TéléMac:
A Remote-controlled User Interface Server

Gilbert Gagnon
Jean Vaucher

Département d'Informatique et de Recherche Opérationnelle
Université de Montréal
CP 6128, Succ "A" Montréal, Québec
H3C 3J7
E-Mail: gagnon@iro.udem.cdn

ABSTRACT

Modern software is now expected to be used via
sophisticated highly-interactive graphic interfaces.
Unfortunately, the development of these interfaces
requires much investment in both hardware and
programming effort. In the paper, we describe
TéléMac, a general-purpose, user interface "server
which runs on a Macintosh™ micro-computer but is
remote-controlled via a simple RS-232 connection by
an application running on a different host computer.
TéléMac provides most of the typical Macintosh
features such as multiple windows, mouse selection,
graphics, dialogues and voice synthesis. It also
implements some high level concepts such as
connected graphs (not graphics) above and beyond
the Macintosh primitives. Most of all, it was designed to
be easy to integrate into application programs.

In the paper, we discuss the design of TéléMac, give
examples of its use and outline its implementation.

RESUME

Les logiciels modernes se doivent d'utiliser des
interfaces usagers graphiques sophistiquées et
hautement interactives. Malheureusement, le
développement de ces interfaces demande un grand
investissement autant en matériel qu'en effort de
programmation. Ce papier décrira TéleMac, un
"serveur" d'interfaces usagers générales fonctionnant
sur un micro-ordinateur Macintosh™ contréle, via un
simple lien RS-232, par une application en exécution
sur un ordinateur héte. TéléMac donne accés a la
pluspart des possibilités du Macintosh telles fenétres
multiples, sélections avec la souris, objets graphiques,
dialogues et synthése de la voix. Il implante aussi
quelques concepts de plus haut niveau, tel réseaux
graphiques, par-dessus les primitives Macintosh. Plus
important encore, il a été congut pour faciliter son
intégration aux programmes d'applications.

Nous parlerons ici de la conception méme de
TéléMac, nous donnerons des exemples d'utilisations
et tracerons quelques lignes de son implantation.

Introduction

A user interface can be thought to be a control panel
from which one can invoke an application's functions,
and consult and modify its parameters and data
[HULL87] . Just as control panels in airplanes have
evolved from simple broomsticks and fuel gauges to
fully computerized instruments, user interfaces have
also come a long way from line-oriented input and
output to more convivial schemes based on windows,
icons and menus. Unfortunately, the implementation
of such user interfaces is generally a difficult
undertaking with major impact on the size and
complexity of the interfaced application's code.

Various tools meant to simplify this task are now
evolving in the area of Computer Human Interfaces
(CHI). Some programming languages include graphic
functions. Window Management Systems (WMS) offer
windowing facilities through sets of subroutines. There
is now also research on "User Interface Management
Systems" (UIMS) to provide whole development
environments for interfaces [COUT87]. Yet, the task of
designing and integrating interfaces into applications
remains difficult. Although WMS provide libraries of
low and intermediate level routines (window creation,
getting mouse coordinates , window redrawing...), a
lot of work is still needed to combine all the functions in
the required manner. Moreover, WMS are usually
tailored to one type of graphic workstations [GETT86,
SUN] and interfaces are rarely transportable.
Specialized languages built over WMS [BRAC87,
MICH87] share their characteristics. UIMS are more
powerful and often include specialized languages and
editors [HILL86, OLSES86] to specify the appearance
and functionality of the interface. Nevertheless, they
tend to separate the development of the application
from that of the interface to the detriment of the
application.

KEYWORDS

User Interfaces, Graphics, Macintosh, Interface Server

Graphics Interface '88

e

The basic idea for TéléMac arose from a class
assignment given 3 years ago. For an Al course,
students implemented about a dozen "expert systems”
in a variety of languages and these were evaluated by
their peers. It was painfully obvious that all the systems
suffered from poor interfaces and this problem
prevented a fair and rapid evaluation of the
applications. Furthermore, irrespective of domain of
expertise (urinary infection, identification of
mushrooms or design of parks), the requirements
were roughly similar in all cases: multiple windows,
menus, mouse driven editing and graphics.

