
155 

A Browse / Edit Model for User Interface 
Mana2ement 

Dan R. Olsen Jr. 
Computer Science Department 

Brigham Young University 
Provo, UT 84602 

Abstract 
The history of user interface management tools is discussed 
and the dominance of input event handling is pointed out. An 
alternative UIMS model based on browsing and editing is 
presented. A possible architecture for such a UIMS is 
presented and the implications of such a design are discussed. 
User interfaces are specified in this model by a selecting from 
a library of generic browse / edit facilities and then refining 
them with additional specifications or formats. 

Keywords: user interface management systems, interactive 
data, browse / edit. 

1. Introduction 
For a number of years researchers have been developing 
techniques for improving the way that human-computer 
interfaces are created. This work has centered around 
toolboxes, user interface management systems (UIMS) and to 
some extent object-oriented languages. It is the purpose of this 
paper to explore those approaches and identify some 
underlying assumptions about user interface software that have 
driven this work. There are two basic assumptions that are 
pervasive in user interface support tools. 

1. The primary function of a user interface support tool 
is to handle and interpret input events. 

2. The interface between the UIMS and the application 
can have infinite variety. 

This paper will first discuss how and why these two 
assumptions came to dominate user interface tool development 
and will then propose alternatives to these two assumptions. 
The ideas in this paper are not presented as finished or fully 
developed concepts. Many of the ideas presented are the result 
of conversations with colleagues or insights derived from the 
work of others . Many of the proposed techniques can be 
found in other research but these concepts have been 
peripheral rather than central to that research. This paper does 
not report a research result but rather proposes a shift of focus . 

2. The Development of Us e r 
Interface Tools 
Interactive user interfaces have been part of computer graphics 
since Ivan Sutherland's SKETCHPAD [Sutherland 65] . 
Almost immediately after that first beginning proposals were 
made for tools that would ease the burden of developing 
interactive software. Newel!'s Reaction Handler [Newman 68] 
was the first and was based on state machines. Much later 

Kasik proposed a tree of menus with FORTRAN routines to 
be called at the leaves of the tree [Kasik 76]. Hanau and 
Lenorovitz modeled interactive user interfaces as grammars 
using Y ACC [Hanau 80] and Feldman developed the Abstract 
Interaction Handler [Feldman 82] which is also based on state 
machines. 

In 1982 the Core and GKS discussions were a major topic of 
discussion when a workshop was held in SeattIe on the subject 
of graphical interface and interaction techniques [Thomas 83]. 
The general tone of this workshop was that graphical output 
was relatively well understood (Core and GKS) but that 
graphical input was in a woefully undeveloped state. Although 
the folklore holds that the term user interface management 
system (UIMS) was in existence before this workshop its 
widespread usage dates from about this time. The perception 
that graphical input was not well understood along with the 
directions that researchers were already taking reinforced 
assumption number 1 (dominance of input events). Based on 
this assumption almost all UIMSs are characterized by their 
dialog model which is a somewhat inaccurate term for how 
they handle input events. 

A second issue stemming from this first Seattle workshop is 
that of internal vs. external control. This issue is the primary 
dividing line between toolboxes and UIMSs. In an internal 
control system the application calls the toolbox to have 
interactive and graphical services performed but the application 
retains control of the dialog. In a UIMS (external control) it is 
the user interface software that is in control and makes calls on 
the application for services. With internal control the user 
interface/application interface is simply a set of routines to be 
called by the application. In an external control system the set 
of services that an application can provide to a user interface is 
potentially intmite which leads to assumption 2. 

2.1. Event-based User Interface Systems 

As mentioned earlier almost all user interface support tools 
have been dominated by their model for handling input events. 
These can be divided into three categories: grammars/transition 
networks , event dispatchers and toolboxes . Only a few 
example systems rather than an exhaustive set of references are 
included in this paper. 

2.1.1. Grammar and transition network tools 

These UIMSs are descendants of Newman's Reaction Handler 
and as Foley has pointed out have not progressed extensively 
since then. The Syngraph system [Olsen 83] was based on 
grammars with IPDA [Olsen 84] and Jacob's work [Jacob 85] 
being based on transition networks. The primary goal was to 
translate sequences of input events into calls on the services of 

Graphics Interface 'SS 



a particular application. These systems did recognize, 
however, that the user interface also needed to control the 
presentation of the dialogue including how messages, menus, 
buttons and help appeared on the screen. The input dialog 
nature of the systems, however, made the inclusion of 
presentation information somewhat awkward. 

