
160

Teh~Mac:
A Remote-controlled User Interface Server

Gilbert Gagnon
Jean Vaucher

Departement d'lnformatique et de Recherche Operationnelle
Universite de Montreal

CP 6128, Suec "A" Montreal, Quebec
H3C 3J7

E-Mail: gagnon@iro.udem.cdn

ABSTRACT

Modern software is now expected to be used via
sophist icated hig h Iy-i nte ract ive graph ic i nte rfaces.
Unfortunately, the development of these interfaces
requires much investment in both hardware and
programming effort. In the paper, we describe
TeleMac, a general-purpose, user interface "server"
which runs on a Macintosh™ micro-computer but is
remote-controlled via a simple RS-232 connection by
an appl ication runn ing on a different host computer.
TeleMac provides most of the typical Macintosh
featu res such as multiple windows, mouse selection ,
graph ics , dialogues and vo ice synthesis. It also
implements so me high level concepts such as
connected graphs (not graphics) above and beyond
the Macintosh primitives. Most of all , it was designed to
be easy to integrate into application programs.

In the paper, we discuss the design of TeleMac, give
examples of its use and outline its implementation.

RESUME

Les logiciels modernes se do ivent d'uti liser des
interfaces usagers graph iques sophistiquees et
hautement interactives. Malheureusement , le
developpement de ces interfaces demande un grand
investissement aut ant en materiel qu'en effort de
programmation . Ce papier decrira TeleMac, un
"serveur" d'interfaces usagers generales fonctionnant
sur un micro-ordinateur Macintosh™ controle , via un
simple lien RS-232 , par une application en execution
sur un ordinateur hote. TeleMac donne accas a la
pluspart des possibilites du Macintosh telles fenetres
multiples, selections avec la souris, objets graphiques,
dialogues et synthase de la vo ix. 11 implante aussi
quelques concepts de plus haut niveau, tel reseaux
graphiques, par-dessus les pri mitives Macintosh. Plus
important encore , il a ete con«ut pour facil iter son
integration aux programmes d'applications.

Nous parlerons ici de la conception meme de
TeleMac, nous donnerons des exemples d'utilisations
et tracerons quelques lignes de son implantation.

Introduction

A user interface can be thought to be a control panel
from which one can invoke an application's functions ,
and consult and modify its parameters and data
[HULL87]. Just as control panels in airplanes have
evolved from simple broomsticks and fuel gauges to
fully computerized instruments , user interfaces have
also come a long way from line-oriented input and
output to more convivial schemes based on windows,
icons and menus. Unfortunately, the implementation
of such user interfaces is generally a difficult
undertaking with major impact on the size and
complexity of the interfaced application's code .

Various tools meant to simplify th is task are now
evolving in the area of Computer Human Interfaces
(CHI) . Some programming languages include graphic
functions. Window Management Systems (WMS) offer
windowing facil ities through sets of subroutines. There
is now also research on "User Interface Management
Systems" (UIMS) to provide whole development
environments for interfaces [COUT87]. Yet , the task of
designing and integrating interfaces into applications
remains difficult. Although WMS provide libraries of
low and intermediate level routines (window creation ,
getting mouse coordinates , window redrawing .. .), a
lot of work is still needed to combine all the functions in
the required manner. Moreover, WMS are usually
tailored to one type of graphic workstations [GETI86,
SUN] and interfaces are rarely transportable .
Specialized languages built over WMS [BRAC87,
MICH87] share their characteristics. UIMS are more
powerful and often include specialized languages and
editors [HILL86 , OLSE86] to specify the appearance
and functionality of the interface. Nevertheless, they
tend to separate the development of the application
from that of the interface to the detriment of the
application.

KEYWORDS

User Interfaces, Graphics, Macintosh, Interface Server

Graphics Interface '88

y

I
~

The basic idea for TeleMac arose from a class
assignment given 3 years ago. For an AI course,
students implemented about a dozen "expert systems"
in a variety of languages and these were evaluated by
their peers. It was painfully obvious that all the systems
suffered from poor interfaces and this problem
prevented a fair and rapid evaluation of the
applications. Furthermore, irrespective of domain of
expertise (urinary infection, identification of
mushrooms or design of parks), the requirements
were roughly similar in all cases: multiple windows,
menus, mouse driven editing and graphics.

