT&T Pixe! Machine 

This machine is based on a very fast signal-processing chip 
manufactured by AT &T for its switching systems, among other 
purposes. It consists of a front-end pipeline of 9 or 18 of the 
chips, each independently programmed. This in turn feeds an 
array of back-end processors (16 to 64) which are hardwired to 
interleaved subsets of the pixels in a frame buffer. In the case 
of 64 processors, each processor operates on every 64th pixel. 
The pixel processors may communicate with their 4 
neigh boring processors, allowing messages to be passed across 
the array. 
For today's imagery, this is a successful organization. It is 
limited by its dedicated architecture to algorithms which can be 
distributed across the image pixels; but that is a large class of 
algorithms. The system is well-balanced for situations in which 
most of the processing is associated with pixels rather than 
surface elements. However, the system is not expandable to 
greater numbers of processors. 

Connection Machine 

The connection machine has a very large number of very slow 
processors which must execute in lock-step [Hillis85, Hillis86, 
TMC87]. Therefore it is at its best when the problem can be 
divided into at least tens of thousands of identical tasks. For 
complicated environments with at least tens of thousands of 
surface elements, it promises to be quite successful. However. 
so far it appears poorly matched for interactive or real-time 
image rendering. 
It is necessary to be cautious about characterizing a radically 
new architecture such as the Connection Machine. Often, 
cleverly designed algorithms can bring out capabilities that 
aren't initially apparent For example, new algorithms which 
can chop up surface elements into uniform pieces to make 
better use of the processors may change the apparent utility of 
the machine. 

Computing Sur/ace 

The Computing Surface is an MIMD machine made of an 
array of Inmos transputers. Each computer has 4 links to other 
computers. The ray-tracing program often shown by Meiko 
runs the same program at each processor (homogeneous code). 
However the array allows much wider possibilities in that each 
processor can run different code (heterogeneous code). For 
example, the array could be organized into multiple 
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interlocking pipelined data streams for transforming, shading 
and scan converting. 
The fact that Meiko chooses to use homogeneous code points 
up the difficulty of optimizing use of such an array with 
heterogeneous code. It could be a delightful challenge, but 
mapping a rendering algorithm optimally to a given array size 
will be difficult The data flow must be carefully mapped onto 
the processor interconnection since only 4 direct links to 
another processor are available to each processor. 
Even more difficult will be the problem of designing a general 
scheme which will scale over different size arrays. On the other 
hand, assuming adequate bandwidth to the frame buffer, there 
is a great deal of potential. The ultimate limitation in this 
architecture may lie in the relatively low interconnection level. 
To get a message across a large Computing Surface requires 
that it be passed from processor to processor in several stages. 
At each stage a processor must interpret the destination of the 
message and pass it along the next link. 

Binary n-Cubes (Hypercubes) 

A few companies (Intel, N-Cube, Ametek, etc.) are now 
offering binary n-cube systems based on the Cosmic Cube 
[Seitz85]. A binary n-cube has 2n processors interconnected so 
that any processor can route a message to any other in n steps. 
Similarly, each processor has n routing connections. Thus a 
3-cube would be topologically equivalent to a cube. Eight 
processors (vertices) would each have three connections (edges) 
and any processor could be reached by traversing no more than 
three connections. Hypercubes have the disadvantage that 
they are not easily extended. Increasing the size means 
doubling the number of processing elements and incrementing 
the connections to each one. 
Given routing support in the operating system. messages 
should be sent equally easily to any processor. However each 
connection involves processor involvement as in the 
Computing Surface. The advantage here is that the 
connectivity is higher and thus the number of links lower. 

Butterfly 

The BBN Butterfly uses a multistage crossbar net to allow access 
from any of up to 256 processors (M68020 + M68881 each) to 
any of up to 256 memory modules (4 MBytes each). 
Interprocessor communication is done by leaving messages in 
shared memory. 
The Butterfly is less easily extended than the Computing 
Surface (an additional stage must be added to the routing 
network for each doubling of the number of processors). 
Otherwise the two architectures offer similar capabilities. [t 
should be easier to impose a multiple pipeline structure in the 
Butterfly since messages can be directed between any two 
processors equally easily. The fact that results have to be 
passed through shared memory increases memory contention. 
However, that is claimed not to be a serious problem 
[Rettberg86]. 