2.1.2. Event Dispatchers 

A variety of systems have viewed the user in~erface prob~em as 
one of dispatching events. The model that objects appeanng on 
the screen can be poked and prodded by mi~e (or . other 
"pointy" devices) is the basis for a number of object onented 
strategies [An son 82] . The Menulay [Buxton 83] system 
attacked the presentation problem by drawing pictures and 
attaching C routines to them. The C routines are invoked when 
the corresponding picture is poked or prodded. Work by 
Rosenthal [Rosenthal 83] dispatches events to C routines 
based on the window where the event occurs. As with the 
grammar and transition network systems the mod~l is to map 
events to application routines. The fundamental difference IS 
that the event mapping is not based on event sequencing but 
rather on the visual object that the event is directed at. 

2.1.3. Toolboxes 

After UIMS research was well underway a fundamental shift 
occurred in computer graphics away from vector based 
displays with a few non-overlapping viewports to bit mapped 
displays with multiple overlapping windows. The output 
models of Core and GKS were not adequate and new graphics 
packages (or tool boxes) were developed. As such tool boxes 
developed, new attention was paid to the input model. At a 
basic level most such tool boxes are based on some GetEvent 
routine through which all inputs are passed along with so~e 
window-based dispatching of events. The quest to give 
toolboxes more sophisticated input facilities has, however, 
lead to some approaches which deviate from the two basic 
assumptions of event dominance and vru:ie~y of. aPI?lication 
interfaces. These developments and their Implications are 
discussed in a later section. 

2.2. Task based UIMS models 

Recognizing the limitations of event dispatching or event 
parsing dialog modes, a number of UIMSs . have m~ved 
towards models based on the purpose the user Interface IS to 
serve rather than on what sequence of events is necessary. The 
idea is to describe the nature of the application and then let the 
UIMS decide the sequence of events necessary to implement 
the interaction. 

2.2.1. EZWIN 

EZWIN [Lieberman 85] is a Lisp-based object orien~ed 
system that models the user interfac.e as a set of present~tlOn 
objects and a set of command objects: Comma~d obJ~cts 
consist of their menu name and a list of then deSired 
arguments. Presentation objects are anything e!se display~d.on 
the screen. EZWIN is responsible for automatically proViding 
a dialog which maps presentation objects as arguments to 
commands. 

2.2.2. MIKE 

The MIKE UIMS [Olsen 86] models the application as a set of 
data types and a set of procedures and functio.ns that .can. be 
applied to objects of those type~. From thiS a~plIcatIon 
description a default user interface IS generated which allows 
the designers to interact with the application. The user interface 
is then refined using a profile editor which remaps the default 
menus, names, windows and messages into new visual forms 

156 

that are more pleasing as part of the user interface. MIKE then 
decides what interactive events and actions are necessary to 
invoke various application commands and functions. 

The focus of both of these systems an others like them is on 
what the purpose of the application is rather than the sequence 
of input events. This is the basis for the shift of focus 
proposed by this paper. 

3. Browse/Edit Toolbox Facilities 
In an effort to extend the input capabilities of graphical 
tool boxes a number of features have been added. The first 
feature that almost every tool box includes after windows is 
menus . These take the form of defining some data structure 
which specifies how the menu should appear and then calling a 
tool box routine to display the menu and possibly a different 
routine to get input from the menu. The result returned is II;n 
identifier of which item was selected. For purposes of thiS 
discussion the data structure that describes the menu will be 
termed its format, the choice returned will be its data value and 
the concept of a menu will be termed aformat class. 

Another facility (or format class) that is frequently included is 
a dialog box or property sheet. In this case the format consists 
of a description of the grap~ical objects ~splayed in the dialog 
box along with the locatIOns of certall~ fields or controls. 
Fields typically allow data to be typed lI~to them. Controls 
such as radio buttons control a set of chOices for some data 
value' check boxes turn values on and off and scroll bars and 
therrr:ometers change integer or real values. The application 
either passes in a format or creates one by calls on the toolbox 
routines. The application can then either pass in or set the 
values that the fields and controls are to represent and can get 
the changed values back. Tool boxes vary in how dialog box 
formats are created, how values are set and retrieved and ho~ 
the application is notified of value changes but the concept IS 
essentially the same. 