As a result, we started research on the best ways to
implement a system which could provide state of the
art graphic interfacing with a minimum of constraints
on application programs. In particular, the interface
should be easy to program and easy to couple to
applications irrespective of the implemention language
or hardware. This led to two decisions. The first was to
use the Macintosh computer as the support for the
interface itself. The second was to implement the
interface as a smart terminal controlled remotely via an
RS232 link. This eliminates the problems of
hardware/software compatibility between the
application and its interface; however, it introduces the
problem of distributed processing to provide a high
bandwidth interaction between the user and the
interface whilst reducing the bandwidth required
between interface and application.

The system described here is the third version of our
interface. The first attempt was based on the use of
Apple's MacWorkStation™, a remote-controlled
toolbox. MacWorkStation suffered from two major
flaws: it was hermetic (and could not be augmented)
and it used a sophisticated communication protocol
needing a large driver to be linked with the application
on the host machine. The second attempt was object
oriented and based on MacApp; this was dropped
when a better implementation tool (Lightspeed Pascal)
became available. The third version is a complete
redesign based on our explicit implementation of
object hierarchies.

The paper is structured as follows. First, we present an
overview of TeleMac. Then, we illustrate its
functionality by presenting two applications: an add-on
interface to GENIAL, a natural language interface, and
a small interactive graph editor. Finally, important
design decisions are discussed and some
implementation details are given.

161

Overview of TeleMac

TeleMac starts out by acting as a terminal emulator
(Figure 1) with a DV Window. This allows a user to
log 0 n to the system of h is choice and start an
application. The application then communicates with
the user via simple read/write instructions as it were
addressing an alpha-numeric terminal. However, there
is a simple convention which distinguishes simple
output which is merely displayed in the TTY window
from TeleMac commands which invoke the special
interfacing functions: any line which starts with the
character ")" is interpreted as a command. The protocol
has been deliberately kept simple and all information
is transmitted as printable characters.

In the example shown in Figure 1, the application is a
Prolog program which creates a window and writes
some text into it. The DV window shows exactly what
the application sent to achieve this as well as the
replies from TeleMac. The format for messages sent by
the host is a one line header

<LF> ")" <receiver_id> <sender_id>
<method_number> <# of parameters>

followed by one line per parameter. The format of
messages sent by the Macintosh is tailored to the
host's application language. The first message which
creates the window is from object 1000 (the host) to
object 1 (the main object on the Macintosh). Method
4 is the NEW message with 2 parameters: in this case,
the window type (7) and its title, "A Text Window". The
next line:

[1000 , 1 ,0 , 13].

Iros22 I09In: 9_
PasSWOf""d:
Sun UliIX 4 .2 Release 3 . 4EXPORT < IROS20) 02 :

• prolOO
Qulntus Prolo9 Rel.as. 2.2 (Sun-2, Unix 3 . 4>

1 7- ('eKa.ple . pro·1.
(consulting lir0s2/~/exaoople . pro ... J

~. c===~~~~~~

1 7- go .
) 1 1000 4 2
7
1- R TeKt ~ I ndo.
I : (1000,1,0, 181.

) 18 1000 43 1
I .as .,.Ill.n on t.he window

Figure 1: Communication eIampie .

Graphics Interface '88

is in the fermat ef a Preleg list. It is the reply frem ebject
1 to. ebject 1000; '0' is the cede fer a reply message
and 18 is the ebject number ef the newly created
windew. Thereafter, the applicatien can cemmunicate
directly with this windew by sending messages to.
ebject 18. This is what happens at the bettem ef the
TTY Windew with methed 43 which adds text in
windew 18. To. speed up eperatien and unclutter the
screen, it is pessible to. hide the TTY windew.

This small example shews that an applicatien ceuld
drive TeleMac with simple standard 10 cemmands
(write/n, read/n). Altheugh such eperatien is pessible,
it is preferable to. go. threugh an interface driver en the
applicatien's side to. simplify the task. Mere details will
be given later en beth the pretecel and the driver.

TeleMac's ease ef use is partly due its use ef the
Macintesh resource cencept. A resource is a data
structure which describes graphic ebjects. The
Macintesh uses this feature to. define windews, fents,
pictures as well as many ether things. Reseurces are
created en the Macintesh using reseurce editers
(Dia/og Creator, REdit, ResEdit ...) and kept in libraries
called reseurce files. Applicatiens retrieve these
reseurces by their reseurce identificatien numbers.
Mest eften, TeleMac will call upen reseurces stered
lecally (i.e. calling dialeg #401) instead ef
dewnleading the definitiens. TeleMac can also.
manipulate lecally stered text files. This is particularly
useful with large files ef HELP infermatien.

