
185

VIRTUAL CONTROL PANELS

Przemyslaw Prusinkiewicz and Craig Knelsen

Department of Computer Science
University of Regina

Regina, Saskatchewan, Canada S4S OA2

ABSTRACT.

A virtual control panel is a collection of controls which are
graphically represented on a screen and can be operated
according to the direct manipulation paradigm. A control
management system makes it possible to interactively create
various control panels and interface them with arbitrary
applications. In this paper we describe functions which
should be supported by an interactive control management
system, and present a case study of a system which we have
designed and implemented on the Macintosh microcomputer.

RESUME.

Un tableau de comrnande graphique consiste d'elements de
reglage qui sont representes sur l'ecran d'un ordinnateur et
peuvent etre manipules d'une maniere interactive. Dans cet
article nous proposons un systeme de gestion universel qui
permet de creer une variete des tableaux a l'utilisateur.
Apres avoir presente les fonctions de ce systeme d'une fa~on
generale, nous decrivons une realisation particuliere destinee
au microordinateur Macintosh.

KEYWORDS: control panel, direct manipulation, MIDI,
interface design, message passing.

1. INTRODUCTION

A virtual control panel is a collection of controls
(valuators and buttons) which are graphically represented on
a screen and can be interactively manipulated using a mouse
or a similar device. Thus, it is a metaphor of a physical
panel, such as those often found in electronic equipment.
According to the traditional approach, the creation, display
and updating of control panels were left to applications.
This paper introduces the concept of a general-purpose
Interactive Control Management System (ICMS) which
makes it possible to interactively create various control
panels and interface them with arbitrary applications. Thus,
an ICMS relieves the application programmer from the bur­
den of interactively acquiring parameters needed to control
the application. The impact of an ICMS on the application
structure is shown in Figure 1.

Example. Consider a graphics rendering program. The con­
trolled parameters may describe the positions of an observer
and a projection plane, current scene illumination, optical
properties of the rendered objects, etc. In a simple case, the

A B

Application

'control panel'

ICMS

'control panel '

Figure 1. The application structures. (A) An
application with a built-in control panel. (B) An
application with a control panel provided by an
ICMS.

corresponding panel may consist of virtual slide potentiome­
ters, each controlling one parameter. If the traditional
approach to control panels is observed, the code to display
and update these potentiometers will be included in the
rendering program. In contrast, if an ICMS is used, it will
supply the renderer with "ready to use" parameters.

The paper consists of two major parts. In Section 2 we
present a "wish list" of features and functions supported by
an interactive control management system. It enumerates
design issues which must be addressed while developing any
ICMS. In Section 4 we present a case study of a control
management system called UCofA (a Universal Controller
of Anything) which we have designed, implemented, and
used for experiments. An outline of related work (Section
3) and a list of problems open for further research (Section
5) are included.

2. FUNCTIONS OF AN INTERACTIVE
CONTROL MANAGEMENT SYSTEM

This section further characterizes the notion of an
ICMS by describing an extensive set of functions provided
by an idealized model of the ICMS. In a particular imple­
mentation some of these functions may be absent.

A. Configuration of a virtual control panel.

A.1. Control specification. The ICMS provides the user
with a wide range of controls which can be included in
a virtual control panel. Some methods of control
specification are listed below.

• Selection of controls from a library. This is the
simplest and the fastest method of control

Graphics Interface '88

•

•

•

•

specification. However, choice is limited to the
predefined controls.

Modification of control attributes. The range of
available controls is extended by allowing the user
to modify their default characteristics. Two
different cases can be distinguished.

Selection of enumerated attributes. The
enumerated attributes have no "natural" association
with any numerical values. They characterize
such features as col or, texture and shape of a
knob, presence or absence of a scale, etc. The
user selects the desired attributes from a menu.

Specification of number-valued attributes. The
number-valued attributes characterize such features
as the height and the width of a virtual slide
potentiometer, the diameter of a knob, etc. The
user specifies these attributes by supplying
appropriate numerical values.