Routed Arrays 

Two of the binary n-cube manufacturers (Intel, Ametek) are 
beginning to offer second-generation machines with dedicated 
routing chips which avoid the problem of involving the node 
processor for every interprocessor link which must be 
traversed. Given this hardware assistance, the binary n-cube 
can be abandoned for a more easily expanded grid 
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organization. This appears to be the way of the future. Other 
proposed machines are similarly organized [Ranade88]. 

Local-Area Networks 

The limitation on local networks is clearly in the speed of the 
network. Everything must travel over the same path. Fiber 
optic networks promise adequate bandwidth for transmitting 
images in real time. A 1 gigabitlsecond path can handle up to 
40 million 24-bit pixels per second while real-time v ideo
resolution images require only 10 million pixels per second. 
Currently, the technology to get messages on and off the 
network is not quite up to the speeds the optical fibers can 
handle. However, this is currently an area of rapid 
development 
The limit on performance of such a net would then lie in the 
bandwidth of the frame buffer'S connection to the network and 
on the level of interprocess communication. Subdividing the 
job so that each processor produces a subimage pretty much 
independently, the limit would appear to lie in the number of 
processors which can be attached to the net. 
Getting back to reality, current local area networks typically 
offer 10 megabits per second. This will remain the major 
limitation for the immediate future. 

Conclusion 

The SIMD (lock-step execution) machines such as Pixelplanes 
and the Connection Machine are successful partially because 
they are easy to program. They provide orders of magnitude 
more processors than other existing machines. However. they 
offer very little power per processor and often very low 
processor utilization. 
Existing MIMD (independently executing) machines offer 
orders of magnitude greater power per processor but orders of 
magnitude fewer processors. Roughly equivalent performance 
(within an order of magnitude) has been demonstrated for 
simple ray tracing using homogeneous code. 
There appear to be substantial untapped possibilities for MIMD 
machines using heterogeneous code. However, the operating 
system support needed to ease the task of loading and 
controlling a complex program is still relatively primitive. 
Arranging a hundred processors and code segments by hand 
will not be a welcome chore. Arranging thousands by hand 
may be effectively impossible. Massively parallel MIM 0 
machines will not achieve their potential until better 
programming environments emerge. 

Parallelizing by subdividing the image 

Where each node in a system is large and fast enough to run 
the whole rendering process quickly, simple division of the 
image and distribution over a number of independent 
processors running the same code is a strategy worth 
considering. This is especially true at the moment, when 
operating system support for many small tasks is lacking and 
the shape models making up the scene are relatively simple. 
Given a few dozen processors, each processor must produce on 
the order often thousand pixels. For optimum load-balancing. 
a given processor's pixels should be interleaved with the others 
as in the AT &T Pixel Machine. If the pixels are not 
interleaved, unevenly distributed detail will cause unevenly 
distributed computation. 

On the other hand, efficient implementation of proper 
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antialiasing frequently involves sharing computed color values 
between neigh boring pixels. For example, when ray-tracing, 
antialiasing is often implemented by calculating multiple rays 
per pixel. The best results are obtained by a weighted average 
of all rays over an area which overlaps neigh boring pixels by at 
least one-half. Therefore, each pixel must be able to use its 
neighbor's ray values or be stuck with doing 4 times as much 
work. 

Also, most faster rendering algorithms make use of area 
coherence, reducing the calculation of the shade of each pixel 
to an increment from that of its neighbor. It is considerably 
more efficient, in such cases to scan convert 100 pixel polygons 
than 10 pixel polygons. Therefore, having each processor 
operate on a contiguous set of pixels is preferable. For larger 
polygons or more elaborate shading, however, this argument 
holds less weight. 

It is possible to balance the processor loads when dividing into 
subimages with contiguous sets of pixels. An analysis of the 
scene is required to determine the average amount of work 
needed in each area. Such an algorithm is described in 
[Crow86]. Having done this, the image can be adaptively 
divided based on the analysis. However, this imposes a limit 
due to the speed with which controlling processors can analyze 
the image and parcel out subimages. 

Another approach is to divide the image into much smaller 
cells and parcel out cells to processors as they need work. the 
approach taken by Meiko in their ray tracing demonstration. 
This maintains the advantages of area coherence while 
balancing the load as long as the cell size is small enough. 
Again, too small a cell size loses the advantages of coherency. 

