
176

CONSTRAINT GRAMMARS IN USER INTERFACE MANAGEMENT SYSTEMS

Bradley T. Vander Zanden
Comell University
!thaca, NY 14853

(zanden@svax.cs.comell.edu)

Abstract

Most user interface management systems
provide techniques for specifying the input dialogue
of an application but ignore the issue of how editing
operations should change the graphical display of an
application. In this paper, we discuss the
CONSTRAINT system, a UIMS that incorporates
new techniques for addressing the display update
problem. CONSTRAINT is based on an innovative
concept called constraint grammars. A constraint
grammar can be used to model both the graphical
display and dynamic behavior of an application. It
does so by using constraints to represent
relationships among parts of an application's data
structures and among the application's state
variables. By resatisfying the constraints after each
editing operation, the application's state information
and the graphical display can be appropriately
updated. In CONSTRAINT, these grammars are
restricted to specifying the graphical display. This
restriction allows incremental, constraint-solving
algorithms to be automatically extracted from a
constraint grammar specification. These algorithms
provide the mechanism by which the display is
rapidly updated. We claim that the advantages of our
approach are efficiency, conferred by the incremental
algorithms, and simplicity, conferred by the
declarative, modular constraints.

Keywords: Constraint Systems, User Interface
Management Systems, Specification Languages

1 Introduction

User interface management sytems (UIMS's)
possess considerful potential for reducing the effort
required to develop and maintain direct
manipulation interfaces. However, UIMS's are not
widely used since they are often quite limited in the

types of interfaces they can generate [12] [19] [24].
One capability that would enhance the desirability of
UIMS's would be a facility for updating the display
after an application's data structures are modified
[10] [11] [12] [23] [24] . In many current DIMS's, the
input dialogue for an application can often be coded
in a matter of hours but the code that modifies the
display after an application's data structures have

changed may take days or even months to implement
[23].

In this paper we describe the design of the
CONSTRAINT system, a UIMS that introduces new
techniques for addressing the display update
problem. CONSTRAINT is based on a novel concept
called constraint grammars. Constraint grammars
use the productions of a context free grammar to
represent the graphical structure of an application
and constraint equations to represent the dynamic
behavior of the application and the graphical
relationships between parts of the application's data
structures. By reevaluating the constraints after
each editing operation, the application reaches a new
equilibrium and the resulting values for the state and
graphical variables can be used to update the display.

Constraint grammars generalize attribute
grammars by interpreting numerical equations as
true constraints rather than one-way constraints.
For example, an attribute grammar treats the
equation "ne = nw + width" as a one-way definition of
the variable ne that can be solved only if the value of
nw and width is known. A constraint grammar
views the same equation as a two-way definition that
can be solved for any of the variables. This
interpretation of numerical equations gives
constraint grammars considerably greater
expressiveness than attribute grammars.

The CONSTRAINT system restricts constraint
grammars to specifying the graphical display of an
application. For example, the CONSTRAINT system
can manage the graphical display of an electrical
circuit but it cannot perform the computations that
determine the amount of current flowing through the
circuit or the voltage drops across various electrical
components. CONSTRAINT imposes this restriction
for two reasons. First, while the graphical display of
most applications is naturally modeled in terms of
numeric constraints, the dynamic behavior of many
applications must be at least partially modeled by a
series of procedures. Second, the equations that
describe the graphical display are typically simpler
than the equations that describe an application's
dynamic behavior. Thus, the CONSTRAINT system
is able to use a simpler constraint solver that allows
the display to be more rapidly updated.

Graphics Interface '88

Constraint grammars have a number of
advantages over alternative, procedural methods that
handle the graphical display of an application. First,
constraint grammar specifications require less
testing and coding than their procedural
counterparts. In a constraint grammar, every
editink and undo operation can be handled by the
same evaluation algorithm, whereas in a procedural
specification, the designer must write a separate
procedure to handle each such operation. In
addition, the designer must test the procedural
specification more extensively to ensure that each
procedure works correctly both by itself and in
tandem with other procedures. Second, provably
correct, incremental algorithms for evaluating a
constraint grammar can be automatically extracted
from a constraint grammar specification. Such
algorithms allow the graphical display to be
incrementally updated after each editing or undo
operation. In contrast, the writer of a procedural
specification must manually prepare incremental
update routines for each editing and undo operation.