As a result, we started research on the best ways to
implement a system which could provide state of the
art graphic interfacing with a minimum of constraints
on application programs. In particular, the interface
should be easy to program and easy to couple to
applications irrespective of the implemention language
or hardware. This led to two decisions. The first was to
use the Macintosh computer as the support for the
interface itself. The second was to implement the
interface as a smart terminal controlled remotely via an
RS232 link. This eliminates the problems of
hardware/software compatibility between the
application and its interface; however, it introduces the
problem of distributed processing to provide a high
bandwidth interaction between the user and the
interface whilst reducing the bandwidth required
between interface and application.

The system described here is the third version of our
interface. The first attempt was based on the use of
Apple's MacWorkStation™, a remote-controlled
toolbox. MacWorkStation suffered from two major
flaws: it was hermetic (and could not be augmented)
and it used a sophisticated communication protocol
needing a large driver to be linked with the application
on the host machine. The second attempt was object-
oriented and based on MacApp; this was dropped
when a better implementation tool (Lightspeed Pascal)
became available. The third version is a complete
redesign based on our explicit implementation of
object hierarchies.)

The paper is structured as follows. First, we present an
overview of TéléMac. Then, we illustrate its
functionality by presenting two applications: an add-on
interface to GENIAL, a natural language interface, and
a small interactive graph editor. Finally, important
design decisions are discussed and some
implementation details are given.

161

Overview of TéléMac

TéléMac starts out by acting as a terminal emulator
(Figure 1) with a TTY Window. This allows a user to
logon to the system of his choice and start an
application. The application then communicates with
the user via simple read/write instructions as it were
addressing an alpha-numeric terminal. However, there
is a simple convention which distinguishes simple
output which is merely displayed in the TTY window
from TéléMac commands which invoke the special
interfacing functions: any line which starts with the
character ")" is interpreted as a command. The protocol
has been deliberately kept simple and all information
is transmitted as printable characters.

In the example shown in Figure 1, the application is a
Prolog program which creates a window and writes
some text into it. The TTY window shows exactly what
the application sent to achieve this as well as the
replies from TéléMac. The format for messages sent by
the host is a one line header

<LF> ")" <receiver_id> <sender_id>
<method_number> <# of parameters>

followed by one line per parameter. The format of
messages sent by the Macintosh is tailored to the
host's application language. The first message which
creates the window is from object 1000 (the host) to
object 1 (the main object on the Macintosh). Method
4 is the NEW message with 2 parameters: in this case,
the window type (7) and its title, "A Text Window". The
next line:

[1000,1,0,13].

& File Edit Windows
TIY Window

iros22 login: gagnon
Password:
Sun UNIX 4.2 Release 3.4EXPORT (IR0S20) ®2:

% prolog
Quintus Prolog Release 2.2 (Sun-2, Unix 3.4)

| 2= [‘example.pro'l.
[consulting /iros2/gagnon/example.pro...]

yes
[EO=== n Text Window ==

| ?- go.

> 11000 4 2 | was written on the window
2

1= A Text Window Y
|: 11000,1,0, 181.

> 18 1000 43 1

| was written on the window

yes
| ?-

Figure 1: Com munication example.

Graphics Interface '88

is in the format of a Prolog list. It is the reply from object
1 to object 1000; '0' is the code for a reply message
and 18 is the object number of the newly created
window. Thereafter, the application can communicate
directly with this window by sending messages to
object 18. This is what happens at the bottom of the
TTY Window with method 43 which adds text in
window 18. To speed up operation and unclutter the
screen, it is possible to hide the TTY window.

This small example shows that an application could
drive TéléMac with simple standard IO commands
(writeln , readin). Although such operation is possible,
it is preferable to go through an interface driver on the
application's side to simplify the task. More details will
be given later on both the protocol and the driver.