Another argument against having each processor execute the 
whole rendering process is that many operations will have to be 
replicated in each processor. Transformations and clipping to 
remove items falling outside the field of view are two obvious 
examples. The Pixel Machine minimizes this problem by 
providing an input pipeline on which to carry out this sort of 
shared computation. However, there are cases, such as 
rendering adaptively subdivided patches, where the bulk of the 
computation would have to be done in the pipeline. 
Furthermore, schemes using very small cells, as described in 
the previous paragraph. will suffer from replicated 
computations. 

In the face of much more complicated scene descriptions. 
parallelizing by subdividing the image looks like a bad choice. 
When a scene is described by millions of small details. the 
memory of a single processor will be inadequate to store all of 
it Furthermore, since only a few pixels will be produced by 
each surface element (polygon. patch . etc.). the percentage of 
the effort going into scan conversion and shading will be 
reduced. It will be necessary to parcel out the work of the 
entire rendering pipeline. 

One further complication arises out of texture mapping. 
Texture maps use a great deal of storage. Furthermore, a scene 
may require a number of different textures. Replicated storage 
of several texture maps in every processor's memory is at worst, 
impractical, at best, wasteful. Storing the texture maps 
centrally or in a smaller number of distributed locations brings 
on algorithmic complexity which was heretofore avoided and 
imposes a substantial interprocessor communication overhead. 
In summary. parallelizing by subdividing the image makes 
sense where the scene description is simple, the bulk of the 
computation is centered on operations concerning pixels (scan 
conversion and shading), and only limited communication is 
required between neigh boring pixels or subimages. It is not a 
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good idea for very complicated imagery or cases where large 
amounts of shared data are used. 

Parallelizing tbe traditional rendering pipeline 

Taking clues from special-purpose graphics architectures, it 
makes sense to parcel out the stages of rendering into a 
pipeline. At the same time, the pipeline stages requiring the 
heaviest computation may be replicated in order to smooth the 
pipeline flow. In an ideal larger system, all stages of the 
pipeline would be heavily replicated with computation flowing 
to the least heavily loaded appropriately coded processor. 
Given the wide variety of parallel architectures possible, it is 
clearly necessary to look more closely at the nature of the 
computation involved in the pipeline stages to see what kinds 
of algorithms map easily on to what kinds of architectures. 
The conventional rendering pipeline can be broken down into 
the following stages for most purposes: (1) data input, (2) 
coordinate transformation, (3) clipping, (4) visible surface 
determination. (5) scan conversion. and (6) pixel shading. 
Different algorithms place different emphases on these 
operations. For example, ray tracing doesn't require a 
conventional clipping process. Current very expensive images 
devote so much computation to pixel shading that the other 
elements of the pipeline become relatively insignificant in cost 
However, future images depending on very complex data will 
find that all stages of the pipeline need attention. 
Furthermore, no stage of the pipeline can be ignored where 
real-time animation is the goal. 

Data input 

Models of very complicated scenes remain painful to produce. 
This has helped avoid the issue of data input for most 
applications, the primary exceptions being in flight simulator 
applications. However, data exists which can swamp any 
existing system. For example, large amounts ofterrain data for 
visual simulation are available on tape from the U. S. Defense 
Mapping Agency. 
Complex construction projects are depending to ever greater 
extents on computer-aided design and manufacturing. Thus 
immense data bases are being created for large buildings, 
airplanes, spacecraft, etc. There are abundant reasons for 
making imagery from such databases. For example, an 
application such as an interactive repair manual based on 
computer generated imagery could require instant access to 
immense amounts of data. 
Massively parallel machines and supercomputers in general 
have massive I/O problems. If the data to be rendered is 
relatively constant, then it would be reasonable to consider 
storing it in a distributed manner in the primary memory of the 
machine. Remember, the primary memory of a multi
thousand processor machine will of necessity be huge. 
However, constantly changing data, more typical of today's use 
require staging the data through secondary storage. 
The advent of smaller, less expensive disk drives has led to 
innovations similar to the "disk striping" techniques used in 
supercomputers. Clearly, greater bandwidth can be achieved 
by reading from many disks simultaneously. Thinking 
Machines has developed the "Data Vault" following this 
principle. 
The Data Vault is an array of 39 disk drives, providing 32 bits in 
parallel with single-bit error correction (the data can be 
reconstructed if one drive fails). The bandwidth matches that 
of a Connection Machine I/O port, 40 megabytes per second. 
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Clearly, innovative I/O of this or a similar nature will be 
necessary. For really large machines, it is likely that I/O must 
be distributed over the processor interconnection network, 
perhaps physically as well as logically. 