In the remainder of this paper we will describe
constraint grammars in more detail and then
present an overview of the CONSTRAINT system.
Particular attention will be paid to CONSTRAINT's
facilities for describing the graphical presentation of
the application and its facilities for specifying editing
operations. More specifically, the rest of the paper is
organized as follows. Section 2 describes related
work; section 3 describes constraint grammars
while section 4 presents an overview of the
CONSTRAINT system. Section 5 examines the
current status of the CONSTRAINT system and
section 6 presents our conclusions.

2 Related Work

Past work on UIMS's has primarily focused on
providing tools for specifying aspects of the input
dialogue. Examples of such systems include
Menulay [6], the Military Message System [13],
Syngraph [21], GRINS [22], Squeak [7], Peridot [16]
[17] [18], and vu [26]. CONSTRAINT differs from
these systems in that it focuses on techniques for
updating the graphical display after an application's
data structures are modified.

Recently two UIMS's have been built for
handling the display update problem - STUF [23]
and Higgens [10] [11]. The STUF system uses
procedures to control the graphical display of
application objects. Each editing command has an
associated procedure that walks through the
application data structures, makes the appropriate
changes, and performs the necessary updates to the
display. The Higgens system on the other hand is
based on the attribute grammar paradigm and uses
equations to control the graphical display of
application objects. The equations are used to model
relationships among the application's objects. An

177

editing operation may change either some of the
variables in these equations or add or delete equations
from the system. The graphical display is then
modified in accordance with the new solution to these
equations. CONSTRAINT differs from the STUF
system in that it uses constraints rather than
procedures to model graphical relationships and
differs from the Higgens system in that it uses a
constraint grammar rather than a variant of an
attribute grammar.

The design of the CONSTRAINT system has
been influenced by several other constraint-oriented
systems including Thinglab [3] [5], IDEAL [29] [30],
Juno [20], microCOSM [1] [2], and CONSTRAINTS
[27]. These systems build geometric objects from
primitives such as points, lines, and circles.
Constraint equations can be used to represent spatial
relationships between these primitives such as the
fact that adjacent sides in a rectangle should be
perpendicular. The user can modify the display by
dragging or resizing one or more of the geometric
primitives that compose an object. These actions may
cause some of the constraints to be violated and thus
a constraint solver must be called to reestablish these
constraints. In several of these systems, constraints
may also be used to model the dynamic aspects of the
application. For example, Thinglab allows the user
to input constraints that describe the flow of current
in an electrical circuit or the effect of Hook's law on a
spring. The constraint solvers used in these systems
are more powerful than the constraint solver used in
CONSTRAINT since they typically model the
dynamic behavior of the application as well as
managing the graphical display.

Finally, the internal structure of the
CONSTRAINT system is modeled after the
Synthesizer Generator [25]. The Synthesizer
Generator is a system for transforming attribute
grammar specifications into interactive, language
based editors. For example, it can take a
specification of the Pascal language and create an
editor that assists a user in writing a Pascal
program. Similarly, the CONSTRAINT system takes
a constraint grammar specification of an
application's graphical structure and creates a
direct, manipulation interface for interacting with
this application.

3 Constraint Grammars

Constraint grammars are generalizations of
attribute grammars [14]. An attribute grammar is a
context free grammar with equations added to each
production to calculate context sensitive information.
For example, in an attribute grammar that specifies
a programming language, the equations might
compute type information. This information can be
used to check semantic constraints, such as the
requirement that the use of an identifier conform
with its declared type.

Graphics Interface '88

S->E
S.v= E.v

El -> E2 '+' E3
E1.v = E2.v + E3.v

El -> E2 '-' E3
E1.v = E2.v -E3.v

El -> E2 '*' E3
E1.v = E2.v * E3.v

El->E2 'r E3
El.v = E2.v / E3.v

El->INT
E1.v = ValueOf(INT)

E v=2

I
2

E v=5 7

I
5

Figure 1: Sample attribute grammar for a desk
calculator and an attributed abstract tree for the
expression 2 * 5 + 7.