Interactive editing of control components. The
available controls are further diversified by editing
their components. To this end, a paint program is
incorporated into the ICMS. "Custom-made"
knobs, slides, etc. are obtained by modifying the
existing shapes. However, the constraints on the
relative motion of the control's components
remain unchanged.

Interactive definition of control mechanisms. It
is conceivable to use controls in which constraints
on the relative motion of components are more
complex than in rotary or slide potentiometers. In
such cases, specification of constraints is a part of
control definition.

Specification of inter-control dependencies.
States of several controls may depend on each
other. For example, "pressing" a bistable button
may automatically switch the dependent buttons to
the OFF state. In order to specify a group of
dependent controls, the user indicates its members
and selects the dependency type from a menu.

A.2. Panel definition. In the process of panel definition, the
individual controls are assembled in windows. The
corresponding functions of the ICMS are listed below.

• Window creation. The ICMS provides a mechan­
ism for creating, resizing, repositioning and nam­
ing windows. Additionally, superfluous windows
can be deleted.

• Control placement. Once an empty window has
been created, the user can place controls in it,
move them to their target positions, and delete in
case of error.

• Group operations. All controls inside a selected
window area can be deleted, moved or copied to
another area of the same or a different window.
This speeds up the process of panel configuration,
since a single operation may affect a group of
controls.

• Addition of static elements to the windows.
Non-manipulable elements such as texts, lines,
frames, etc. can be "painted" in the windows for

186

the purpose of improving the legibility of the
panel.

A.3. Control binding. The ICMS communicates with the
application by message passing. The message format is
individually specified for each control in a process
called control binding. Two binding methods can be
distinguished.

• Explicit specification. The message format is
specified by an expression in a format definition
language. Complex mappings of the control set­
tings to the actual messages ("binding calcula­
tions") are supported.

• Binding by examples. The message format is
inferred from examples of messages sent to the
ICMS by the application (cf. function B.4). At
least two examples are necessary so that the ICMS
can identify the constant and the variable fields of
the message, as well as the minimum and the
maximum value of the controlled parameter.

A.4. Transmission mode specification. The user specifies
when a given control should generate a message.

• Triggered transmission. The message is sent
once, after the final position of the movable con­
trol element ("thumb") has been attained. Conse­
quently, the transmission is triggered by a specific
user action such as the release of a mouse button.

• Continuous transmission . A message is gen­
erated whenever the value of the controlled param­
eter changes. For example, if the parameter value
changes continuously from 10 to 25, the messages
corresponding to all intermediate values will also
be generated. Naturally, the communications
channel between the ICMS and the controlled
application, as well as the application itself, must
support high data transfer rates which may occur
in this mode of operation.

A.5. Control exercising. The user can test a panel by
selecting the exercising mode. All messages sent by
the ICMS are then redirected to a special window on
the screen.

A.6. Panel saving and loading. Any panel can be saved to
a file and then reloaded to control a given application.

B. Parameter control using virtual panels.

The second group of operations supported by an ICMS is
used when an application is actually controlled from a vir­
tual control panel. These operations can be divided into a
number of categories.

B.l. Window manipulation. If a panel is large, it may be
impossible to simultaneously display all of its windows.
A standard window management mechanism is then
used to control the screen contents. Windows which
are not needed at a given time can be made invisible
while the remaining windows can be repositioned
according to the user's preference. If some windows
overlap, the active one (containing the control which is
actually manipulated) is automatically brought to the
front.

Graphics Interface '88

B.2. Control manipulation. The ICMS detects which con­
trol is pointed to by the mouse, and updates the control
image according to the user's manipulation. Thus,
slides can be moved back and forth, knobs can be
turned, etc.

B.3. Message sending. The ICMS sends messages which
correspond to the current state of controls.

• Individual message sending. A message is sent
to the application as a result of manipulating a
specific control.

• Sending the states of all controls. This operation
is useful when starting the application controlled
by an ICMS. The application receives the initial
values of all controlled parameters.