Coordinate Transformation 

Coordinates must be transformed to: (1) assemble primitive 
shapes into complex articulated objects, (2) locate and orient 
objects in a scene, (3) orient the scene to a particular view, and 
ultimately (4) provide locations on the display. Happily, this is 
a very straightforward computation requiring a single simple 
data structure, needing no interaction between different 
coordinate vectors, and not even involving conditional 
branches. The basic operation is a matrix multiply. 
The simple nature of the computation makes it ideally suited 
for SIMD machines, or anything else for that matter. Vector 
units and SIMD machines exhibit a "sawtooth" performance 
profile for applications like these. If there are n execution units 
then execution speed will be proportional to the ceiling of c/n 
, where c is the number of coordinate vectors to be 
transformed. For most efficient utilitization of such a machine, 
the number of coordinate vectors should be many times the 
number of execution units. 
MIMD machines may run with maximum efficiency on 
coordinate transformations since no communication is required 
between processors and the work may be parceled out in 
chunks of arbitrary size. The only communication problem lies 
in getting the coordinate vectors into the memory of the 
processors executing the transformations. For interactive use 
or real-time animation it should be safe to assume that the 
vectors can reside in the appropriate memory. 
Transformations involve multiplying a sequence of matrices 
representing the operations described above and then applying 
the result to a large number of coordinate vectors. However. 

. for less than four vertices per processor. it is more efficient to 
apply each matrix in turn to the vertices (16 multiplies. 12 adds 
for a 4x4 matrix), than to concatenate the matrices (64 
multiplies, 48 adds). Therefore, where the number of 
processors available falls in the same order of magnitude as the 
number of coordinate tuples to be transformed, it is prudent to 
rethink the way in which transformations are computed. 

Clipping 

Clipping, where required, involves determining whether 
surfaces lie wholly inside or wholly outside the image or need 
to be divided at the image edge. Techniques for polygons are 
well established but higher order surfaces and algorithmic 
shapes may require specialized methods. 
In any event, clipping starts with determining the state of the 
defining points of the surface elements (e.g. vertices, in the case 
of polygons). Like transformations, these operations can be 
carried out straightforwardly on most any parallel architecture. 
Given the state of all the defming points, some surface types 
can be trivially accepted or rejected. If all vertices of a polygon 
lie within the image then the entire surface of the polygon 
does. If all control points of a bicubic Bezier patch lie within 
the image then the entire surface of the patch does. Similarly if 
all points lie off the image across the same edge, polygons and 
some curved patches can be trivially rejected. 
Clipping, requires gathering all the information about a surface 
element together at one processing element However, since 
defining points are frequently shared between neighboring 
surface elements, it is generally more efficient to do 
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transfonnations and initial detennination of the clipping state 
on an array consisting of all the defining points alone. On the 
other hand, to find out if a polygon, for example, lies within 
the image, it is necessary to retrieve transfonned vertices from 
wherever the transformation process left them. This can be 
very demanding on the processor interconnect, if it is to be 
done for thousands of polygons simultaneously. 
For machines designed with an interconnect intended to be 
used this way, such as the Connection Machine. 
interdependent data structures like this can work successfullv. 
However, in a machine intended for coarser grain~d 
programming styles it would clearly be preferable to keep all 
the infonnation about a surface element together, even at the 
expense of having to replicate some computations. 
The process of actually dividing polygons which cross the 
bounds of the image has traditionally been done with 
algorithms involving substantial numbers of conditional 
branches. These clearly will not run very efficiently on SIMD 
machines. Only a small portion of the polygons in a 
complicated image will be clipped by an image boundary. Of 
these, a smaller percentage will be clipped by a corner of the 
image. Furthennore, polygons may have different numbers of 
vertices. All this nonunifonnity suggests that clipping is best 
done on an architecture with independently executing 
processors. 
Clipping is an insignificant expense in images where the 
surfaces are elaborately shaded. Therefore, inefficiencies can 
often be tolerated. However, where extremely complicated 
scenes or high frame rates are involved, clipping must be 
considered carefully. Furthermore, if image subdivision is 
used for increased parallism, an increased clipping load will 
result 