Some tool boxes have become more ambitious and supply a 
full text editor as a tool box facility. The format consists of the 
editing window, text style and font an~ other ~ttributes su~h as 
word wrapping and tabs. The value. IS a stnng to ~e edited. 
The latest version of the Apple MaCintosh tool box Includes a 
complete formatted text editor including v~ing fon~ siz~, 
bolding etc. inside of the text. Th~ fo~at l~formatIon IS 
essentially the same but the value bemg edited IS extended to 
include the formatting attributes. 

A similar facility which is either included in or is available with 
most tool boxes is an icon or bit map editor. The format is 
simply a window to edit in and the data is a bit map. 

Each of the tool box facilities described above has the 
following characteristics: 

a. The facility embodies a particular style for viewing 
and editing data 

b. There is either an implicit or explicit format which 
can store the application specific choices that 
control how an instance of this facility is to 
behave. 

c. There is an implicit or explicit model of the 
application data that is being viewed 
or edited. 

Each facility is then an instance of a particular, widely used 
style of visual browser/editor. Apple 's ~ypercar~ system 
[Apple 87] is simply a combination of the bit map, dlalog box 
and text edit facilities with a primitive data model: ~yperc~d, 
with all of its limitations, has demonstrated the ability to bUild 

Graphics Interface 'SS 



interactive applications by piecing together simple 
browser/editors. 

4. A Browse/Edit UIMS Model 
Most previous user interface work has centered around 
handling the inputs when in actuality no interactive user is 
concemed about how to handle input. The task of almost every 
inter~ctive syste~ is to allow a person to browse through and 
modify data which represents some problem domain. The 
powe: of interactive computer graphics is not in its device 
handling but rather in its ability to present information in a 
yisual ~anner and to allow users to manipulate that 
mformatIon. When one focuses on information manipulation 

p :ather than on input event handling the architecture of user 
mterface support software radically changes. 

This information visualization and manipulation or browse/edit 
model is further reinforced by the successes of various user 
interf~ce ~upport products . With the exception of Apollo's 
Domam Dialogue system and to a more limited extent TIGER 
[Kasik 82] most UIMSs have remained in research 
laboratories even though implementations have been available 
for several y~ars. O~ the other hand Hypercard [Apple 87] has 
had almost Immediate acceptance. The most commercially 
succe.ssful u~er interface software systems are found 
assocla~ed with fourth generation languages in the data 
pr?cess.mg field. Th~re are numerous screen design systems 
With Wide commerCial usage and success. They admittedly 
·solve a simpler problem than most UIMSs have attempted but 
t~ey are successful. They achieve this success because they 
directly attack the application's user interface goals rather than 
attacking the mechanisms and because they map user interface 
c~)llcepts directly to programming concepts. They provide 
simple, clean metaphors for both users and programmers. 

One of the long standing deficiencies in UIMS research has 
been the lack of support for graphical output. Experience with 
~he MI~ UIMS has. shown that the input portion of the 
mterface IS completed m several days while the screen update 
code .t~es several months to design, integrate with the input 
d.efirunon and de~ug. The ~iting Templates system imposed a 
SImple browse/edit model m top of MIKE and achieved limited 
success in resolving this display update problem. Garret and 
Foley [Garret 82] have mode led user interfaces based on 
relational data bases shared between the application and the 
user interface. Traditional relational data models however are 
inappropriate for many C!f the kinds of highly structured data 
that are graphically manipulated. A related approach is being 
taken on the Serpent project at the Carnegie-Mellon Software 
Engineering Institute1. 

4.1. Architecture 

Many UIMSs have taken the Seeheim [Green 83] model as 
their guide. This model is shown in the figure below. 

'User 

Seeheim Model 

This. model is dominated by input event handling with 
relatively weak support for interactive output. 

1 . . . 
pnvate conversauons wIth Len Bass at Carnegie Mellon University 

Software Engineering Institute. ' 

157 

An alternative model is shown below. 