BA. Message receiving. In a "pure" control management
system, the messages flow in one direction: from the
ICMS to the application. However, the notion of an
ICMS can be extended to include process monitoring.
A control/monitoring system is capable of both sending
and receiving messages. A message received from the
application indicates that the application has auto­
nomously changed a controlled parameter. The display
of the corresponding virtual control/indicator is then
automatically updated by the ICMS to reflect the new
parameter value.

3. NOTES ON RELATED WORK

The idea of interactively assembling and operating vir­
tual control panels is founded on the general concept of
direct manipUlation [15]. The categorization of the ICMS
functions presented in the previous section is influenced by
[6]. In that paper, Foley and McMath concentrate on a pro­
cess visualization environment, assuming unilateral flow of
information from the process to the viewing system. How­
ever, many notions they introduce also apply to control
management systems. The related problem of using
graphical indicators such as gauges and bars to display
values of selected program variables is discussed by Stefik,
Bobrow and Kahn [16].

Historically, the first user-configurable control panel
was implemented in a simulation system called Steamer
[17]. Steamer made it possible to interactively define and
operate a simulated power plant using virtual gauges, valves,
switches, indicators, etc. However, it was not a general­
purpose utility which could be interfaced with arbitrary
applications. Another example of a special-purpose user­
configurable control panel was described in [1]. In this case,
panels were incorporated in Infotrol IT, a process-control sys­
tem designed for use in chemical plants.

Two more recent control management systems were
proposed by Helfman [8], and Fisher and Joy [5]. The
objectives of the Panther system of Helfman are particularly
close to that of our system. However, Panther does not use
the direct manipulation approach to construct control panels;
only the final operation of the ready-to-use panel adheres to
that paradigm.

The first version of UCofA was presented in [14]. A
refined version is described in the next section.

187

4. AN EXAMPLE INTERACTIVE
CONTROL MANAGEMENT SYSTEM

Originally, UCofA was created for controlling parame­
ters of musical synthesizers equipped with the Musical
Instrument Digital Interface (MIDI) [11] . In this application,
the need for an external control management system is par­
ticularly evident. On one hand, the number of controllable
parameters provided by modem synthesizers is large - often
in excess of one hundred. On the other hand, the number of
physical controls (knobs, switches and slide potentiometers)
on the synthesizers' control panels is kept small to minimize
their costs. As a result, users are required to perform
cumbersome routing operations in order to access the desired
parameters. In this situation a potentially unlimited set of
user-configurable virtual panels which can be bound to arbi­
trary synthesizers presents a substantial improvement over
the "real" panels .

UCofA runs on the Macintosh (*) microcomputer and
makes extensive use of the Macintosh firmware. The user
interface is designed according to the guidelines for
Macintosh. Specifically, notions such as the dialogue win­
dow, GoAway box, button control type, active window and
active control are used consistently with their definitions in
[9]. The following description outlines the available com­
mands and focuses on two specific aspects of the UCofA
operation: control manipulation and control binding.

4.1. Menu commands.

Six pull-down menus: File, Edit, Panel, Window,
Control and Communications are available in the menu bar
at the top of the screen in addition to the usual "apple"
menu. The remaining portion of the screen is designated as
the work area where windows and their controls can be
placed (Figure 2).

l. File. Panels are treated by UCofA as data files. The
File menu contains items for saving and loading these
files, as well as some miscellaneous commands which
do not fit in other menus. In general, the UCofA File
menu is similar to that found in many commercial
Macintosh applications, for example MacWrite (**).

2. Edit. The Edit menu has four items: Cut, Copy,
Paste and Delete, which are used for text editing.
Copy and Paste are particularly useful while specifying
message formats for a family of related controls.

3. Panel. The items of the Panel menu correspond to the
names of available panels (windows with associated
controls) (Figure 2). Selecting an item brings the panel
to the screen (if not already) and places it in front of all
other panels. A panel which is no longer used can be
hidden by clicking into its GoAway box. The Panel
menu is special in that its items are not predefined: they
are added and deleted following the creation and remo­
val of panels.