TéléMac's ease of use is partly due its use of the
Macintosh resource concept. A resource is a data
structure which describes graphic objects. The
Macintosh uses this feature to define windows, fonts,
pictures as well as many other things. Resources are
created on the Macintosh using resource editors
(Dialog Creator, REdit, ResEdit...) and kept in libraries
called resource files. Applications retrieve these
resources by their resource identification numbers.
Most often, TéléMac will call upon resources stored
locally (i.e. calling dialog #401) instead of
downloading the definitions. TéléMac can also
manipulate locally stored text files. This is particularly
useful with large files of HELP information.

Now we show some applications of TéléMac.

Instrumenting an existing application

Here we describe how a large existing application,
GENIAL, was modified to use TéléMac. This was an
important test in verifying that a suitably designed
interface could provide powerful interfacing with a
minimum of extra programming. GENIAL is a natural
language database interface system comprising 5000
lines of Prolog [PELL86a, PELL86D]. Initially, Génial
was designed for a line-oriented front-end. The user
types his request in plain french and the program
answers it. GENIAL can also give information on the
request's parse tree and semantic transformations.
One fundamental problem with this approach is that
the information tends to overflow the screen. Another
problem is that GENIAL's interactive help system is
based on a strict keyword match. In a natural
language interface where one may ask a question in
many ways, we felt it was too restrictive to ask the user
to type syntactically fixed commands to obtain Help
[DESA87]. We'll now see how we modified GENIAL to
give it a much friendlier user interface.

162

We had three concerns in the modification process: a)
to add code to the application relatively fast, b) the
added code should be minimal so as not to obscure
the application's code, and c) most of all, the
modifications should be useful and practical. In fact,
the work took about two weeks including the initial
design and implementation of the driver and much
work on TéléMac itself. About one hundred lines of
Prolog code, excluding the stand-alone driver, were
actually added to GENIAL plus a few global
modifications (for example changing writeln's for
w_writeln's to output text into windows).

The first step was to implement a separate window for
each type of output (Help, trace, syntax tree, etc...). As
shown in Figure 2, this allows the user to selectively
make visible or hide the windows whose output he
wanted to see. To simplify the task of redirecting
GENIAL's output to windows we implemented routines
mimicking those found in Prolog and many other
languages (i.e. Prolog's write predicate became
w_write, the first w standing for window). We also
supported the concept of a default output window to
keep the generic status of GENIAL's low level output
routines. To handle request input from the user we
used a modeless request asking dialogue which could
be pushed aside by the user and brought back to front-
screen by GENIAL whenever it was ready to accept
input from the user.

& File Edit Windows Opthons

Arbre Syntagmatique
Arbre d’'analyse:

TTY Window
Aide

Int base: :

qu
det

Le systeme comporte 2 bases de donnees:

Is
“,:‘. = une meta-base concernant le systeme lui-mene
on - une base de donnees sur un sous—ensemble de
dat
(o Uoici la |iste des entites de la meta—base
ncom
ne - categorie
operateur £ _chaing

[Reponse
Solution(s):
-

- +

<« »

a Posez votre question.

Quels sont les operateurs. @
0K

Figure 2: Windowed GENIAL
Different windows for different infor mation channels

Secondly, GENIAL's HELP system was redesigned to
be easier to use with TéléMac (Figure 3). A text editing
window (AIDE) is created within which a local copy of
the HELP file is opened. The user can scroll through
the file at will to search for topics. But the addition of a
menu dialogue (Sujets) with the names of certain
attainable topics permits the user to browse faster. On
selection of a topic name, a simple repositioning of the
text within the window brings the information in sight.
A free text search was even implemented to offer more
detailed browsing. Text repositioning and searches
are done locally on the Macintosh upon request from
the host.

Graphics Interface ’88

& File Edit Windows Options

Volc| quelques exeaples de phrases reconnues:

categories.

Indiquez-mno| les verbes ?

Quals sont les noms comauns?

Exenples de phrases.

Je desire obtenir tous les exemples connus.
Listez-mol tous les mots connus.

Nommez .

J'aimerals connaitre les predicats.
Donnez-mol tous les operateurs.
Indiquer-noi les operateurs qui manipulent les

concatenate_list

is.letter T;"L'ﬂw

o)

>1| Quels sont les predicats.