In this model the UIMS shares a data structure with the 
application. This data structure contains all of the information 
that the application wishes to share with the interactive user. A 
format class is a basic data browsing and editing technique. 
Text editing, dialog boxes, pop-up menu or bit map editing are 
examples of such format classes . A format is the piece of 
information that describes how data is to be edited or viewed 
using the format class. In the case of a menu the format 
describes how the menu is to be displayed. In the case of a 
dialog box the format contains how the fields should be laid 
out. Formats are closely analogous to resources on the Apple 
Macintosh. 

4.1.1. Formats and Format Classes 

A format class is a piece of code that must know how to draw 
images on the screen given a format and some data. It must be 
able to respond to interactive inputs from the user and update 
the shared interactive data values in response to such inputs. 
For examp!e the dialog ,?ox format class would change the 
corres~onding data field m response to characters typed into 
one of ItS fields on the screen. Formats must be represented in 
the same data model as the shared interactive data. A format 
class must also provide a format/format class pair which can 
be used to edit its own formats. Like many tool boxes a set of 
predefmed format classes would come with the UIMS. It must 
be relatively easy, however, for programmers to add new 
format cl~sses to t~e. set. Dialog design for a new application 
then consists of edItIng new formats for each of the kinds of 
information that the application wants to share with the 
interactive user. Since each format class carries with it the 
information necessary to edit its own formats the system is 
used to create itself. By adding new format classes and 
designing formats to edit their formats the UIMS itself can 
readily grow and expand to meet new application needs. 

At present tool boxes provide only a limited set of format 
classes which will be widely useful to a variety of 
applications. One can conceive, however, of format classes 
such. a construc~ve sol~d geometry views of objects which are 
mampulated usmg Skitters and Jacks [Bier 86]. The shared 
data IS. the CSG t.ree and the ed.it/browse facility manipulates 
the objects and views of the objects. Another possible format 
class is B-spline patches. Control points are the shared data. 
Bro"Ysing cons~ s ts of c~anging the .3D view while editing 
consists of movmg, creatmg and deletmg control points. 

At first blush each of these new format classes seems like an 
appl~cation unto itself. In actuality some applications may 
CO~SISt o.nly of a format class. By factoring out the browse / 
edit portion as a. format class, CSG viewing and editing, for 
exa~pl~, can be. mtegrated re~dily into a variety of CAD/CAM 
applications which use 3D solids. The present state of the art is 

Graphics Interface '88 



to view and edit the solid geometry in a separate program from 
where other analysis takes place. 

4.1.2. Application / UIMS Interface 

An application interacts with the user by constructing the 
shared data structure and then by attaching format probes to 
various parts of this data structure. A format probe consists of 
a format and its corresponding format class. A format probe 
defmes a single view of that piece of data and is the connection 
between the data and the user interface. A format class may 
create additional format probes of its own. For example the 
dialog box format class might create new format probes which 
connect each field data item with each field window displayed 
on the screen. The function of a format probe is to trap all 
changes that occur in the data that it is monitoring and notify 
the UIMS so that the format class can update the relevant 
portion of the screen. Multiple format probes can be placed on 
the same piece of data to create multiple views. If one view 
changes the data the probe structure will make sure that other 
views are notified and updated. 

As the format class attached to a format probe responds to 
interactive input it may change some of the data that the probe 
is attached to. In many cases the application will want to know 
about such changes and will want to respond with additional 
processing or reject the change. For example if the CSG 
format class is being used to manipulate images of robot arms 
the application may want to verify that a particular movement 
is consistent with the abilities of the robot and reject the 
movement if it is illegal. The application can place monitor 
probes on pieces of data which will notify the application in 
the event of changes. Monitor probes then are the mechanism 
for application involvement in the user interface. 

An application designer then has the following tasks in 
creating a new user interface: 

1. Design the structure of the data to be shared with the 
interactive user. 

2. Select format classes by which the user will 
manipulate this data and where necessary 
implement new format classes to be added to 
the library. 