Visible Surface Determination 

Visible surface detennination is basically a sorting problem. 
The sorting can be reduced to finding the closest surface where 
surfaces are opaque. A depth buffer will often suffice. 
Similarly, a ray-tracer based on space division needs only to 
traverse the space until the first surface is reached. A true sort 
is needed where multiple transparent surfaces are involved or, 
equivalently, where surface colors must be blended for 
purposes of anti-aliasing. 
Traditional hidden-surface algorithms have depended heavily 
on global sorting schemes [Sutherland74]. However, most of 
these schemes become impractical for very complicated scenes. 
Furthennore, only certain fine-grained parallel architectures, 
such as the Connection Machine, are very good at global 
sorting. Generally, parallel algorithms will probably work 
better by replacing global sorting with local or at least 
distributed sorting. 
Distributed sorting can be done by calculating object priorities 
and then sorting within objects [Sutherland74, Clark76, 
Crow82]. If a scene can be easily mode led as a reasonably 
unifonn hierarchy of shapes this approach could be successful. 
In such a hierarchy, shapes are collected into articulated 
objects, which in turn are collected into object clusters, which 
in turn make up the scene. The hierarchy has to be unifonn 
enough that no step in the hierarchy requires significantly 
more time to sort than the others. 
Local sorting lies at the opposite extreme. All surfaces may be 
scan converted independently and each pixel collects the color, 
depth and other salient information on each surface affecting 
it Once all surfaces are processed, the surfaces at each pixel 
may be sorted independently and the proper color computed 
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from the resulting order. 
Note that it is now necessary to do a full sort of all surfaces 
covering each pixel. Traditional algorithms use pixel-to-pixel 
coherency to avoid this for most pixels. Local sorting creates 
more work. On the other hand, most images have very few 
surfaces per pixel, making trivial sorting schemes possible. 
Of course, the depth buffer algorithm is the first thing one 
would expect to try in a parallel environment Given adequate 
memory the more robust techniques of a-buffers [Carpenter84] 
can be employed. These methods are trivially adapted to 
parallel environments of all kinds. 

Scan Conversion 

Scan conversion offers a more difficult challenge than other 
stages of the pipeline. The obvious algorithms are woefully 
inefficient or lead to poor load balancing. For example, if 
processors are assigned to one or more pixels it is 
straightforward to broadcast each surface element to all 
processors and let each detennine what pixels are affected. 
However, as scenes become more complicated, . putting all 
surface elements through a single broadcast process becomes a 
bottleneck. 
Similarly, surface elements can be parceled out one or more to 
a processor. However. a large bicubic patch will take much 
longer to scan convert than a small triangle. Unless (1) there 
are many more surface elements than processors and (2) a way 
is provided of dynamically allocating work to the less busy 
processors, then the more difficult surface elements will 
dominate the execution time. 
Even where the entire scene is composed of a single surface 
element type, such as polygons, there is enough variance 
among polygon sizes and shapes to cause load balancing 
problems. Especially in SIMD architectures, scan conversion is 
inefficient without substantial additional algorithmic 
complexity to smooth out the computational flow [Crow88]. 
Other suggestions have included assigning a processor to each 
scan line (or group of scanlines) or other subdivision of the 
image. All such simplistic task assigments fall heir to the same 
flaw. The computation is not unifonnly distributed over any 
aspect of the image or the shapes from which it is derived. This 
argues heavily for a more loosely structured architecture in 
which a pool of processors are assigned work as required and 
all tasks are small enough that none takes a significant portion 
of the total frame time. 
Efforts at splitting larger polygons and subdividing patches to 
more unifonn sizes may pay dividends in better performance. 
However, the best results will come from making sure that task 
times are short relative to the time needed to make the image, 
and that tasks can be distributed over the processors 
dynamically in quick response to changes in processor loading . 
Patch subdivision makes a good example of another kind of 
parallel algorithm. Instead of parceling out surface elements 
and having a processor convert the whole thing to pixels, each 
processor would subdivide its patch, spawning new patch tasks 
to be handed to other processors. The process then recurses on 
each of the newly created subpatches until the patches are 
small enough to be scan converted as polygons, or until some 
other tennination criterion is met 
In this case an exponentially expanding number of tasks is 
generated very quickly. This turns out to be a very successful 
way in which to use the Connection Machine since its 
interconnect is well-matched to this kind of algorithm. 
However, other architectures may have difficulty with the 
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comunications overhead inherent in the rapid spawning of new 
tasks. 
Another approach would be to do the later levels of the 
subdivision within one processor then spawn tasks for doing 
polygon scan conversion. This can cut back on 
communications since the description of a patch is 
considerably larger than that for a polygon. Savings are 
limited, however, since half of all processes spawned occur at 
the last step. 