Figure 3: GENIAL's help system
Note the free text search item "<Chercher>"

Finally, there were some options in GENIAL to
indicate, among other things, the kind of output wanted
or if a journal of the session should be kept. Those too
were redesigned using simple modal dialogs with
check boxes to indicate the state of an option. The
dialogs were called by selecting an option in GENIAL's
menu (the same menu where the help topics
dialogue could be requested). Again this was as easy
to implement: the application simply invokes a
specified dialogue from a Macintosh resource file and
analyzes the list of item values returned by TéléMac.

& File Edit Windows Options
Ride
Reponse] ’

Solution(s):
concatenate
is_char Statuts de I'Usager
noke_char_| Ist

s

remove_spac
substring

TTY Window
T 11000, 42,0, 55401.
|: 11000,42,34, 5, 31.

qnmcner I'Arbre syntagmatique
I Afficher les formules logiques

X Afficher les solutions

[JAfficher le temps

Figure 4: User status dialogue

From graphic objects to graphs

The previous section emphasized the use of multiple
text windows, menus and mouse-driven editing.
TéléMac also supports direct manipulation of graphic
objects. For example, the standard Macintosh primitive
figures (rectangles, ovals, lines, icons, etc...) can be
drawn remotely. Furthermore, these figures are
implemented as local objects with special attributes
indicating permissible user actions. The attributes
include active, moveable and copyable which specify if
an object can be moved or be duplicated as a result of
mouse dragging. In all cases, the application is

163

informed of such actions by messages from the
interface and can react through event handling
routines. Objects can be moved by the application to
provide a limited form of animation.

A very important application of graphics, and one we
wished to support early on, is the display and
manipulation of networks or graphs. Already with
graphic objects, an application can build such graphs
but we expected that users would like to move arcs
and nodes at will for a better view. If each graphic
element must be controlled individually and remotely,
this kind of manipulation requires a lot of information
transfer between application and interface. To handle
the direct manipulation of networks, we implemented a
specialization of the graphic window, the grapher
window, whose role is to manage and display graphs.
It maintains local information on the graph's
connectivity, redraws arcs when the user moves nodes
and reports to the application any user actions on the
elements (nodes or arcs). To maintain the integrity of
the displayed graphs, TéléMac considers arcs and
nodes to be special objects: they are not directly
accessible from the application, rather, the application
must ask the window to create and manipulate them.

& File Edit Windows grapher

fii:
L,
5
iy, 2,
boisl
gg

E

4

4

Faiars

Figure 5: GraphEdit, a simple interactive graph editor

displaying the arc type menu dialogue

At the time we developed the grapher facilities, there
was no ready-made application in need of this type of
interface. As a result, we decided to build a small
program to act as a test-bed. This was GraphEdit, a
small interactive graph editor comprising less than a
hundred lines of Prolog code (excluding the driver).
An abridged version may be found at the end of this
paper (Listing 1). The idea was to give the user a set
of tools to construct a relational type graph with nodes
and possibly tagged arcs. Figure 5 shows the Editor
interface. Available tools are represented by an iconic
menu (top-left). They include Node and Arc creation
and destruction (Kill). A tool is invoked by clicking on
its icon. Thereafter, the user is prompted for further
information such as names of nodes or types of arcs
(shown in Figure 5). New nodes are placed in the
middle of the drawing for the user to place where he
wants. Arcs are drawn from the clicked source to

Graphics Interface '88

clicked destination. At any time, the user may move the
nodes and its arcs will track the movement
automatically. A menu (titled "grapher") is provided
with options to save the current graph to a file, to
restore a saved one or to quit.

GraphEdit makes good use of resources for dialogue
templates and icons. A resource file (‘gedit.appl.rsrc’)
is opened at application initialization time (listing 1,
line 1). Then the grapher window is created specifying
an event handling routine, ge_click. Finally the tools
icons and the menu are installed (line 2) before calling
the event loop to wait for user actions. It must be
understood that graphic objects and graph elements
are numbered sequentially from 1 upon creation. The
core of the program is the event handling function
ge_click (line 6). Here click events sent by TéléMac
are analyzed and reacted to accordingly. If the action
specified is a click or drag (copy) (lines 6 and 7) on
one of the tools then a node or arc is created or
deleted else the default click routine for graph
elements gr_bid which maintains the correctness of
the local nodes' positions is called (line 8). Simple
driver procedures save the graph from this information
or restore it from a file (lines 3 and 4).

structure of
Télémac

Hierarchical
within

Figure 6:
objects

Recently, a more powerful editor supporting node and
arc attributes for Entity-Relational Modelling has been
implemented using TéléMac's grapher facilities.