The variables in the equations are termed
attributes and each attribute is owned by one of the
nonterminals in the production. The attribute
values represent the output of the application
assembly code for a compiler, a proof verification for
a proof checker, or the locations of objects in a
graphics editor. An equation may also reference any
of the terminals that belong to the production (the
terminals normally represent numeric or string
constants). An attribute grammar treats the
equations that define the attributes as one-way
constraints-the attribute on the left side of the
equation depends on the attributes and terminals on
the right side of the equation but not vice versa. This
interpretation of equations means that the values of
the attributes and terminals on the right side of the
equation must be known before the equation is
evaluated. A sample attribute grammar for a desk
calculator and one of the abstract trees that could be
derived from this grammar are shown in figure 1 (an
abstract tree can be thought of as a parse tree that
has had syntactic details such as keywords removed).

A constraint grammar resembles an attribute
grammar in that it uses a context free grammar
augmented with equations and in that it can be used
to derive an abstract tree that represents the
structure of an application. However, it is a
generalization of an attribute grammar since it treats
numeric equations as true constraints rather than
one-way constraints. That is, each attribute or
terminal in a numeric equation depends on the other
variables in the equation and thus any variable can be
solved for in terms of the other variables. If
necessary, a constraint grammar will perform
algebraic transformations to obtain a definition for a
variable as a function of the other variables in a
constraint. For example, it can transform the
constraint "ne = nw + wd" into the constraint "nw =
ne - wd".

A consequence of their interpretation of numeric
equations as true constraints is that constraint
grammars may change leaves of the tree during
constraint satisfaction while an attribute grammar

178

may not. In an attribute grammar, a terminal can
only occur on the right side of an equation and thus it
can never be changed during the constraint
satisfaction process. However, a constraint
grammar will invert an equation to solve for a
terminal and thus it can change the leaves of the
tree. Another way of viewing this difference is that
an attribute grammar derives the semantics of the
application (the context-sensitive information) from
the syntax of the application (the context-free
information), whereas a constraint grammar allows
both the semantics to be derived from the syntax and
the syntax to be derived from the semantics.

A constraint grammar can be made arbitrarily
more expressive than an attribute grammar by
increasing the power of the constraint solver. In an
attribute grammar, the numerical constraints can be
no more powerful than that expressable by a lower
triangular system of equations. This limitation
results from the one-way interpretation attribute
grammars apply to constraints. In contrast,
constraint grammars permit arbitrarily complex
systems of constraints, provided a sufficiently
powerful constraint solver is provided. For example,
constraint grammars can handle linear systems of
equations that require Gaussian elimination or
nonlinear systems of equations that require even
more sophisticated numerical techniques.

The following two examples should help
illustrate the difference in the expressiveness of
attribute and constraint grammars. The first
example shows how a constraint grammar can
provide a much more natural, succinct definition of a
problem than an attribute grammar and the second
example shows how a constraint grammar can
express problems that attribute grammars are
incapable of expressing. In the first example, an
instructor wants to construct a system for teaching
students metric-English conversions. One of the
subunits involves temperature conversion between
degrees Fahrenheit and degrees Celcius. The
teacher wishes to display two thermometers, one in
OF and one in oC. If a student drags the "mercury"
in one of the thermometers in one direction, the
"mercury" in the other thermometer should follow
suit. A sample interface for this problem is shown in
figure 2. Despite the simplicity of this interface, a
simple, elegant attribute grammar specification for
this interface does not exist. A specification that gets
the job done is:

temp_converter-> FtoC_converter
I CtoF _converter

FtoC_converter-> in_thermometer
out_thermometer

out_thermometer. degrees = 5/9 X
(in_thermometer. degrees - 32)

CtoF _converter -> in_thermometer
out_thermometer

Graphics Interface '88

out_thermometer.degrees = (9/5 X
in_thermometer. degrees) + 32

in_thermometer -> degrees: REAL
ouCthermometer -> null

where the declaration degrees: REAL assigns a
name to the terminal REAL. The problem with this
specification is that it is lengthy and prone to error
since the teacher must manually invert the equation
for temperature inversion. In addition, it is
unnatural to distinguish between an input and an
output thermometer-the teacher views the two
thermometers as Fahrenheit and Celcius
thermometers, not input and output thermometers.
Both of these shortcomings are a direct consequence
of an attribute grammar's inability to express two
way constraints.

