
198

DECOUPLING POINTER AND IMAGE FUNCTIONS OF CURSORS

IN SPACE, TIME, AND AVAILABILITY

Michael J . Muller

Bellcore
444 Hoes Lane

Piscataway, NJ 08854 US
(bellcore!ctt!mjm)

ABSTRACT

A Decoupled Multifunctional Cursor (DMC) is described which
separates the pointing function of a cursor from the information­
carrying function of a cursor. Decoupling in time occurs through
maintaining pointer visibility at all times, while providing image
visibility only upon need . Decoupling in space occurs through
manipulation of the relative positions of the pointer and image.
Decoupling of availability and visibility occurs through the user 's
ability to execute functions even if the image is invisible. This
display technique has a number of advantages over conventional
cursor usage, and over conventional pop-up menus, including
utility within adaptive user interface paradigms .

KEYWORDS: Direct manipulation , cursor, syntax, chord,
mouse.

, ,
RESUME

On decrit un Curseur Multifonctionnel Decoupl~ qui separe la
fonction de pointeur de la fonction porteuse d'information d'un
curseur. Le decouplage temporel s'effectue en conservant une
visibilite constante du pointeur tout en ne maintenant la visibilite
de I'image que lorsque celle-ci est desiree . Le decouplage spatial
s'effectue en manipulant les positions relatives du pointeur et de
I'image. Le decouplage de la disponibilite et la visibilite provient
du fait que I'utilisateur peut executer des fonctions meme lorsque
I'image n'est pas visible . Cette technique de visualisation offre
un certain nombre d' avantages par rapport a I'utilisation d'un
curseur conventionnel ou par rapport aux menus instantanes
conventionnels , entre autres son utilite pour des paradigmes
d'interfaces-utilisateur adaptifs.

MOTS-CLES: Manipulation directe, curseur, syntaxe, corde,
souris.

In troductlon 1

Direct manipulation user interfaces frequently use a graphical
cursor (for critical reviews, see Buxton [1] ; Hutchins, Hollan ,
and Norman [2]; Muller [4]) . The cursor contains two distinct
functionalities which are often confounded :

• a pointer, for selection of data objects

• an Image, for representation of the current operation which
will be performed if a data object is selected

Several recent efforts have considered these two functions
separately (Marcus [3]; Muller [4] ; Myers [5] ; Myers and Buxton
[6]; and Smith [8, 9]).

1. The opiniom in this paper are those of the author, and do Dot necessarily
reflect those of Bell Communications Research.

This paper extends the previous work, explicitly decoupling the
pointer function from the image function in space, time, and
availability .

Conroundlng the Functions

The simplest graphical cursors serve as pointers only . Examples
are shown in Figures lA-B. Each pointer has an associated hot
spot (Figures 1C-D), which is the exact pixel location at which
the pointer points -- Le. , a data object beneath th is particular
pixel receives the action of the cursor.

The shape of the cursor is often used to indicate different modes
of the system. For example, a wait-state can be indicated by a
hand in a "stop" gesture (palm held up toward the user), or by an
image of a clock or watch .2 In graphic arts support sys tems, the
cursor may be represented as a drawing instrument -- e.g . , a

A.

C.
+r

B.

D.

Figure 1. Two simple cursor shapes with pointing
functionality only . A. An arrow pointer. B. A cross­
hair pointer. C. The arrow pointer with its hot spot
indicated by tiny, circled cross-hair. D . The cross-hair
pointer with its hot spot indicated by tiny, circled
cross-hair.

2. The names of products or their suppliers will be omitted for antitrust
simplicity.

Graphics Interface '88

B.

irO, ,··
>. _ . ~ ~,

c. ~HII'
, III I] 111111 n II1I , -~, ' :,,',,',., ' -~

••• --
Figure 2 . Unconfounding pointing functionality from
image functionality. A . An unambiguous pointer
frame with an enclosed image (redrawn from Marcus
[3]). B. An ambiguous pointer frame with an enclosed
image, in which the upper left corner serves as a pointer
by convention (redrawn from Marcus [3]). C. A
Multifunctional Cursor for a three-button mouse
(redrawn from Muller [4]) . D. A Multifunctional
Cursor for a two-button mouse with single-click and
double-click protocols (redrawn from Muller [4]); the
top row is for single-clicks, and the bottom row is for
rapid double-clicks.

crayon, which leaves a thin line image from its point, or a brush
shape of specified length, breadth, and orientation.

However, the practice of representing the state of the system in
the shape of the cursor can lead to problems. Unlike the images
from graphic arts support systems, some cursor shapes can be
very ambiguous pointers. The need to represent information in
the cursor shape thus conflicts with the need to make the cursor
shape a clear pointer.

