
211

THE APPLICATION OF AREA ANTIALIASING ON
RASTER IMAGE DISPLAYS

Yu-Tse Chen and P. David Fisher
Department of Electrical Engineering

Michigan State University, East Lansing, MI 48824
and

Michael D. Olinger
Lear Siegler, Inc.IInstrument Division

Grand Rapids, MI49508

ABSTRACT

Most drawing algorithms produce aliasing images while
rendering geometric objects in computer graphics applica­
tions. The use of gray levels is a very common technique in
applying antialiasing algorithms on images. Area antialias­
ing algorithms assign the intensity level related to the occu­
pied area of the drawings for each pixel. These algorithms
can operate at very high speeds from their given intensity
level to each pixel while drawing scenes. In this paper, we
develop an area antialiasing algorithm with more accurate
results and much flexible operation than previous algorithms.
This algorithm was designed so that it could be efficiently
implemented in a parallel hardware architecture. It uses the
midpoint distance to calculate the shaded area and is suitable
for most curve drawing applications. The use of this
antialiasing algorithm is illustrated with examples of lines
with variable thickness and circle antialiasing operations.
General considerations involved in using of this algorithm
for curve drawings are discussed including an algorithmic
complexity analysis.

1. Introduction

In computer graphics applications, aliasing is a display
degradation problem resulting from inaccurate digital sam­
pling and filtering of computer generated images. The result
is known as the "jaggy" or "staircase" appearance on
geometric shapes. Most antialiasing methods use filtering
techniques, by calculating the filtering function with the
image then assigning the intensity to each pixel, to smooth
the sharp lines or edges in the display. The assignment of
gray-scale, instead of only black and white, for each pixel in
the frame buffer is required for antialiasing operations in
raster display systems. Pixel averaging [1], i.e., window
averaging, is a filtering technique used to produce a pixel in
a low-resolution image by averaging several pixels in a
high-resolution image. This technique can achieve very real­
istic antialiasing results but needs a very long processing
time for operating the window to the whole image buffer.

Area antialiasing is another simple heuristic technique.
It assigns an intensity to each pixel according to the area of
each pixel intersected by the image. Several approaches [2-
4] have been described in the literature which use the idea

of area antialiasing. These methods are generally easy to
apply in rendering geometric images and very easy to imple­
ment in hardware. One of them uses a table look-up method
[2] to implement conical area antialiasing. A variation of this
algorithm can be used to draw the lines with various line
thicknesses and to smooth the edges of polygons. The algo­
rithm uses a small number of entries in the table to reduce
table searching time and memory space. But, because of
interpolation, it yields less accurate results and longer
operating time for drawing the lines without having the same
line slopes as listed in the table. Some direct area antialias­
ing calculation methods combined with the Bresenham line­
drawing algorithm [5] generate the shaded pixels for line or
edge antialiasing [3], [4]. These algorithms can be executed
at high speed. But the accuracy of the results and the flexi­
bility of applying the algorithms to other drawing algorithms
represent serious deficiencies.

This paper describes and illustrates a direct area
antialiasing algorithm, which is more realistic than previous
algorithms. The algorithm (known as the CFO algorithm)
works with the curve-drawing algorithms for curve antialias­
ing. Because the processes in the algorithm can be executed
in parallel, the algorithm may be efficiently implemented in
a parallel hardware.

2. Background

Non-parametric curve-drawing algorithms are used to
select pixels while ' rendering curves on the raster display.
Most non-parametric curve-drawing algorithms can be
classified as either the mid-point method or the two-point
method. For example, the Bresenham line-drawing algo­
rithm [5] uses the difference of the distances from the
desired line to the two closest points for selecting pixel in
each drawing step which is also called the two-point line­
drawing algorithm. The Pitteway and Watkinson line­
drawing algorithm [3] uses the relative position between the
pixel mid-point and the desired line for selecting the pixel in
each drawing step which is also called the mid-point line­
drawing algorithm. These two methods can be applied to
other curve-drawing algorithms, such as the Bresenham
circle-drawing algorithm and the mid-point circle-drawing
algorithm. A comparison of the mid-point and the two-point
curve drawing algorithms is provided by Aken and Novak
[6].

Graphics Interface '88

Most area antialiasing algorithms generate the shaded
pixels in drawing lines or edges. Gupta and Sproull [2] use
a conic filtering technique to precalculate the intensity infor­
mation, and then store the data into the tables for antialias­
ing operations. This algorithm incrementally calculates the
distance between the line center and the conic center, and
then utilizes a look-up table to fetch the intensities of the
pixels for each line-drawing computation. The table gen­
erated from this algorithm contains the mapping from the
given distance and the line slope information to the intensity
results of shaded pixels. Because the GS algorithm gives
lines which appear to be bended or of non-constant line
thickness. The utilization of GS algorithm should consider
the trade-offs among look-up table size, operating speed and
realism [7]. Pitteway and Watkinson [3] use an unweighted
area antialiasing technique to incrementally select the pixels
and the intensity information while drawing lines and edges.
This PW algorithm has a high operating speed, especially for
edge shading operations. But it needs to draw a line three
times to approximately generate a unit-width antialiased line.
Similarly, Fujimoto and Lwata [4] use an extra intensity
control variable and an adjustable Fourier window to gen­
erate a pixel's coordinates and intensity simultaneously for
drawing shaded lines. By using the addressable sub-pixel
and linearized intensity calculation, this algorithm can be
used in polygonal curve antialiasing operations. But the
algorithm merely has variable line thickness results by using
different Fourier windows.