4. Window. The Window menu has three items. New
Window creates a new window on which controls can
be placed. Define... makes it possible to name the
resulting panel; this name automatically appears in the

(*) Macintosh is a trademark licensed to Apple Computer, Inc.
(**) MacWrite is a trademark of Apple Computer, Inc.

Graphics Interface '88

188

File Control Communications
pEmDammBmDammBam.......... ----------~

5: 05: 14" Edit Panel Window

29

2

Attack Rate Decay 1 Level Detune

27 87 5

Decay 1 Rate Level Scaling Key Vel. Sens.

26 3 83

6fM
Decay 2 Rate Rate Scal i ng Op. Output LvI

12 5 63 Ch I

Release Rate EG Bi as Sens. Frequenc

Figure 2. Example of the UCofA screen.

Panel menu. Remove makes it possible to delete a
particular panel; its name is then removed from the
Panel menu.

5. Control. The Control menu is used to create controls,
specify their attributes, move the controls within a
given window and remove them if they are no longer
needed. The list of menu items includes all supported
control types (variants of vertical and horizontal sliders,
a knob, a monostable button, and a bistable button). In
addition, the Control menu contains the following
items:

6.

• Define.... A dialogue window associated with the
current control appears on the screen (Figure 3).
By editing the contents of this window the user
can define the control 's name, the minimum, max­
imum and default value of the controlled parame­
ter and the message format associated with the
control (c.f. Section 4.3). The user can also
specify some attributes affecting the appearance of
the control on the screen.

• Drag. When a control is created, it appears in a
predefined position in the active window. The
Drag menu item allows the user to move the con­
trol to its desired position in the window.

• Remove. Removes the active control. The user is
asked to confirm this action using a dialogue win­
dow.

• Remove All. ... Removes all controls from the
active window. Again, the user is asked to confirm
this operation.

Communications. This menu has three items:

• Setup. A dialog window appears , allowing for the
selection of communication parameters. Both the

Control Number: I

Control Name: 1 Slide
~==~---l

Minimum Ualue: 10
~~

MaHimum Ualue: 199
~~

Current Ualue: I
L
6_6_---...l

D Show Attributes

M ID I Message String:

I H 24 %d, HI H2 +

OK Cancel

Figure 3. A dialogue window used for control
definition.

RS-232 interface (at various baud rates) and the
MIDI standard (31250 baud) are supported.

• Data windows. Two special windows, called
Data output and Data input, appear on the screen.
The Data output window displays the outgoing
messages for the purpose of control exercising.
The Data input window displays messages sent to
UCofA. In the context of MIDI applications, this
can be used to reveal the format of non-standard
("system exclusive") messages implemented in a
particular synthesizer.

Graphics Interface '88

189

r a File Edit Panel Window Control Communications 4:30:37"

Performance Edit - Inst 1 Data Input

17 7 101 00 32 00 50 6c 61 73 74

@¥4 11 • 11 • 1
69 63 48 69 74 63 63 63

Recei ve Chonnel Mox. Notes Low Note Limit
32323207
System Doto: f7

87 22 84 System Doto: fO 43 00 7e
1 • ~I • 1 00 21 4c 4d 20 20 38 39

- Note Shift High Note Limit 37 36 41 45 00 00 00 00

10 3
00 00 00 00 00 00 00

Volume
1 • 11 • 1 Data Output

Inst Detune Output Assi gn Progrom Chonge: cf 57
[M_ Tune) 112 2 Note On: 92 3d 00

1 .1 1 • 1 Note On: 90 50 12
~9""iiL"'I;l System Doto: fO 43 10 10 Voice Number LFO Select

0002
0 Uoices System Doto: f7

() () () (celeste)
Progrom Chonge: cf 4d

Flute Oboe Harp Note On: 90 50 00

Figure 4. Example of the UCofA screen with
Data windows.

• Explain. If selected, each message displayed in
the Data output and Data Input windows is pre­
ceded by a comment explaining the message type
according to the MIDI specification - for example
"NOTE ON", "NOTE OFF", "INSTRUMENT
CHANGE", "SYSTEM DATA" (Figure 4).