In contrast, the constraint grammar
specification for this problem is short and
straightforward:

temp30nverter -> C: thermometer
F: thermometer

F .degrees = 9/5 X C.degrees + 32
thermometer-> degrees: REAL

The constraint solver will automatically invert the
temperature conversion equation if the value for
F.degrees is known but the value for C.degrees is not.
This specification is more natural since it conforms
with the teacher's physical interpretation of the
problem.

The second example involves an electrical
circuit system. As in the metric-English conversion
example, it might be possible for an attribute
grammar to provide an inelegant specification for the
graphical layout of the circuit. However, since
simultaneous equations are required to model the
flow of current or the voltage drop across electrical
components, and since an attribute grammar is
restricted to one-way constraints, an attribute
grammar is incapable of expressing the dynamic
behavior of a circuit. In contrast, a constraint
grammar with a Gaussian elimination equation
solver could provide a short, elegant description of
both the graphical layout and dynamic behavior of the
circuit.

4 CONSTRAINT Overview

The CONSTRAINT system has a standard
UIMS display architecture as shown in figure 3 [23].
As indicated by the figure, the designer provides
three types of input-a constraint grammar, a
graphical presentation scheme that associates
graphical images with objects, and an editing
dialogue that describes the actions that can be
performed on the interface. These three
specifications are fed through CONSTRAINT's

179

100

75

50

25

o
-25

-50

-75

-100

Figure 2: Interface for a temperature conversion
interface

Figure 3: Architecture of the CONSTRAINT system

interface generator, which creates a working
interface. The abstract tree is derived from the
constraint grammar and represents the graphical
structure of the application. The user interacts with
the application by editing objects on the display.
These actions cause the editing processor to modify
the tree and to invoke the constraint solver. The
constraint solver incrementally resatisfies the
constraint equations and possibly modifies leaves of
the abstract tree as discussed in section 3. The
display processor then uses the attribute values to
update the display.

The application may use the changed attribute
values and the modified tree to update its data
structures. As a result of these updates, the
application may send messages to the editing
processor asking it to modify the parts of the abstract
tree that correspond to the changed data structures.
Again the constraint solver is invoked to reestablish
the constraints and the display processor is invoked
to examine the modified attribute values and update

Graphics Interface '88

the display. At this point the process quiesces.
awaiting further input from the user.

4.1 The Constraint Grammar

The constraint grammar component of a
specification associates a set of attributes and a set of
structure definitions with each object. Attributes
contain information about an object's graphical
layout (e.g .• its position or the space it occupies) while
structure definitions provide alternative ways of
representing and displaying an object. For example.
an electrical component might have different
representations for a resistor. a capacitor. and a
battery.

Each non-primitive object may be thought of as a
nonterminal of the constraint grammar and each
primitive object may be thought of as a terminal of the
grammar. A non-primitive object corresponds to a
designer defined object and a primitive object
corresponds to a system provided object. There are
four types of primitive objects in the CONSTRAINT
system-points. bitmaps. circles and text.

A structure definition is simply a production of
the grammar-the left side non terminal associates
the definition with a particular object and the right
side nonterminals and terminals represent the
components that comprise this version of the object.
For example. the production

rect -> ne: PT nw: PT se: PT sw: PT

indicates that the non-primitive object rectangle is
composed of four primitive subobjects. the points. ne.
nw. se. and sw. It is permissable to give default
values for these primitives. For example. initial
values can be given to the endpoints of rect via the
following production

rect -> ne: PT nw: PT se: PT sw: PT
(ne = (0,0); nw = (100,0); se = (0,100); sw =

(100.100».

Of course in the CONSTRAINT specification
language. this production appears in a sugared form
that is more palatable to the designer. However. for
the sake of brevity. we will continue to use the above
notation throughout the rest of the paper.

The idea of using initial values is traceable to
Borning's notion of prototypes [4] and microCOSM's
notion of initializers [1] [2]. The notion of building
objects hierarchically from subobjects is comparable
to the part-whole mechanisms used in ThingLab [3]
[5] • microCOSM [1] [2]. and CONSTRAINTS [27].

Each structure definition contains a set of
constraints that describe relationships between the
attributes associated with an object and its
subcomponents. Constraints provide the mechanism

180

by which the graphical layout of an object and its
subcomponents may be computed. For example. in
the above production for recto the equations that
describe the locations of rect's points might be nw =
ne + wd. sw = se + wd. and se = ne + ht. wd and ht
are attributes associated with the nonterminal rect
that define rect's width and height.