Inside TéléMac

The Macintosh part of the program is comprised of
about 9000 lines of LightSpeed Pascal™ code.
Among the first aspects of TéléMac to be established
were the syntax of the messages to be exchanged and
the fact that the program should be structured along
the object paradigm (similar to [JACK87]). The main
class of the system is the Object class which serves the
purpose of memory allocator for objects. Objects are
the substrate for Actors and Linkages. Actors form a
SUPERCLASS for all objects directly controllable by

Graphics Interface 88

164

the host application. Lists are implemented on the
Simula-67 model and Linkage is the SUPERCLASS
for Links and Heads. Links and Heads are themselves
specialized into message parameters and heads, used
in the Macintosh-host communication, and Picts and
Pictures. Picts are the primitive graphic objects which
are assembled into Pictures owned by graphic
windows. Actors come in two categories, Dialogs and
Windows. Windows are specialized in two major
classes, Text Editing and Graphic. Text Editing
Windows not only handle text editing and scrolling but
also file manipulation and string searches. Graphic
Windows handle the creation, destruction selection
and manipulation of the Picts object they own via their
Picture. These facilities may be invoked either by the
user or the application. There's also the TTY class, a
specialization of the text editing window which is
responsible, through its only instantiation, the TTY
Window, for the communication between the
Macintosh and the application at rates between 300
and 9600 bauds. And finally there's the Grapher and
the Graph Element classes, the former a descendent of
the Graphic Window handling the graph's connectivity,
the latter a specialization of the Pict class representing
nodes and arcs.

Driver

IMain

Actor

Window

-"F..‘
.“"
-

IApp icatio a’ bjects

Communication within the

TéléMac system

Figure 7:

Two object instances also play an important role in
TéléMac. We've already mentioned the TTY Window
object; the other is the MainActor which handles the
creation of new objects by the application and returns
their assigned identification number. The Main Actor
also has the responsibility of non object facilities like
menu allocation and item selection reporting, and
speech synthesis.

Communication between the objects is the result of
calling one of a series of routines that dispatches the
message to the invoked object. Communication from
the objects to the host is done by sending messages to
the TTY Window object which outputs them to the
serial communication line. Messages incoming from
the host are handled by the same TTY object,
transformed into a message lists and sent to the
destination object. The syntax of the external
messages, those between the Macintosh and the host,
is a problem of upmost importance. The messages to
the Macintosh objects have a fixed syntax easy to

implement in any programming languages. First a
header line is sent followed the parameters each on a
separate line. The syntax of each one depending on
the invoked method. To ease the task of analyzing
incoming messages by the host, their syntax should
match the high level input facilities of the language
used. Two languages are now supported by TéléMac;
Prolog and Lisp.

We stated before that an application could control
TéléMac directly via write and read instructions. Figure
1, showed how it could be done. It also indicates the
problems faced with this approach:

— The user should have high-level access to the
objects of the interface. The message syntax is quite
simple but nonetheless strict. Messages must be built
and analyzed carefully even if this syntax is suited to
the language used (i.e. lists for Prolog and Lisp).

— To avoid the handling of cryptic messages by the
application there should be a database of the objects
created and their attributes (i.e. position, name...).
The maintenance of such a local model should not be
left to the application. In the previous example, the
window was referred to by a given name and not its
numeral identification.

— User interaction with a graphic interface is
asynchronous by nature. User's actions guide the
application's execution of the application. For this
reason the Macintosh's toolbox is event oriented in its
design. There must be an event loop cycling, waiting
for events and dispatching them to appropriate
handlers. Remote control of the interface only means
that these events, or rather their TéléMac treated
counterparts, must be sent through the link to the host.
There, they may still arrive at any time and the
application must receive them. Thus an event loop
has to be present in the driver which will receive the
TéléMac events from the Macintosh and execute
application specified routines to handle them.