New we shew seme applicatiens ef TeleMac.

Instrumenting an existing application

Here we describe hew a large existing applicatien,
GENIAL, was medified to. use TeleMac. This was an
impertant test in verifying that a suitably designed
interface ceuld previde pewerful interfacing with a
minimum ef extra programming. GENIAL is a natural
language database interface system cemprising 5000
lines ef Preleg [PELL86a, PELL86bj. Initially, Genial
was designed fer a line-o.riented frent-end. The user
types his request in plain french and the pregram
answers it. GENIAL can also. give infermatien en the
request's parse tree and semantic transfermatiens.
One fundamental preblem with this appreach is that
the infermatien tends to. everflew the screen: Anether
preblem is that GENIAL's interactive help system is
based en a strict keywerd match. In a natural
language interface where ene may ask a questien in
many ways, we felt it was tee restrictive to. ask the user
to. type syntactically fixed cemmands to. ebtain Help
[DESA87j. We'll new see hew we medified GENIAL to.
give it a much friendlier user interface.

162

We had three cencerns in the medificatien precess: a)
to. add cede to. the applicatien relatively fast, b) the
added cede sheuld be minimal se as net to. ebscure
the applicatien's cede, and c) mest ef all, the
medificatiens sheuld be useful and practical. In fact,
the werk teek abeut two. weeks including the initial
design and implementatien ef the driver and much
werk en TeleMac itself. Abeut ene hundred lines ef
Preleg cede, excluding the stand-alene driver, were
actually added to. GENIAL plus a few glebal
medificatiens (fer example changing write/n's fer
w_write/n's to. eutput text into. windews).

The first step was to. implement a separate windew fer
each type ef eutput (Help, trace, syntax tree, etc ...). As
shewn in Figure 2, this allews the user to. selectively
make visible er hide the windews whese eutput he
wanted to. see. To. simplify the task ef redirecting
GENIAL's eutput to. windews we implemented reutines
mimicking these feund in Preleg and many ether
languages (i.e . Preleg's write predicate became
w_write, the first w standing fer windew). We also.
supperted the cencept ef a default eutput windew to.
keep the generic status ef GENIAL's lew level eutput
reutines. To. handle request input frem the user we
used a medeless request asking dialegue which ceuld
be pushed aside by the user and breught back to. frent
screen by GENIAL whenever it was ready to. accept
input from the user.

'n' ...
...

do' -"
do' , ..

-I

Vo lel la I ls\. dIi • .,u tu cM la

,.

.
1\
\I

Figure 2 : Windowed GENIAL
Different windows for different information channels

Secendly, GENIAL's HELP system was redesigned to.
be easier to. use with TeleMac (Figure 3). A text editing
windew (AIDE) is created within which a lecal cepy ef
the HELP file is epened. The user can screll through
the file at will to. search fer tepics. But the additien ef a
menu dialegue (Sujets) with the names ef certain
attainable tepics permits the user to. brewse faster. On
selectien ef a tepic name, a simple repesitiening ef the
text within the windew brings the infermatien in sight.
A free text search was even implemented to. effer mere
detailed browsing. Text repesitiening and searches
are dene lecally en the Macintosh upen request from
the host.

Graphics Interface '88

Uot c t que I ques ex..., ' U de ptw-Gsu: recont"'IUIU:

c:a\egor lu . requete
Indl quez-.o I I •• ~. 1 commands
Quels .on\ 'U nou cOlllU'tS? edition
~~~deob~~c:.u. I •• ex.-p lu c~. err. morphologlque 
Llsta-ol t.ous I •• .ob COfY'lUS . 8rT.lyntoHlque 
~~t: ~~~!~~ .ots? err.lemontlqu8 

~!~ !::!:~'I" pr"M l cals: . :~~:se~ 
Dornu-.ol toys la opet'Qt...... . stotut 

\.,;'i:nd;:;' ......... ;;;~'~'.:: .. ...:.~:..:...:.t:::our:.-;;·;;qu~' .;_;;'~ ... ri'on;:;:t....:;' .. =---;;;~ =~~::.:n 

lont lel predltats. 

Figure 3: GENIAL 's help system 
Note the fr ee text search item ",Cherche r>" 

Finally, there were some options in GENIAL to 
indicate, among other things, the kind of output wanted 
or if a journal of the session should be kept. Those too 
were redesigned using simple modal dialogs with 
check boxes to indicate the state of an option , The 
dialogs were called by selecting an option in GENIAL's 
menu (the same menu where the help topics 
dialogue could be requested) . Again this was as easy 
to implement : the application simply invokes a 
specified dialogue from a Macintosh resource file and 
analyzes the list of item values returned by TeleMac. 

Soh .. tlon( s) : 
conc:a\W'IG\. 
I ......... 
.. ~_I I.t 

~Rfncher l'Arbre syntagmatlque 

o Rfnther lel formulal loglquel 

181 Arncher le •• olutlon. 

D Arncher le lemp. 

Figure 4: User status dialogue 

From graphic objects to graphs 

The previous section emphasized the use of multiple 
text windows , menus and mouse-driven editing. 
TeleMac also supports direct manipulation of graphic 
objects. For example, the standard Macintosh primitive 
figures ( rectangles , ovals , lines, icons, etc .. . ) can be 
drawn remotely. Furthermore, these figures are 
implemented as local objects with special attributes 
indicating permissible user actions. The attributes 
include active, moveable and copyable which specify if 
an object can be moved or be duplicated as a result of 
mouse dragging . In all cases, the application is 

163 

informed of such actions by messages from the 
interface and can react through event handling 
routines. Objects can be moved by the application to 
provide a limited form of animation. 

A very important application of graphics, and one we 
wished to support early on, is the display and 
manipulation of networks or graphs. Already with 
graphic objects , an application can build such graphs 
but we expected that users would like to move arcs 
and nodes at will for a better view. If each graphic 
element must be controlled individually and remotely , 
this kind of manipulation requires a lot of information 
transfer between application and interface. To handle 
the direct manipulation of networks, we implemented a 
specialization of the graphic window, the grapher 
window, whose role is to manage and display graphs. 
It maintains local information on the graph's 
connectivity , redraws arcs when the user moves nodes 
and reports to the application any user actions on the 
elements (nodes or arcs). To maintain the integrity of 
the displayed graphs, TeleMac considers arcs and 
nodes to be special objects : they are not directly 
accessible from the application , rather, the application 
must ask the window to create and manipulate them. 

Figure 5: GraphEdit, a simple interactive graph editor 
d is play ing the arc ty pe menu dialogue 

At the time we developed the grapher facilities, there 
was no ready-made application in need of this type of 
interface. As a result, we decided to build a small 
program to act as a test-bed. This was GraphEdit, a 
small interactive graph editor comprising less than a 
hundred lines of Prolog code ( excluding the driver ). 
An abridged version may be found at the end of this 
paper (Listing 1). The idea was to give the user a set 
of tools to construct a relational type graph with nodes 
and possibly tagged arcs. Figure 5 shows the Editor 
interface. Available tools are represented by an iconic 
menu (top-left). They include Node and Arc creation 
and destruction (Kill) . A tool is invoked by clicking on 
its icon. Thereafter, the user is prompted for further 
information such as names of nodes or types of arcs 
(shown in Figure 5 ). New nodes are placed in the 
middle of the drawing for the user to place where he 
wants. Arcs are drawn from the clicked source to 

Graphics Interface 'SS 



clicked destination. At any time, the user may move the 
nodes and its arcs will track the movement 
automatically. A menu ( titled "grapher" ) is provided 
with options to save the current graph to a file, to 