Since the CONSTRAINT system is concerned
with modelling the graphical display of an
application and not its dynamic behavior. a powerful
constraint solver such as one capable of solving
simultaneous. nonlinear systems of equations is not
necessary. Indeed. we have found that most of the
graphical displays desired in practice can be
described by a noncircular. multilinear system of
constraints. The assertion that a system of equations
is noncircular means that it contains no
simultaneous equations. that is. the equations can be
topologically ordered so that as each equation is
enumerated. it depends only on the equations that
have preceded it. The assertion that a system is
multilinear means that each equation is linear in
each of its variables separately. That is. for 1 !:> i !:> n.
f(x1 ... ·.axi + b xn) = af(x1 ... ·• x i . .. ·• xn) +
f(x1 b xn) [8]. Thus a permissable set of
equations would be z = xy. Y= x/3. x = 12 and an
impermissable set of equations would be a + b = 10, a
- b = 6 or x2 + y2 = 9.

A technique known as "propagating degrees of
freedom" can be used to solve a noncircular.
multi linear system of equations in O(n2) time where
n is the number of variables [3] [15] [28]. In a
constraint grammar. the time drops to O(n) since
each variable can belong to only a constant number of
equations. When a set of variables changes. the time
required by this algorithm to reestablish the
constraints is O(INFLUENCED) where
INFLUENCED is the number of equations directly or
indirectly affected by the changed variables. The
implementation of this technique is more fully
described in a separate paper.

4.2 The CONSTRAINT Editor

The CONSTRAINT system permits two types of
editing operations to modify the abstract tree
dragging operations that resize or reposition existing
objects and structural editing operations that delete.
add. or replace objects. Dragging operations change
the values of primitive objects such as points. As
such they change leaves of the abstract tree.
Structural editing operations change nonprimitive
components and thus change interior nodes of the
tree.

A dragging operation is handled in the following
manner. When the user selects a primitive and
starts to drag it. the CONSTRAINT editor identifies

Graphics Interface '88

the affected leaf of the abstract tree and changes the
value of this leaf so that it corresponds with the new
value of the primitive. The constraint solver is then
called to reestablish the constraints that are violated
by this change. This process is repeated as long as
the user keeps the mouse button depressed and is
changing the picture. If the constraint solving can be
performed fast enough, the display will change as the
mouse moves, providing the user with valuable
feedback about the changes that are induced by
modifying the object [1] [2]. As noted later in the
paper, this objective is typically achieved.

Structural editing operations are handled in
much the same manner as dragging operations.
When the user selects an object and adds or deletes a
component, the editing processor must find the
affected area in the abstract tree and either add or
delete a subtree from it. In doing so, the editor will
almost surely make some of constraints at the point
of subtree insertion or deletion inconsistent and thus
the constraint solver must be called to reestablish the
constraints.

Structural editing operations are accomplished
via transformations [25] . A transformation is a
function that maps a set of subtrees that satisfy a
selection pattern into a new set of subtrees. The
syntax of a transformation is

transform <selection pattern> on "command name"
{ <actions> }

As the user selects objects on the screen, the editor
finds the tree nodes associated with the selected
objects and attempts to match them against the
selection pattern of each transformation. Those
transformations for which the matching process
succeeds have their command names added to a
menu of valid transformations. When the user
selected a command name from the menu, the
specified actions from the appropriate
transformation are performed and the display is
updated. Actions may include deleting, creating, or
swapping subtrees.

For example, returning to the metric-English
conversion example, the teacher may want to allow a
student to choose either a temperature conversion
application or a distance conversion application.
Thus the teacher could include as part of the
specification, the productions:

metric_English -> initial_interface
I temp_converter
I distance_converter

distance_converter -> inches: ruler cm: ruler
inches. distance = cm. distance / cm_to_inches
cm_to_inches = 2.54

ruler -> distance: REAL

and the transformations:

181

transform on "metric-english lesson"
create(metric_English);

}
transform metric_English on "temperature unit"

create(temp_converter);
}
transform metric_English on "distance unit"

create(distance_converter);

The first transformation allows the user to boot the
metric_English interface. Since no objects initially
exist this transformation is valid when no objects
have' been selected. When the metric_English
interface is booted by the user, the CONSTRAINT
system will build the object initial_interface since the
first definition of an object is always the default
definition. If the student selects the object
initial interface and then the command
"tempe;ature unit" , the subtree rooted at the node
default interface will be replaced by a subtree rooted
at a node temp_converter. The graphical display for
the temperature converter interface will appear and
the student will be able to proceed with the unit.