Unconfoundlng the Functions

Marcus's approach to this problem was to enclose the
informational image within a frame (Marcus [3]) . Some of
Marcus's frames were unambiguous pointers (e.g ., Figure 2A);
others used a convention of upper-Ieft-corner-as-pointer (e.g.,
Figure 2B). Muller's Multifunctional Cursor (MC) [4] extended
this approach to include multiple-button mice with multiple,
distinct image regions for each button (Figure 2C), and for each
button protocol (e.g . , the single-clickldouble-click cursor image
of Figure 2D). Myers [5]. Myers and Buxton [6], and Smith [8,
9] provided a separate cursor/pointer functionality which could

·manipulate information icons -- an image of mouse in Myers'
PERIDOT, or a variety of tool icons in Smith's Alternate Reality
Kit (ARK).

Further Unconfoundlng

This paper extends the approach of Muller [4] and of Myers [5]
and Myers and Buxton [6] . In the work reported here, the
pointer function and the image function are explicitly decoupled
from one another in space and time. They nonetheless function
as a single cursor.

199

DECOUPLED MULTlFUNCTlONAL CURSOR

Figure 3 shows an example of a Decoupled Multifunctional
Cursor (DMC) for use with a three-button mouse using both
single-click and double-click protocols. The DMC consists of two
parts: a pointer region and an image region. The pointer region
is capable of continuous movement across the screen, under the
control of a mouse. The image region is not capable of
continuous movement: instead, it is rapidly relocatable.

The relocation algorithm works as follows :

1. When the pointer region ceases movement, a count-down
timer begins to tick. When the timer reaches zero, the
image region appears adjacent to the pointer region.

2. When the pointer region is in motion, the image region is
made invisible.

The image region is displayed and removed through bitblt
operations, which are also used to preserve the contents of the
screen which are overwritten by the image region. Bitblt
operations are similarly used to restore the pre-image contents of
the screen.

Decoupllng In Time

The pointer is always visible. The image is sometimes visible
and sometimes hidden. This constitutes the decoupling of pointer
and image in time.

Decoupllng In Space

When the image is made visible, its default position is to the
right of the pointer, with its upper margin at the same horizontal
coordinate as the point of the arrow. However, this convention
can lead to problems: If the arrow is moved to the extreme right
or the extreme bottom of the display, then the image will not fit
onto the screen -- or, in some implementations, an error
condition will result as the system attempts to draw the image
outside of the screen boundaries.

Therefore, the relative positions of pointer and image are
modified to insure visibility of the image. At the extreme right
screen margin, the image appears to the left of the pointer, and

--­
lijflo~"tBul

Figure 3 . An example of a Decoupled Multifunctional
Cursor for a three-button mouse with single-click and
double-click protocols. The pointer region (upper left)
and the image region (center) move separately from one
another, but function as a single, integrated cursor.
The checker board patterns indicate that no functions
have as yet been loaded into the image.

Graphics Interface 'SS

Figure 4. An example of a Decoupled Multifunctional
Cursor for a three-button mouse with single-click chord
protocols. The bottom row corresponds to single­
button chords (L, M, and R from left to right,
respectively) . The middle row corresponds to two­
button chords (LM, LR, and MR, respectively). The
top row corresponds to the only possible three-button
chord (LMR) . The following functions have been
loaded into the cursor image: L= edit (an eye, for "look
at the file); M=rename; R = copy; LM=C compiler
("cc"); LR=linker ("lk") ; MR = debugger (a magnifying
glass, for close examination); LMR=erase (a trash
can).

A. B. C.

~~ .0 10 ~~ r. ~ 3.bas eonfus3. has Ql rmuas ~, eonfus4.has ~,
1"11 j J7,bas gl'iph17 . has
Ol<!) 8. bas gmh18.has

. ~ 113.bas nnewJ, ~~~
O? I eonnew4. bas nnfw4.has

ieonutil.bas nuti 1. has -.: r··' 1 tlbig.bas big.has ~ {~ ItlbiQ9.bas bi .has
::. CC -e

n~ toolt8.e toolt8. e

~D toolt81.e !00lt81. e

~~
~I=

[X [X U
c!!L- IT IT

200

so on. This modification constitutes decoupling of pointer and
image in space.

Decoupllng In Availability

Depending upon whether the pointer is in motion, the image may
be visible or invisible. However, the visibility state of the image
has no effect upon the availability of the functions which are
activated through mouse button clicks. That is, the user may
execute a function on a data object through either of two
sequences:

• Full Image Visibility

1. Move the pointer to the data object, and then stop
moving the pointer.

2 . Wait for the image to become visible.

3. Examine the image for the icon which corresponds to
desired function.

4 . Click the (visually-cued) mouse button associated with
the desired function .