3. Edit formats for the various ways that the data is to 
be viewed and edited 

4. Implement the application code to 
a. construct the shared data 
b. place format probes where the data is to be 

interactivelyaccessed 
c. place monitor probes where application 

intervention is required 
d. process activation of monitor probes 

4.1.3. Existing Approaches 

Many aspects of this architecture are found in the Cousin 
system [Hayes 84]. In Cousin the interactive environment 
consists of a set of slots which can be modified by the user 
and monitored by the application. Invoking a command 
consists of modifying the contents of the command slot. 
Although the essential elements of the architecture are present 
there has been little done in terms of variety of interaction 
techniques beyond forms filling. 

The Higgins system [Hudson 85] also constructs user 
interfaces as views of data among which dependencies have 
been defined. The resolution of dependencies and views is 
performed using incremental attribute evaluation. 

158 

4.2. Implications 

There are a variety of implications of this model in terms of the 
kinds offacilities that can be supported by the UIMS. Each of 
these is uniquely facilitated by the Browse/Edit UIMS model 
described above. 

4.2.1. Universal Cut/Paste 

The data-based model provides a natural interpretation of Cut, 
Copy and Paste for a variety of data. Since every visible object 
is mapped directly to a particular data object Cut and Copy 
simply take the data object in its Shared lnteractive Data 
format. The clipboard or scrap heap is simply another branch 
of the shared interactive data. 

4.2.2. UNDO and Patching 

Because all changes to shared interactive data are monitored, a 
real UNDO facility can be automatically provided. The UIMS 
simply logs all changes to interactive data as they occur. When 
UNDO is requested the data is restored to its original value. To 
the application program the restoring of the changes looks no 
different than if the user had manually reentered the old values. 
An extension of this facility is patch files. The changes are 
logged into a file as the interactive session progresses. Such a 
change file represents the difference between two versions of 
the shared interactive data. UIMS facilities can then be added 
which reapply changes to data to recreate the new version from 
the original or changes can be retracted to recreate the original 
from the new version. Again such a feature becomes part of ' 
the UIMS and the user's interactive environment rather than 
unique to the particular application. 

4.2.3. Graphical Spreadsheets 

Another feature that such a UIMS could support is the concept 
of dependent values. In addition to Cut and Copy the UIMS 
would support Refer. When one selects a data item from the 
screen and selects Refer a special reference to the item is 
constructed. When the reference item is pasted into some other 
view the values that the item represents are pasted in but the 
UIMS remembers the existence of the reference. Whenever the 
original item that was referred to is modified, the paste is 
reperformed. A reference is analogous to a UNIX pipe which 
transmits data from one part of the display to another without 
the active involvement of either the sender or the receiver. 
Making one displayed value on the screen dependent upon 
another is the basis for traditional spreadsheets. The UIMS 
now an active and programmable user interface environment 
that is more powerful than the basic application components 
themselves. 

4.3. A Uniform Application Model 

As was mentioned earlier, a basic assumption of most UIMSs 
is that there are a variety of functions that an application can 
and should perform. The UIMS must be structured so that it 
can adapt to this variety. This is typically done by generating 
large case statements or tables of function addresses. In the 
browse / edit model the application functionality is reduced to 
notifying the application of one of the following. 

1. Some data item has been deleted 
2. Some data item has been inserted 
3. Some data item has changed 
4. Some data item has been selected for attention by the 

user 

Graphic. Interface 'SS 

" 

.. 

.. 



y 

I 

f 

r 

i 
I 

I 
i" 
i • 

As long as monitor probes can respond these four messages 
the application can handle the entire user interface. This greatly 
simplifies the UIMS/Application interface and fits very 
naturally into the object-oriented programming paradigm. To 
the application programmer the user interface problems are 
now posed in terms of changes to data items rather than in 
terms of sequences of input events. 

5. Summary 
An alternative focus for DIMS research has been presented 
which views user interface software as an information 
manipulation problem rather than as an input event handling 
problem. This greatly simplifies the DIMS / application 
interface. Most importantly it shifts attention of UIMS 
development towards providing a rich environment in which 
users manipulate information and away from the the issues of 
simple event handling. 