The interaction techniques permitted in the
initial implementation of the CONSTRAINT system
are limited to mice and menus. These techniques are
more than adequate for exercising the features of the
CONSTRAINT system. The range of interactive
techniques might be increased in the future, perhaps
via one of the UIMS's mentioned in section 2 on
related work. Constraint grammars could also be
used to provide additional interactive devices such as
buttons, valuators, and slider. The techniques for
defining such devices using attribute grammars
have been implemented in the GRINS system [22]
and they could be easily extended to constraint
grammars. However, since the CONSTRAINT
system is supposed to explore issues relating to the
management of an application's graphical display,
not interactive techniques, designing an elaborate set
of interactive techniques is not a priority item.

4.3 Graphical Presentation

To convert the abstract tree into a graphical
display, designers need a set of drawing commands
that they can associate with each node of the abstract
tree . The graphics commands incorporated in
CONSTRAINT are drawn primarily from a subset of
the commands permitted in Van Wyk's IDEAL
picture creation language [29] [30]. These commands
were chosen since they are device independent and
"pen" independent. By "pen" independent we mean
that the designer does not have to worry about moving
the drawing pen to the appropriate place on the
screen before drawing commences. Instead, the
designer , through the use of attributes and
terminals, simply indicates where on the display an

Graphics Interface '88

l

temp_converter -> C: thermometer F: thermometer
C.scale_start = -100;
C.scale_end = 100;
C.scale_incr = 25;
F.scale_start = -150;
F.scale_end = 225;
F.scale_incr = C.scale_incr;
C.se = (100,0);
C.wd = (10,0);
C.ht = (0,200);
F.se = C.se + C.wd + (20,0);
F.wd = C.wd;
F.ht = (C .ht X (F. scale_end - F.scale_start))

/ (C. scale_end - C.scale_start);

/* graphical image for a rectangle */
rect -> ne: PT nw: PT se: PT sw: PT

polygon(color, (ne,nw ,sw ,se});

/* graphical image for the outline of a thermometer */
thermometer -> degrees: REAL

put outline: rect {
se = thermometer. se;
wd = thermometer. wd;
ht = thermometer.ht;
color = "opaque";

/* graphical image for the mercury */
put mercury: rect {

se = outline.se + (2,0);
wd = outline.wd - (4,0);
ht = (O,thermometer.degrees);
color = "red";

/* graphical image for a thermometer scale */
numbered_Iine_seg -> start: PT end: PT label: INT

conn start to end;
label at { text.nw = end + (3,0); }

/* graphical image a numbered thermometer scale */
thermometer -> degrees: REAL

coon outline. se to outline. ne using
(scale_end-scale_start)/scale_incr + 1
numbered_line_seg {

start = x;
end = x + (3,0);
label = thermometer. scale_start + (i-1)*

thermometer. scale_incr
l<x,y,i>

Figure 4: Specification of the graphical presentation
for the temperature conversion example

image should be located and the graphics commands
automatically ensure that the drawing pen is moved
to the appropriate position.

A sample specification for the graphical
presentation of the temperature conversion interface

182

is given in figure 4. The "conn" command draws
lines through the specified points while the "polygon"
command draws a polygon through the named
points. The interior of the polygon is filled with the
color contained in the "color" variable. The put

command places an object such as rect at the location
defined by equations. The object may be optionally
identified by a label, such as "outline" or "mercury".
Any primitive or nonprimitive object may be used by a
put command. If a nonprimitive object (i.e., a
nonterminal) is specified, the drawing commands
associated with this nonprimitive will be used to
draw the object. In this case, the equations must also
define all of the parameters used by these graphics
commands. These equations are true constraints
with a two way interpretation.

The command "label at { text.nw = end + 3; }" is
a string drawing command that causes the value of
the variable label to be printed left justified inside the
text box whose boundaries are defined by the equation
inside the brackets. The default width of a text box is
the width of the string. For longer strings the
designer can specify a width for the box, in which
case the string will be broken into lines to fit inside
the box.