For the sake of this categorization, I'll treat ray tracing as a scan 
conversion technique. Ray tracing started out as an inherently 
parallel algorithm. Speed enhancements to avoid unproductive 
rays can compromise that quality. However, the recent moves 
towards space division techniques pose an interesting 
alternatiye. 
It would appear that scene complexity would be a problem for 
parallel ray tracing in that each processor needs to see the 
entire description of the scene. However, for straightforward 
ray tracing, complex scenes are intractable in the frrst place. 
Certainly, modest levels of parallelism where each processor 
has substantial memory pose no problem for storing the scenes 
made today. 
The space division techniques require a good deal more storage 
[Glassner84, Kaplan85, Fujimot086]. However, the storage can 
be distributed across the processors without having to be 
replicated everywhere. The Connection Machine 
implementation described above uses a uniform division of 
space to allow SIMD execution. Other architectures might be 
better suited to a more efficient adaptive division. 

Pixe/ shading 

Even after it has been determined which surfaces contribute to 
which pixels, calculating the color for each pixel can consume 
the vast majority of the total computation in scenes with 
textured or reflective objects, or otherwise non-trivial shading 
requirements. 
Happily, expensive shading algorithms often use little or no 
coherence between neigh boring pixels. Therefore, the shading 
computation for pixels can proceed completely independently, 
making the application of massively parallel architectures 
relatively straightforward. A processor may be devoted to a 
pixel or grou p of pixels. 
However, images with surfaces having widely varying shading 
characteristics (the expected case) can greatly complicate the 
task of programming for SIMD machines. To avoid idling the 
majority of the processors on conditional branches, pixels with 
similar shading requirements must be accumulated until there 
are enough to compute efficiently. This is clearly a 
circumstance where an MIMD machine can proceed more 
efficiently and with simpler algorithms. 

For simpler shading, the similarity of neigh boring pixels is 
used to reduce the computation to very inexpensive 
incremental operations. Here, it is clear that neighboring pixel 
shades should be calculated in a sequential process which can 
take advantage of the much faster algorithms based on pixel
to-pixel coherence. Organizations that devote a processor to 
each polygon make sense here. 
Given the surface represented at a pixel, the position in the 
defining space of the surface given by the intersection of the 
surface with a ray through the center of the pixel can be used to 
drive an interesting class of texturing functions. Textures 
based on space-filling functions [perlin85, Peachey85] and 
fractal expansioJ)s [Haruyama84] have been used. This general 
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technique has also been used to displace surfaces [Hiller87]' 
The advantage of these position-based functions is that they 
require insignificant storage and can be computed 
independently for each pixel. Therefore, they are well-suited 
to most parallel architectures. Algorithms using pixel-to~pixel 
coherence to speed up these functions may be discovered, but 
none have been published as yet 
The more problematic texturing techniques are those which 
require an image to define the texture. These techniques 
(image mapping, bump mapping, environment mapping, 
displacement mapping [Cook84]) have been very successful for 
at least two reasons: (1) photographs of natural textures are far 
easier to come by and more successful than mathematical 
models, (2) it is less expensive to retrieve pixels from an image 
of a scene, in general, than .to compute the equivalent color 
directly from the scene description. 
The problem with texture maps is that they take up a lot of 
space. If they are replicated for every processor which needs 
them, they take up unacceptably large amounts of storage. If 
they are not replicated then they become bottlenecks in a 
parallel system as many processors try to access them at once. 
Clearly, successful use of texture maps in parallel environments 
will require a careful balance of replicated maps and 
orchestrated access patterns. This is an area in which 
innovations are needed. 

Conclusion 

This is an exciting time for those interested in parallel 
algorithms. New architectures are becoming commercially 
available at a rapid pace and there will clearly be more 
innovation in the near future. Just about every machine 
introduced does something very well (otherwise they wouldn't 
have been developed). However, no parallel machine yet 
matches the universal applicability of the traditional Von 
Neumann uniprocessor. 
Most newly introduced machines are too expensive for 
interactive (personal computer) applications. However, that 
will change. The basic cost of producing and packaging a 
substantial parallel machine could be quite low if the volume 
were high enough. Volume at that level, however, requires 
widely available parallel systems software and applications 
support. 
As interest in these new architectures builds, the systems and 
applications software which can make them useful to a wider 
community will be developed. No one can deny the benefits of 
inexpensive, very powerful machines when it comes to 
extending the use of rich, dynamic computer imagery. 
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