There are a large number of issues still to be resolved in this 
model. Most important is the nature of the shared interactive 
data. There are a variety of candidate models from Lisp-style 
lists through relational tables. The model chosen will in many 
ways dictate how other pieces of the model interrelate. The 
mechanism for placing monitor, format and reference probes 
into the data without obscuring the application and format's 
normal "un probed" view of the data. There are significant 
efficiency and space problems with a poorly conceived probe 
strategy. There are a number of possible race conditions as 
multiple formats based on references are constructed. These 
must be resolved so that the interactive environment remains 
robust. Lastly a large number of new format classes must be 
designed to move user interfaces beyond simple form filling 
dialog boxes. 

This model should, however, provide a fresh approach to 
UIMS research that has grown somewhat stagnant of late. 

6. References 
[Anson 82] Anson, E. "The Device Model of Interaction." 

Computer Graphics 16,3 (July 1982). 

[Apple 87] "HyperCard User's Manual", Apple Computer 
Inc., (August 1987). 

[Bier 86] Beir E. "Skitters and Jacks: Interactive 3D 
Positioning Tools." Proceedings of 1986 Workshop 
on 3D Graphics." ACM (Oct 1986). 

[Buxton 83] Buxton, W., Lamb, M.R., Sherman,D., Smith, 
K.C. "Towards a Comprehensive User Interface 
Management System." Computer Graphics 17,3 (July 
1983). 

[Fe1dman 82] Fe1dman, H.B. and Rogers, G.T. "Towards the 
Design and Development of Style-independent 
Interactive Systems." Human Factors in Computer 
Systems (March 1982). 

[Garret 82] Garret, M.T. and Foley, J. D., "Graphics 
Programming Using a Database System with 
Dependency Declarations." ACM Transactions on 
Graphics 1,2 (April 1982). 

[Green 83] Green, M. "Report on Dialogue Specification 
Tools." User Interface Mana~ement Systems, Ed. 
Gunther Pfaff, Springer-Verlag (1985) . 

159 

[Hanau 80] Hanau, P.R. and Lenorovitz, D.R. "Prototyping 
and Simulation Tools for User/Computer Dialogue." 
Computer Graphics 14,3 (July 1980). 

[Hayes 84] Hayes, P. "Executable Interface Definitions Using 
Form-Based Interface Abstractions," In Advances in 
Computer-Human Interaction. H.R.Hartson, E., 
Ablex, New Jersey, 1984. 

[Hudson 85] Hudson, S.E. and King, R. "Efficient Recovery 
and Reversal in Graphical User Interfaces Generated 
by the Higgens System." Proceedin~s of Graphics 
Interface '85, (June 1985). 

[Jacob 85] Jacob, R.J.K. "A State Transition Diagram 
Language for Visual Programming." IEEE Computer. 
18,8 (August 1985). 

[Kasik 76] Kasik, D.J. "Controlling User Interaction." 
Computer Graphics 10,2 (July 1976). 

[Kasik 82] Kasik, D.J. "A User Interface Management 
System." Computer Graphics 16, 3 (July 1982). 

[Lieberman 85] Lieberman, H. "There's More to Menu 
Systems than Meets the Screen." Computer Graphics 
19,3 (July 1985). 

[Newman 68] Newman, W.M. "A System for Interactive 
Graphical Programming." SJCC 1968, Thompson 
Books, (1986). 

[Olsen 83] Olsen, D.R. and Dempsey, E.P. "SYNGRAPH: A 
Graphic User Interface Generator." Computer 
Graphics 17,3 (July 1983). 

[Olsen 84] Olsen, D.R. "Push-down Automata for User 
Interface Management." ACM Transactions on 
Graphics . 3,4 (July 1984). 

[Olsen 86] Olsen, D.R. "MIKE:The Menu Interaction Kontrol 
Environment." ACM Transactions on Graphics 5,4 
(Oct 1986). 

[Rosenthal 83] Rosenthal, D.S.H. "Managing Graphical 
Resources. " Computer Graphics 17, 1 (January 1983). 

[Sutherland 65] Sutherland, I.E. "SKETCHPAD: A Man­
Machine Graphical Communication System." MIT 
Lincoln Lab. Tec. Rep. 296, May 1965. 

[Thomas 83] Thomas, J.J. and Hamlin, G. "Graphical Input 
Interaction Techniques: Workshop Summary." 
Computer Graphics 17, 1 (January 1983). 

Graphics Interface 'SS 