Finally the "conn using" command is a
generalization of the conn command. It draws an
object, in this case the object numbered_Iine_seg, n
times along the imaginary line from outline. se to
outline.ne where n is equal to "(scale_end
scale_start)/scale_incr + 1". The object may be a
primitive or nonprimitive object and the equations
assign values to the object's attributes and primitives
so that the object's constraints can be solved. The x,
y , and i variables are used to specify intermediate
points along the line and may be used as variables by
the equations. The "conn using" command is
actually an iterative construct and is equivalent to the
expression:

for i = 1 to n {
put object_name (

x = «i-1)/n)[pt1,pt2];
y = (iln)[ptl ,pt2];
equations

where a[ptl ,pt2] is shorthand for ptl + a(pt2 - pt1) [29]
[30]. Since CONSTRAINT's graphical language does
not include the for statement, "conn using" must be
used instead.

5 Current Status

A prototype of the CONSTRAINT system has
been implemented that runs under the UNIX!
operating system and uses the XWindows graphics
package. The current system consists of 13,000 lines

Graphics Interface 'SS

of C code and incorporates most of the features of the
CONSTRAINT system described in this paper. In
particular, mechanisms for specifying the constraint
grammar and the transformations are completely in
place. The conn and put display commands have
been completely implemented and the polygon
command with the exception of color specification is
working. Points are the only primitive object
currently supported by the prototype.

Initial experience with the prototype has been
good. The constraint solver incrementally finds a
new evaluation sequence after each transformation
or drag operation rather than recomputing the
sequence from scratch. In practice, this means that
the response time is proportional to the number of
constraints directly or indirectly influenced by a
change rather than to the total number of constraints
in the system. Thus operations that involve relatively
small changes to the display, such as swapping two
small subtrees in a binary tree application, achieve
almost instantaneous response times of a second or
so . We have also found that objects being dragged
around the screen approach mouse speed (i.e., follow
the mouse cursor around the screen without too
much lag time) in cases that involve up to 1000
re evaluated constraints.

6 Conclusion

This paper has introduced a new concept,
constraint grammars , and shown how they are
incorporated in CONSTRAINT, a user interface
management system. Constraint grammars provide
a promising mechanism for modeling both the
dynamic aspects and the graphical display of an
application. The CONSTRAINT system explores how
they might be used to manage an application's
graphical display. Constraint grammars fill this
role by providing a part-whole mechanism for

defining the structure of objects and a constraint
mechanism for describing graphical relationships
between objects. A constraint solver that
incrementally resatisfies the constraints after each
editing operation allows the display to be rapidly
updated. A great many user interfaces can be
represented in this scheme including computer
aided drafting [15] , layout systems [9], graphical
programming systems [3] [5], document preparation
facilities [29] , education systems, and business
applications such as histograms, pie charts, and task
scheduling charts [9] . As such constraint grammars
provide a natural, flexible mechanism for specifying
the graphical display of an application and for
reducing the possibility for error in a specification.

Aclmowledgements

The CONSTRAINT system would not have been
possible without the helpful input that Dexter Kozen,

1 UNIX is a trademark of AT&T Bell Laboratories

183

Tim Teitelbaum, and Bill Pugh have provided
throughout the design of the CONSTRAINT system.
In addition, comments provided by John Fields,
Roger Hoover, Chet Murthy, and Steve Peckham
helped improve the presentation of this paper.

References

[1] Barford, L.A. 1987. A Graphical, Language
Based Editor for Generic Solid Models
Represented by Constraints. PhD thesis, Cornell
University, 1987.

[2] Barford, L .A. and Vander Zanden, B.T. 1987.
Attribute Grammars in Constraint-based
Graphics Systems, Technical Report 87-838,
Cornell University, June 1987.

[3] Borning, A. 1981 . The programming language
aspects of ThingLab , a constraint-oriented
simulation laboratory. ACM Transactions on
Programming Languages and Systems , 3:357-
387.

[4] Borning, A.H. 1986. Classes versus prototypes in
object-oriented languages. In Proceedings of the
ACM / IEEE Fall Joint Computer Conference,
Nov. 1986.