These considerations lead us to develop a software
interface or "driver" which accepts high-level requests
from the application and handles the coded
communication on the physical link. The brevity of the
listing of the GraphEditor which uses the driver shows
the advantages of the "driver" approach. The current
Prolog driver is a full-fledged implementation
consisting of more than one hundred predicates
supporting all remote functionalities of TéléMac on
less than one thousand lines of code. For example,
two of these predicates, (create_tewindow and
w_write) could be used for the same results as
illustrated in figure 1. The diver is modular and only
the parts required need be loaded. A programmer's
manual describing the system is available [GAGN87].

165

Conclusions

TéléMac has shown that it is possible to provide a
state-of-the-art graphic interface that can be integrated
easily into existing applications. TéléMac has been
found a useful adjunct to the GENIAL2 natural-
language system and is now being used for a
conceptual editor and an expert system.

Implementing an interface as a remote-controlled
program is useful for two reasons. First, it frees the
interface from the necessity to use hardware and
software compatible with that of the application.
Secondly, the low bandwidth of the link imposes a
clean functional decomposition between the
application and the interface. This opens the way to
development of general-purpose independent
interface servers.

The Macintosh proved to be a powerful support for the
interface. We made full use of its graphic primitives,
toolbox functions and object templates (resources).
However, it was necessary to extend these functions,
for example with the notion of connected graphs, and
to simplify the interface programming by providing
higher level operations with many defaults.

TéléMac is a useful bit of software, but it is also an
experimental vehicle and it can be expected to evolve.
At present, we are studying ways to introduce more
parallelism to allow independent processes in the
application to communicate asynchronously with their
display counterparts in the interface. We are also
considering ways to distribute processing by
downloading "programs" to be interpreted by the
interface.

Acknowledgements

This work was supported in part by the Natural
Science and Engineering Research Council of
Canada under Operating Grant A7699.

Graphics Interface '88

166

References

[BRAC87] BRACHMAN, B., GProlog User Manual, Department of
computer Science, University of British Columbia, Vancouver,
1987.

[COUT87] COUTAZ, J., The construction of User Interfaces and the

Object Paradigm, Proc, European Conference of Object-
Oriented programming, Paris, Bigre+Globule, n° 54, Juin
1987, Publ. IRISA, Campus de Beaulieu, 35042 Rennes,
France, pp.135-144.

[DESA87] DESAI, B., C., FRASSON, C., VAUCHER, J., Integrated
Intelligent Interfaces for Office Information Systems, to
appear in the proceedings of IEEE Compint '87, Montreal,
November 9-13 1987.

[GAGN87] GAGNON, G., VAUCHER, J., TéléMac, Manuel| d'Utilisation,

Département d'Informatique et de Recherche Opérationnelle,
Université de Montréal, Publ. N° 191.

[GETT86] GETTYS, J., SCHEILFLER, R. W., The X Window System,
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986, pp.
79-109.

[GREE86] GREEN, Mark,

A Survey of Three Dialogue Models, ACM
Transactions on Graphics, Vol. 5, No. 2, July 1986, pp. 244-
275.

[HILL86] HILL, R. D., Supporting Concurrency, Communication, and
Synchronization in Human-Computer Interaction — the
Sassafras UIMS, ACM Transactions on Graphics, Vol. 5, No.
3, July 1986, pp. 179-210.

[HULL87] HULLOT, J.M., SOS Interface, un générateur d'interfaces
homme-machine, Actes des Journées AFCET: Langages
Orientés Objet, Bigre+Globule, 48, Publ. IRISA, Campus de
Beaulieu, 35042 Rennes, France, pp.69-78.

[JACK87] JACKY, J. P., KALET, I. J., An Object-Oriented Programming
Discipline For Standard Pascal, Communications of the ACM,
Vol. 30, No. 9, September 1987, pp.772-776.