4.2. Control manipulation.

By default, knobs and slide controls are displayed
together with numerical fields showing current values of the
controlled parameters. The value of a parameter can be
changed in two ways:

• By manipulating the movable control element (thumb)
using a mouse, or

• By editing the numerical field associated with the con-
trol.

The editing of the numerical field is particularly convenient
when a specific parameter value must be entered precisely.
For example, such a need may arise when controlling fre­
quencies of oscillators in synthesizers.

4.3. Control binding.

Parameters are bound to controls by editing the mes­
sage definition string associated with each control. This
string is displayed in the dialogue window which appears
after selecting the Define... item from the Control menu
(Figure 3). A simple notation based on format specification
used by the printjO function in C [10] is devised to specify
constant and variable fields of the message. The constant
fields can be defined us ing hexadecimal, decimal, octal or
binary numbers . The first character of the message string
de t.crm ine\ the conversion type actually used. The variable
fl el(j-, ~ re identified by 'ffJ signs followed by optional decimal

numbers indicating the fields lengths (the default is one).
The definition of the message format is complemented by a
specification of binding calculations. This specification has
a form of a list of expressions given in reverse Polish nota­
tion. Each expression describes the contents of a variable
message field as a function of the values returned by one or
more virtual controls. The allowable operators are: +, -, *, I ,
&, I, !, <, >; they denote the four arithmetic operations, bit­
wise logical operations AND, OR, NOT, and logical shifts in
both directions, respectively. The arguments are accessed
using identifiers xn where n is a unique control description
number automatically generated by UCofA at the moment of
control creation. The active control can also be referred to
as x. Naturally, the use of constants is also allowed.

Example. Consider the following message definition string:
H 24 % fe %2, x xl +, xlOO ! 1 <

The described message is five bytes long. The first byte is
equal to 0010 1000 (hexadecimal 24). The second byte
represents the arithmetic sum of the values returned by the
current control and control number 1. The third byte is
equal to 1111 1110 (hexadecimal fe). The last two bytes
constitute a single field which is computed by negating the
value returned by control 100 and shifting the result one
position to the left.

4.4. Interfacing UCofA with UNIX applications.

Although UCofA was originally designed with musical
applications in mind, it can also be used for other purposes ;
for example to provide data to programs running on other
computers. In the simplest case, the application program
treats the Macintosh running UCofA as a terminal and
periodically reads the incoming information from an input
buffer (Figure 5a). Following a different approach, a

Graphics Interface '88

UNIX

RS-232 Input Polling
UCofA ~ A P P 1 i cati 0 n

Buffer

UNIX

Socket

RS-232 Interface A p P 1 i cati 0 n
UCofA ~ Proce33

Signal Signal J
Handler

Figure 5. Interfacing UCofA with UNIX applica­
tions: CA) with polling; CB) without input polling
by the application.

separate process polls the serial input and transfers messages
to the application using an interprocess communications
mechanism (such as sockets in Berkeley UNIX). The appli­
cation can immediately react to control manipulation and
avoid input polling if the interfacing process uses signals to
inform it about incoming messages (Figure 5b).

S. FURTHER RESEARCH

Some problems related to ICMS design are still open.
Two of them are presented below.

5.1. Graphical design of virtual controls.

Graphical forms of controls resembling real knobs,
switches, etc. are limited. A departure from the mimetic
design brings more freedom into the choice of control forms
and can allow for improved data presentation. One possible
source of inspiration for the design of unconventional con­
trols is the area of multivariate analysis [2] . Some controls
based on the methods for representing multivariate data were
presented in [14] . However, a systematic study of control
design still remains to be done.