[5] Borning, A. and Duisberg. 1986. Constraint
based tools for building user interfaces. A CM
Transactions on Graphics, 5:345-374.

[6] Buxton, W. , Lamb, M.R., Sherman, D. and Smith,

K.C. 1983. Towards a comprehensive user
interface management system . In
SIGGRAPH'83 Conference Proceedings, pages
35-42, ACM, New York.

[7] Cardelli, L. and Pike, R. 1985. Squeak: a
language for communicating with mice. In
SIGGRAPH'85 Conference Proceedings, pages
199-204, ACM, New York.

[8] Edwards, C.H., Jr. 1973. Advanced Calculus of
Several Variables. Academic Press, New York.

[9] Foley, J.D. and Van Dam, A. 1982.
Fundamentals of Interactive Computer
Graphics. Addison-Wesley, Reading, MA.

[10] Hudson, S.E . 1986. A User Interface
Management System Which Supports Direct
Manipulation . PhD thesis, University of
Colorado.

[11] Hudson, S .E. 1986. Implementing a user
interface as a system of attributes. In 2nd ACM
SIGSOFT / SIGPLAN symposium on practical
software development environments , pages 143-
149.

[12] Hudson, S.E. 1987. UIMS support for direct
manipulation interfaces. Computer Graphics,
21(2):120-124.

[13] Jacob, R.J .K. 1983. Using formal specifications
in the design of a human-computer interface.
Communications of the ACM 26,4 (April) , 259-
264.

[14] Knuth, D.E. 1968. Semantics of context-free
languages. Math. Syst. Theory, 2(2):127-145.

Graphics Interface '88

[15] Leler, W. 1988. Constraint Programming
Languages: Their Specification and Generation .
Addison-Wesley, Reading, MA.

[16] Myers, B.A. and Buxton, W. 1986. Creating
Dynamic Interaction Techniques by
Demonstration. In SIGGRAPH'86 Conference
Proceedings, pages 249-258, ACM, New York.

[17] Myers, B.A. 1987. Creating Dynamic Interaction
Techniques by Demonstration. In Proceedings
SIGCHI+GI'87: Human Factors in Computing
Systems, pages 271-278.

[18] Myers, B.A. 1987. Creating User Interfaces by
Demonstration. PhD thesis, Toronto University,
Toronto, Canada, May 1987.

[19] Myers, B.A. 1987. Gaining general acceptance
for UIMSs. Computer Graphics, 21(2):130-134.

[20] Nelson, G. 1985. Juno, a Constraint-Based

Graphics System. In SIGGRAPH'85 Conference
Proceedings, pages 235-243, ACM, New York.

[21] Olsen, D .R. and Dempsey, E.P . 1983 .
SYNGRAPH: a graphical user interface
generator. In SIGGRAPH'83 Proceedings, pages
43-50, ACM, New York.

[22] Olsen, D.R., Dempsey, E.P. , and Rogge, R. 1985.
Input/Output linkage in a u ser interface
management system. In SIGGRAPH'85

184

Proceedings , pages 191-197, ACM, New York.
[23] Olsen, D.R. 1986. Editing templates: a user

interface generation tool. IEEE Computer
Graphics and Applications , 6(11):40-45.

[24] Olsen, D.R. 1987. Larger issues in user interface
management. Computer Graphics, 21(2):134-137.

[25] Reps, T. and Teitelbaum, T. 1987 . The
Synthesizer Generator Reference Manual.
Department of Computer Science, Cornell
University, Ithaca, NY.

[26] Singh, G. and Green, M. 1987. Visual
Programming of Graphical User Interfaces. In
Proceedings of the 1987 Workshop on Visual
Languages, pages 161-173.

[27] Sussman, G.J. and Steele, G.L., Jr . 1980.
CONSTRAINTS-A Language for Expressing
Almost-Hierarchical Descriptions. Artificial
Intelligence, 14:1-39.

[28] Sutherland, I.E. 1963. Sketchpad: A Man
Machine Graphical Communications System .
Technical Report 296, MIT Lincoln Laboratories.

[29] Van Wyk, C.J. 1981. IDEAL User's Manual.
Bell Laboratories, Murray Hill, NJ.

[30] Van Wyk, C.J . 1982. A high-level language for
specifying pictures. ACM Transactions on
Graphics, 1(2):163-182.

Graphics Interface '88