[MICH87] MICHARD, A., MONCEYRON, E., Le Systéme Graphique
QSH'E[QIQQ QI SQD !!ﬂliﬂrgﬂ EQ irle ELQIQn(QﬂﬂQ BQQ.QQ
d'Interface Homme-Machine, INRIA-Centre de Sophia-
Antipolis.

[OLSE86] OLSEN, D., R. JR., MIKE: The Menu Interaction Kontrol
Environment, ACM Transactions on Graphics, Vol. 5, No. 4,

October 1986, pp. 318-344,

[PELL86a] PELLETIER, B., VAUCHER, J., GENIAL: Un Générateur
d'Interface en Langue Naturelle, Proceedings, Sixth Canadian
Conference on Atrtificial Intelligence, Presses de I'Université
du Québec, Montréal, 1986, pp. 235-239.

[PELL86b] PELLETIER, B. Systéme d'Intérrogation de Banque de
Données en Langue Naturelle, Document de travail #177,
Département d'Informatique et de Recherche Opérationnelle,
Université de Montréal, mars 1986.

[SUN] Sun Microsystem, NeWS Technical Repor.

Graphics Interface ’'88

167

Listing 1. GraphEdi

(1) graphedit :-
init_interface('gedit.appl.rsrc’),
create_grapher(ge, 'Graph Editor', docZW, [150, 50, 500, 300],
default, default, ge_click),
2) add_picture(ge, icon(7, 441, [5, 5], 'Noeud')),
add_picture(ge, icon(1, 442, [5, 55], 'Arc’)),
add_picture(ge, icon(1, 443, [5, 105},'Kill')),
add_picture(ge, framerect(0, 1, [2, 2, 40, 162])),
install_menu(gemenu, 5, 'grapher’, ['Save To File...",'Load From File...",'(-','Quit’],

[geSave, geLoad, m_bid, geQuit]),
event_loop.

/* handles save menu request by saving the graph on file */

(3) geSave(Wid, ltem) :-
get_modal_dialog(400, [1, _, _, Text |R]), %% True if button 1, OK, was pressed
graph_to_file(ge, Text).

/* handles load menu request by getting a graph from a file */
(4) geLoad(Wid, Item) :-
get_modal_dialog(400, [1, _, _, Text | R]), %% ask for a file name
clear_window(ge), %% destroys the window's contents
%% reinstall icon tools (4 lines)
file _to_graph(ge, Text).

/* handles quit menu request and return to Prolog's top level */
(5) geQuit(Wid, Iltem) :-
remove_menu(gemenu),
kill_window(ge),
finish_event_loop. %% terminates the event loop

/* handles mouse events within the grapher window */
ge_click(GRid, Parms) :-

get_gwindow(GRname, GRid, _),
(6) (Interface_g_action(select, Parms, NbClick, ObjID, X, Y) -> %% an object was selected
(ObjID=1-> %% the add node icon was hit

get_modal_dialog(400, [1, _, _, Text | R]),
add_node(GRname, rect, 40, 40, Text)

;0bjID=2->" %% the add arc icon was hit
get_menu_dialog(401, Hit), %% ask for arc type with iconic dialog
(Hit>=4, Hit=<6-> %% if tagged, ask for a name

get_modal_dlalog(400, [1, _, _, Text | R]); Text="),
get_rubber_line(GRname, X1, Y1, X2, Y2),
%% find the nodes Ob/lD1 ObjID2, under the line ends (5 lines)
ArcType is Hit + 3,
add_arc(GRname, ArcType, ObjiD1, ObjID2, Text)
; ObjID =3 > %% the kill icon was hit
get_rubber_line(GRname, X1, Y1, X2, Y2),
find_pict(GRname, X1, Y1, ObjID1),

(get_node(GRname, _, _, _, _, _, ObjID1) -> %% is it a node?
del_node(GRname, ObjID1)
; get_arc(GRname, _, _, _, _, ObjiD1) -> %% is it an arc?
del_arc(GRname, ObjiD1)))
(7) ; interface_g_action(copy, Parms, NbClick, 1, NewObjID, X, Y), %% the node icon was copied
%% delete the copy and add the new node (3lines)
(8) ; gr_bid(GRld Parms)). %% driver's default handling routine to update the local connectivity

Graphics Interface ’88