restore a saved one or to quit. 

GraphEdit makes good use of resources for dialogue 
templates and icons. A resource file ('gedit.appl.rsrc') 
is opened at application initialization time (listing 1, 
line 1). Then the grapher window is created specifying 
an event handling routine, ge_c/ick. Finally the tools 
icons and the menu are installed (line 2) before calling 
the event loop to wait for user actions. It must be 
understood that graphic objects and graph elements 
are numbered sequentially from 1 upon creation. The 
core of the program is the event handling function 
ge_click (line 6). Here click events sent by TeleMac 
are analyzed and reacted to accordingly. If the action 
specified is a click or drag (copy) (lines 6 and 7) on 
one of the tools then a node or arc is created or 
deleted else the default click routine for graph 
elements gr_bid which maintains the correctness of 
the local nodes' positions is called (line 8) . Simple 
driver procedures save the graph from this information 
or restore it from a file (lines 3 and 4). 

Figure 6: Hierarchical structure of 
objects within Teh!mac 

Recently , a more powerful editor supporting node and 
arc attributes for Entity-Relational Modelling has been 
implemented using TeleMac's grapher facilities . 

Inside TeleMac 

The Macintosh part of the program is comprised of 
about 9000 lines of LightSpeed Pascal™ code. 
Among the first aspects of TeleMac to be established 
were the syntax of the messages to be exchanged and 
the fact that the program should be structured along 
the object paradigm ( similar to [JACK87)). The main 
class of the system is the Object class which serves the 
purpose of memory allocator for objects. Objects are 
the substrate for Actors and Linkages. Actors form a 
SUPERCLASS for all objects directly controllable by 

164 

the host application. Lists are implemented on the 
Simula-67 model and Linkage is the SUPERCLASS 
for Links and Heads. Links and Heads are themselves 
specialized into message parameters and heads, used 
in the Macintosh-host communication, and Picts and 
Pictures. Picts are the primitive graphic objects which 
are assembled into Pictures owned by graphic 
windows. Actors come in two categories, Dialogs and 
Windows. Windows are specialized in two major 
classes, Text Editing and Graphic. Text Editing 
Windows not only handle text editing and scrolling but 
also file manipulation and string searches. Graphic 
Windows handle the creation, destruction selection 
and manipulation of the Picts object they own via their 
Picture. These facilities may be invoked either by the 
user or the application. There's also the TTY class, a 
specialization of the text editing window which is 
responsible, through its only instantiation, the TTY 
Window, for the communication between the 
Macintosh and the application at rates between 300 
and 9600 bauds. And finally there's the Grapher and 
the Graph Element classes, the former a descendent of 
the Graphic Window handling the graph's connectivity, 
the latter a specialization of the Pict class representing 
nodes and arcs . 

.---f---. .......... , ...... " .. . 

Figure 7: Communication within the 
TeleMac system 

Two object instances also play an important role in 
TeleMac. We've already mentioned the TTY Window 
object ; the other is the MainActor which handles the 
creation of new objects by the application and returns 
their assigned identification number. The Main Actor 
also has the responsibility of non object facilities like 
menu allocation and item selection reporting , and 
speech synthesis. 

Communication between the objects is the result of 
call ing one of a series of routines that dispatches the 
message to the invoked object. Communication from 
the objects to the host is done by sending messages to 
the TTY Window object which outputs them to the 
serial communication line. Messages incoming from 
the host are handled by the same TTY object , 
transformed into a message lists and sent to the 
destination object. The syntax of the external 
messages, those between the Macintosh and the host, 
is a problem of upmost importance. The messages to 
the Macintosh objects have a fixed syntax easy to 

Graphics Interface '88 



implement in any programming languages. First a 
header line is sent followed the parameters each on a 
separate line. The syntax of each one depending on 
the invoked method. To ease the task of analyzing 
incoming messages by the host, their syntax should 
match the high level input facilities of the language 