• Image Invisibility

1. Move the pointer to the data object.

2. Click the (remembered) mouse button associated with
the desired function.

The same function is executed through either sequence. This
constitutes the decoupling of image visibility from function
availability .

EXAMPLE OF LOADING AND EXECUTING OPERATIONS

Figure 4 shows an example of a cursor for use with a three­
button chording mouse . A total of seven chords may be entered

D. E.
= .8 eonfus3. bas

~ , eonfus4,bas
eonlusl.bu

H8 !!!! eonfus3. has

Q' eonlusUiS
mph17.bu
mph18.bas
~onnell3 . bas
eonnfw4. has
eonut i 1. bas
!ni,.bas
Ilhi .bas

tGol t8.e
!aoIlB1.e

1"11 graph! 7 . bas
010 ~raph!B.bas
)01 ? 1 eonne~3. bas
101 i eonnew4. bas
F.g I> ieonuti l.bas

'.\ Itlhig.bas
1:':-". 1 tlhiq9.bas

lt~ ml(CI' ' lltB .e e-
~D . ~ltB1.e

I::. • !I
~D
UF

ITL-

eonlus4. has
graph!7 . bas

r. 0 ~raph18 . bas

'Cl?
leonn@wJ,bas
i eonnew4. bas

~ ~J.
ieonuti I. has
1 tlbi~~s ~ A Itlbi .bas

: .• CC --
~I

e

~ C toolt8.e

~~
tooIt8~\.c ,

,,-'1'T:-........

~D m fxl='
c!!'--

Figure 5 . Example of loading functions into the Decoupled Multifunctional Cursor (DMC) of
Figure 4 . A . The DMC is shown before any functions have been loaded . B. Loading the edit
function into the L chord (a single-button chord on the left mouse button) . C. After the rename
function has been loaded into the M single-button chord (not shown), the copy function is being
loaded into the R single-button chord . D. The C compiler function is loaded into the LR two­
button chord. E. After the linker function has been loaded into the LR two-button chord (not
shown) and the debugger function has been loaded into the MR two-button chord (not shown), the
erase function is loaded into the LMR three-button chord. F . The pointer region is positioned on a
data object -- the file "tooltB1.c" -- and the user is ready to execute one of the seven functions on
that data object.

Graphics Interface '88

by simultaneous button-presses: three single-button degenerate­
case chords; three two-button chords; and one three-button
chord.

Figures 5A-E show some of the operations required to load the
functions into the cursor of Figure 4. The following functions
have been loaded into the cursor image:

• L Edit (an eye, for "look at the file)

• M Rename

• R Copy

• LM C compiler ("cc")

• LR Linker ("lk")

• MR Debugger (a magnifying glass, for close examination)

• LMR Erase (a trash can)

Figure SF shows the cursor positioned to apply one of the
operations to a data object -- in this case, a data file. The DMC
has been implemented as a robust, functional prototype in an
IBM-compatible personal computer environment.

DISCUSSION

Usability

Although behavioral testing is still in the future, the DMC
appears to offer advantages over conventional cursor usage. The
display is uncluttered by a pictorially complex cursor image, of
the sort used by Muller [4) and by Smith [8, 9). Nonetheless, the
information in the more complex image is available upon need.
The user makes his or her need known to the system simply by
waiting . That is, a naive user who is confused into inactivity will
be prompted with more information.

Expert users can bypass the additional information (and display
clutter) by entering their mouse clicks or chords while the cursor
is in motion; a small continuous motion is sufficient to keep the
image region from being displayed.

Contrast with Pop-Up Menus

The DMC differs from standard pop-up menus (e.g., Smith,
Irby, Kimball, Verplank, and Harslem [7)) in a number of
respects. There is only one function available in any particular
state of a pop-up menu system. This is typically the select
function. Once a data object has been selected with a designated
select mouse button, one of the other mouse buttons is used to
pop-up a menu . The select button is then used to select the
desired function from the pop-up menu. By contrast, the DMC
provides multiple functions which are directly available by a
single mouse click or chord .

Another difference is that functions are invisible in a pop-up
menu system, whereas they are displayed (after a pause) in a
DMC system.

Syntax of Menu Use and DMC Use

The DMC different from a pop-up menu with a temporal delay in
two ways.3 First, when the DMC appears, the user does not need
to move the cursor to the image of the DMC; by contrast, when a
pop-up menu appears, the user must move the cursor to the menu
to select an item from it.

The second difference is more important. The DMC is based
upon a simplification of direct manipulation user interface syntax
called the ToolTray mental model (Muller [4)). This syntax can
be summarized as tool-object (Le., first select the tool, then
apply it to an object), and can be contrasted to the diversity of
syntaxes used in other direct manipulation user interfaces -­
sometimes multiple syntaxes within a single system or product.