5.2. Interactive definition of control mechanisms.

The problem of interactively defining arbitrary controls
is particularly challenging. One approach is to describe
them in a special-purpose language [13]. Another possibility
is to create new controls using purely graphical methods.
According to the methodology developed for constraint­
based graphics systems such as Sketchpad [18], ThingLab
[4] and Juno [12], controls can be specified by sets of con­
straints, i.e. geometric relations between control com­
ponents . Unfortunately, numerical methods may be needed
to satisfy these relations when the controls are manipulated.
The use of numerical methods is eliminated in construction­
based systems such as Gargoyle [3] and L.E.G.O. [7], which

190

express constraints in terms of geometric constructions
instead of unstructured sets of relations. Nevertheless, even
if the equations are solved fast enough and the computa­
tional overhead related to control manipulation is acceptable,
neither constraint-based nor construction-based systems can
be incorporated into an ICMS at the present time. First, the
process of interactive control definition requires a further
simplification. Second, the software for control creation
must be integrated with the rest of ICMS - not a negligible
task, given that the existing constraint-based and
construction-based systems require rather specific program­
ming environments, such as Smalltalk, Cedar or LISP.

ACKNOWLEDGMENT

The MIDI device driver incorporated in UCofA was
designed by Rob Morris. lan Witten and the reviewers
brought several important references to our attention. The
support from the Natural Sciences and Engineering Research
Council of Canada (grant No. A0324) is also gratefully ack­
nowledged.

REFERENCES

[1] C. R. BERG: Computer graphics displays: Windows
for process control. IEEE CG&A 3 (3), 1983, pp. 43-
55.

[2] J. BERTIN: La Graphique et le Traitement Graphique
de l'Information. Flarnrnarion, Paris 1977.

[3] E. A. BIER and M. C. STONE: Snap-dragging. Com­
puter Graphics 20 (4), 1986, pp. 233-240.

[4] A. BORNING: The programming language aspects of
ThingLab, a constraint-oriented simulation laboratory.
ACM Trans. on Programming Languages and Systems
3 (4), 1981, pp. 353-387.

[5] G. L. FISHER and K. 1. JOY: A control panel inter­
face for graphics and image processing applications.
Proceedings of the CHI +GI 1987 Conference, pp.
285-290.

[6] J. D. FOLEY, C. F. MCMATH: Dynamic process
visualization. IEEE CG&A 6 (2), 1986, pp. 16-25.

[7] N. FULLER and P. PRUSINKIEWICZ: Geometric
modeling with Euclidean constructions. To appear in
the proceedings of Computer Graphics International
1988.

[8] J. 1. HELFMAN: Panther: A specification system for
graphical controls. Proceedings of the CHI+GI 1987
Conference, pp. 279-284.

[9] Inside Macintosh. Addison-Wesley, Reading 1987.

[10] B. W. KERNIGHAN and D. M. RITCHIE: The C pro­
gramming language. Prentice-Hall, Englewood Cliffs
1978.

[11] MIDI COMMITTEE: MIDI Specification - 12182,
1983.

[12] G. NELSON: Juno, a constraint-based graphics system.
Computer Graphics 19 (3), 1985, pp. 235-243.

[13] D. R. OLSEN JR. , E. F. DEMPSEY, R. ROGGE:
Input/output linkage in a user interface management
system. Computer Graphics 19 (3), 1986, pp. 191-197.

[14] P. PRUSINKIEWICZ: Graphics interfaces for MIDI-

Graphics Interface '88

equipped synthesizers. Proceedings of the International
Computer Music Conference 1985, pp. 319-324.

[15] B. SHNEIDERMAN: Direct manipulation: a step
beyond programming languages. IEEE Computer 16
(8), August 1983, pp. 57-69.

[16] M. J. STEFIK, D. G. BOBROW, and K. M. KAHN:
Integrating access-oriented programming into a mul­
tiparadigm environment. IEEE Software, January 1986,
pp. 10-18.

[17] A. STEVENS, B. ROBERTS and L. STEAD: The use
of a sophisticated graphics interface in computer­
assisted instruction. IEEE CG&A 3 (2), 1983, pp. 25-
31.

[18] I. E. SUTHERLAND: Sketchpad: A man-machine
graphical communication system. In 1963 Spring Joint
Computer Conference, reprinted in H. Freeman (Ed.):
Interactive Computer Graphics, IEEE Computer Soc.
1980, pp. 1-19.

191

Graphics Interface 'SS