used. Two languages are now supported by TeleMac; 
Prolog and Lisp. 

We stated before that an application could control 
TeleMac directly via write and read instructions. Figure 
1, showed how it could be done. It also indicates the 
problems faced with this approach: 

- The user should have high-level access to the 
objects of the interface. The message syntax is quite 
simple but nonetheless strict. Messages must be built 
and analyzed carefully even if this syntax is suited to 
the language used ( i.e. lists for Pro log and Lisp ). 

_ To avoid the handling of cryptic messages by the 
application there should be a database of the objects 
created and their attributes (i.e. position, name ... ). 
The maintenance of such a local model should not be 
left to the application. In the previous example, the 
window was referred to by a given name and not its 
numeral identification. 

- User interaction with a graphic interface is 
asy~chr?n~uS by n~ture. User's actions guide the 
application s execution of the application. For this 
reason the Macintosh's toolbox is event oriented in its 
design. There must be an event loop cycling, waiting 
for events and dispatching them to appropriate 
handlers. Remote control of the interface only means 
that these events, or rather their TeleMac treated 
counterparts, must be sent through the link to the host. 
There, they may still arrive at any time and the 
application must r~ceive them. Thus an event loop 
has to be present In the driver which will receive the 
TeleMac events from the Macintosh and execute 
application specified routines to handle them. 

!hese considerations lead us to develop a software 
Interface or "driver" which accepts high-level requests 
from the application and handles the coded 
~o~munication on the physical link. The brevity of the 
listing of the GraphEditor which uses the driver shows 
the advantages of the "driver" approach. The current 
Prolog driver is a full-fledged implementation 
consisti.ng of more than one hundred predicates 
supporting all remote functionalities of TeleMac on 
less than one thou~and lines of code. For example, 
two of these predicates, (create tewindow and 
w_ write ) could be used for the same results as 
illustrated in figure 1. The diver is modular and only 
the parts req~i~ed need be loaded. A programmer's 
manual descrlbmg the system is available [GAGN87j. 

165 

Conclusions 

TeleMac has shown that it is possible to provide a 
state-of-the-art graphic interface that can be integrated 
easily into existing applications. TeleMac has been 
found a useful adjunct to the GENIAL2 natural
language system and is now being used for a 
conceptual editor and an expert system. 

Implementing an interface as a remote-controlled 
program is useful for two reasons. First, it frees the 
interface from the necessity to use hardware and 
software compatible with that of the application. 
Secondly, the low bandwidth of the link imposes a 
clean functional decomposition between the 
application and the interface. This opens the way to 
development of general-purpose independent 
interface servers. 

The Macintosh proved to be a powerful support for the 
interface. We made full use of its graphic primitives, 
toolbox functions and object templates (resources). 
However, it was necessary to extend these functions, 
for example with the notion of connected graphs, and 
to simplify the interface programming by providing 
higher level operations with many defaults. 

TeleMac is a useful bit of software, but it is also an 
experimental vehicle and it can be expected to evolve. 
At present, we are studying ways to introduce more 
parallelism to allow independent processes in the 
application to communicate asynchronously with their 
display counterparts in the interface. We are also 
considering ways to distribute processing by 
down loading "programs" to be interpreted by the 
interface. 

Acknowledgements 

This work was supported in part by the Natural 
Science and Engineering Research Council of 
Canada under Operating Grant A7699. 

Graphics Interface '88 



References 

[BRAC87] BRACHMAN, B., GProlog User Manual Department of 
computer Scjence, Univers~y of Br~ish Columbia, Vancouver, 

1987. 

[COUT87] COUTAZ, J., The constructjon of User Interfaces and the 
Object Paradjgm Prpc European Conference of Object
Orjented programmjng, Paris, Bigre+Globule, n° 54, Juin 

1987, Pub!. IRISA, Campus de Beaulieu, 35042 Rennes, 
France, pp.135-144. 

[DESA87] DESAI, B., C., FRASSON, C., VAUCHER, J., Integrated 