3. I thank an anonymous reviewer for asking this question.

201

Consider, for example, popular graphic arts support programs in
which a tool-object syntax is used to select drawing tools, and an
object-tool syntax is used to access menu bar operations . Many
pop-up menu systems are implicitly object-tool syntaxes, based
on their underlying object-oriented programming models. But it
is arguable that many common experiences support the tool­
object syntax, as do the previous generation of command­
language user interfaces. Mixing the two syntaxes within a single
environment can be confusing to non-programmer or non-expert
users.

According to the ToolTray model, the user of a MC or DMC
should first select the tool (by loading it into the MC or DMC
image), and then apply that tool to a data object. This is the
opposite of the syntax used in pop-up menus. It will be
interesting to explore different temporal-delay scenarios for
DMC usage and for pop-up menu usage: this will provide an
opportunity to study the impact of the syntactic differences .

Potential for Adaptive User Interfaces and for User Models

A third difference is that most pop-up menu systems have
relatively inflexible parameters, whereas the DMC offers delay
parameters that may be easily modified as part of an adaptive
user interface. Expert users may prefer relatively long delays
between the cessation of cursor movement and the appearance of
the image region. Naive users may prefer relatively short delays .
An adaptive system might model the user's experience, and set
the delay accordingly . The delay could be shortened following a
user error, or if the user entered a task domain or a new
computer tool with which she or he was not familiar.

Image Display Overhead

One other apparent advantage of the DMC is its compromise
between information availability and display overhead (Le.,
performance). Moving a large cursor and complex cursor image,
(such as that used by Muller [4), by Smith [8, 9), and [in certain
modes) by Myers [5) and Myers and Buxton [6)) can require
substantial computing resources. The DMC reduces resource
utilization by not requiring the movement of a large image.
Rather, a relatively small processing penalty is paid to display a
stationary form of the image region. Moreover, this stationary
form is not displayed at all times -- only when the cursor has
been at rest for a criterial amount of time.

CONCLUSION

The DMC appears to offer usability advantages and system
performance advantages over existing cursor techniques.
Behavioral testing will be begun shortly. A patent application
has been filed. Research will continue in extensions of the DMC
technique to a broader range of applications, and to adaptive user
interface strategies .

Acknowledgements

I thank the following people for very helpful critical discussions:
Mike Bianchi, Y.K . Chan, Jane Daniel, Lois Flamm, Shu-Chu
Hsi, Adam Irgon, Peter Koppstein, Wei-Ching Lin, Susan Man,
Bill Mansfield, John Peoples, Ruth Quigley-Lawrence, Judy
Schroepfer, Mary Anne Smith, Abe Shliferstein, Danny
Wildman, and Jean ZolnowskL

REFERENCES

[1) Buxton, W. (1986) . There's more to interaction than
meets the eye: Some issues in manual input. In D.A .
Norman and S.W. Draper (Eds.), Uur-centued system
design . Hillsdale, N .1.: Erlbaum.

Graphics Interface '88

[2] Hutchins, E.L., Hollan, J .D., and Norman, D.A. (1986) .
Direct manipulation interfaces. In D.A. Norman and S. W.
Draper (Eds.), User-centered system design. Hillsdale,
N.J .: Erlbaum.

[3] Marcus, A. (1984) . Corporate identity for iconic interface
design: The graphic design perspective . IEEE Computer
Graphics and Applications 4 (12), 24-32 (December 1984).

[4] Muller , M.J . (1987). Multifunctional cursor for direct
manipulation user interfaces. In Human factors in
computing systems. Washington, D.C. : ACM, in press.

[5] Myers, B.A. (1987) . Creating dynamic interaction
techniques by demonstration. Human factors in computing
systems and graphics interface . Toronto, ONT.: ACM
SIGCHI.

202

[6] Myers, B.A. , and Buxton, W. (1986). Creating highly­
interactive and graphical user interfaces by demonstration .
ACM SIGGRAPH 20. 249-258.

[7] Smith, D ., Irby, C., Kimball, R ., Verplank, W . , and
Harslem, E. (1982). Designing the Star user interface.
Byte 7 (4) , 242-282.

[8] Smith, R.B. (1986). The alternate reality kit: An
animated environment for creating interactive simulations.
Proceedings of the 1986 IEEE Computer Society Workshop
on Visual Languages . Dallas, TX. : IEEE Computer
Society .

[9] Smith, R.B. (1987) . Experiences with the alternate reality
kit: An example of the tension between literalism and
magic. Human factors in computing systems and graphics
interface . Toronto,ONT.: ACM SIGCHI.

Graphics Interface '88