Intelljgent Interfaces for OWce Informatjon Systems. to 

appear in the proceedings of IEEE Compint '87, Montreal, 
November 9-13 1987. 

[GAGN87] GAGNON, G., VAUCHER, J., UleMac Manuel d'Utilisaljon 

Departement d'lnformatique et de Recherche Op9rationnelle, 
Universite de Montreal, Pub!. W 191. 

[GEn86] GETIYS, J., SCHEIlFlER, R. W., The X Wjndow System, 

ACM Transactions on Graphics, Vo!. 5, No. 2, April 1986, pp. 
79-109. 

[GREE86] GREEN, Mark, A Survey of Three Djalogue Models ACM 
Transactions on Graphjcs. Vo!. 5, No, 2, July 1986, pp. 244-

275. 

[HIlL86] Hill, R. D., Supoortjng Concurrencv Communjcatjon and 
Synchronjzatjon jn Human-Computer Interactjon -the 
Sassafras UIMS ACM Transactions on Graphics, Vo!. 5, No. 

3, July 1986, pp. 179-210. 

[HULLB7] HULLOT, J.M., SOS Interface un generateur d'jnterfaces 
homme-machjne Actes des Journges AFCET' Langages 
Orjent9s Objet. Bigr8+Globule, 48, Pub!. IRISA, Campus de 

Beaulieu, 35042 Rennes, France, pp.69-7B. 

[JACKB7] JACKY, J. P., KALET, I. J., An Object-Orjented Programmjng 
Djscipljne For Standard Pascal, Communications of the ACM, 

Vo!. 30, No. 9, September 19B7, pp.772-776. 

[MICHB7] MICHARD, A., MONCEYRON, E., Le Systeme Graphjgue 
ASH-Prolog et Son Utjlisatjon Pour le Prototypage Rapjde 
d'lnterface Homme-Machjne, INRIA-Centre de Sophia

Antipolis. 

[OlSEB6] OLSEN, D., R. JR., MIKE' The Menu Interactjon Kontrol 
Enyjronment, ACM Transactions on Graphics, Vo!. 5, No. 4, 

October 19B6, pp. 31B-344. 

[PELLB6a] PELLETIER, B., VAUCHER, J., GENIAl' Un Generateur 
d' lnterface en Langue Naturelle, Proceedings, Sixth Canadian 

Conference on Artificial Intelligence, Presses de l'Un ivers~9 

du Quebec, Montreal, 19B6, pp. 235-239. 

[PELLB6b] PEllETlER, B. Systeme d'lnt9rrogatjon de Bangue de 
Donm\es en Langue Naturelle, Document de travail #177, 

Departement d'lnformatique et de Recherche Op9rationnelle, 
Universite de Montreal, mars 19B6. 

[SUN] Sun Microsystem, NeWS Technjcal Reoort. 

166 

Graphics Interface '88 



167 

Listing 1. GraphEdit 

(1) graphed~ :-
In It_lnte rface('gedit .appl. rsrc'), 
create_grapher( ge, 'Graph Editor', docZW, [150, 50, 500, 300), 

default, default, ge_click), 

(2) add_plcture( ge, Icon(7, 441, [5, 5), 'Noeud' ) ), 
addJllcture( ge, Icon( 1,442, [5, 55), 'Arc' ) ), 
addJllcture( ge, Icon( 1, 443, [5, 105),'KiII' ) ), 
add_plcture( ge, framerect( 0, I, [2 , 2, 40, 162) », 
Install_menu( gemenu, 5, 'grapher', ['Save To File .. .','Load From File .. .','(-','Quit'), 

[geSave, geLoad, m_bid, geQuit) ), 

r handles save menu request by saving the graph on file ., 
(3) geSave( Wid, Item) :-

get_modal_dlalog( 400, [I, _, ~ Text I A) ), %% True if buNon I, OK, was pressed 
graph_to_flle( ge, Text ). 

r handles load menu request by getting a graph from a file ., 
(4) geLoad( Wid, Item) :-

get_modal_dlalog( 400, [1, _, _, Text I A) ), 
clear_wlndow( ge ), 

% % reinstall icon tools ( 4 lines) 
fIIe_to_graph( ge, Text ). 

%% ask for a file name 
%% destroys the window's contents 

r handles quit menu request and return to Prolog's top level·' 
(5) geQuit( Wid, Item) :-

remove_menu( gemenu ), 
klll_wlndow( ge ), 
finish_event_loop . 

r handles mouse events w~hin the grapher window·' 
ge_click( GAid, Parms ) :-

get_gwlndow( GAname, GAid, _ ), 

%% terminates the event loop 

(6) ( Interface_g_actlon( select, Parms, NbClick, ObjlD, X, Y ) -> %% an object was selected 
( ObjlD _ 1 -> %% the add node icon was hit 

get_modal_dlalog( 400, [1, ~ _, Text I A) ), 
add_node( GAname, rect, 40, 40, Text) 

; ObjlD _ 2 -> %% the add arc icon was hit 
get_menu_dlalog( 401, Hit ), %% ask for arc type with iconic dialog 
( H~ >= 4, H~ =< 6 -> %% if tagged, ask for a name 

get_modal_dlalog( 400, [1, _, ~ Text I A) ; Text ~"), 
get_rubbeUlne( GAname, X1 , Y1, X2, Y2 ), 

%% find the nodes ObjlD1, ObjID2, under the line ends (5 lines) 
ArcType is H~ + 3, 
add_arc( GAname, ArcType, ObjlDl, ObjlD2, Text) 

; ObjlD _ 3 -> %% the kill icon was hit 
get_rubbeUlne( GAname, X1, Y1, X2, Y2 ), 
flndJllct( GAname, X1 , Y1, ObjlD1 ), 
( get_node( GAname, ~ _, -' -' ~ ObjlD1 ) -> %% is it a node? 

deLnode( GAname, ObjlD1 ) 
; get_arc( GAname, ~ ~ _, ~ ObjlDl ) -> %% is it an arc? 

deLarc( GAname, ObjlDl ) ) ) 
(7) ; Interface_g_actlon( copy, Parms, NbClick, 1, NewObjlD, X, Y), %% the node icon was copied 

%% delete the copy and add the new node ( 3 lines ) 
(8) ; gr_bld( GAid, Parms ». %% driver's default handling routine to update the local connectivity 

Graphics Interface '88 