In the algorithm, known as the CFO algorithm,
presented in this paper, we refine and extend the incremental
method to draw variable thickness lines and edges and to
generate intensity and coordinates of shaded pixels in each
drawing step. We also extend the CFO algorithm to non­
parametric curve antialiasing.

3. The CFO Algorithm

The unweighted area antialiasing technique utilizes that
the intensity of each pixel is proportional to the ratio of
shaded area to a unit square area. Figure 1 shows the ideal
case of a unit-width line on the pixel plane. Along the line,
the shaded area of each pixel represents the amount of inten­
sity of that pixel. In order to get an exact intensity for each
shaded pixel, we must calculate the shaded area precisely.
Figure 2 shows all possible cases of the mid-point distance
parameter, ei, and the slope of the line, m, related to the
shaded area. From the geometric calculations, we express the
shaded results as the follows:

And

{

ei if ei ~ ml2;

Areal = ml8 + eil2 + ei2/2m if -ml2 < ei < ml2;
o if ei :S - ml2.

Area2 = {I ~ ml8 + eil2 + ei2/2m

1 + ei

if ei ~ ml2;

if -ml2 < ei < ml2;
if ei :S -ml2.

Note that

-I :S ei < I,

212

and

o :S m :S I.

ei2/2m < I, if - ml4 < ei < ml4.

Note that each "*" represents the pixel center;
each unit square in the columns represents the area
of each pixel.

Figure 1. An example of a shaded line shown ideally
on a pixel plane.

Area2=l
ei> m/2

*
L...:O<<L<.<:=-Areal

-m/2 < ei < m/2

*

ei < -m/2

Area 1
=0

Note that each "*" represents the pixel center;
m represents the slope of the line;
each unit square in the columns represents the area
of each pixel.

Figure 2. The results of Areal and Area2 with three
cases of ei.

Then, by eliminating the complicate computation parts in the
exact shaded area solutions, we obtain the approximated
results as shown in the following expressions:

And

{

ei

Areal = ~8 + ei/2

if ei ~ ml4;

if - ml4 < ei < ml4;
if ei:S -ml4.

{

I if ei ~ ml4;

Area2 = 1 - ml8 + eil2 if -ml4 < ei < ml4;
1 + ei if ei :S -ml4.

By calculating the difference between the approximated and
the exact shaded area solutions, the maximum error of using
the approximated shaded area solution is only 1/32, i.e.,
3.125%.

Graphics Interface 'SS

For different input line widths, Wd, we only have to
consider two mid-point distance parameters, e1 and e2, which
are the the highest and the lowest distances from the mid­
point to the line edges. Given the pixel selection information
from the line drawing algorithm, both e1 and e2 as well as
their related area results can be calculated independently.
Assume d is pixel selection variable which will be combined
in the the CFO algorithm later, the expressions for ei are:

If d ~ 0, then e1 = e1 - (1 - m) and e2 = e2 + (1 - m).

Or

if d < 0, then e1 = e1 + m and e2 = e2 - m.

Now, to find the number of shaded pixels and the constant
intensity value in each drawing step, we define

At = Wd * SQRT(l + rril),

and

Wx = LAtl2J + I,

where At is the area of the intersection of the line with each
column and 2 * Wx + 1 is the amount of pixels to be shaded
each step. Therefore, the coordinates of shaded pixels can
be generated in each drawing step and the expressions of
initial value of e1 and e2 can be defined as

e1 = e2 = Ati2 - IAti2J - 112.

Summing all the definitions and formula listed above,
we form the CFO line algorithm shown in Figure 3 with the
case of Xl ~ xl and 0:;; m:s: 1. The CFO line algorithm can
draw the antialiasing line from (xl , y1) to (x2, y2) with line
thickness, Wd. Note that in the algorithm, d and s are the
pixel selection variables used for selecting pixels and ai is
the area parameter, where

0:;; ai :;;1 ;

i = I, 2, 3 and 4.

Also, a1 and 02, which were generated by e l , are related to
the intensities of upper two pixels. Whereas, a3 and a4,

which were generated by e2, are related to the intensities of
lower two pixels. The algorithm will only use upper pixels'
operation, i.e., the computations of el, a1 and a2, for polygon
edge antialiasing. One can adjust the level of realism by
controlling the line thickness, Wd, in the CFO algorithm,
since Wd can be chosen to be any positive real value.

We can apply the algorithm to non-parametric curve
antialiasing by modifying the line slope, m, and the constant
intensity value, At. Figure 4 shows the Bresenham circle­
drawing algorithm combined with the modified CFO algo­
rithm in octant y ~ x ~ 0 and Wd = 1 pixel case. Note that
(xl, y1) is the circle center and R is the circle radius. The
CFO circle algorithm uses an incremental line slope, mstep,

and a incremental constant intensity value, Atstep, to maintain
the circle edge width. Both are also used for replacing the
complicated computations and generating the approximate
circle antialiasing results. Similarly, by accompanying with
the pixel section result from the non-parametric curve­
drawing algorithm, the CFO algorithm can be applied to all
the non-parametric curve-drawing algorithms.

Therefore, the generalization of the CFO algorithm is
possible if we can specify the line slope, m, and the constant

213

LineAnt(x1, y1, Xl , y2, Wd)

{m = (y2 - y1) I (Xl - xl);

w=l-m;

At = Wd * SQRT(l + rril);
Wx = IAtl2J + 1;

d= 112 - w;

e 1 = Atl2 - IAtl2J - 112;
e2 = e1;

for (i=1; i«Xl-x1)+2; i++)

(Assign_area(el , aI , a2);

Assign_area(e2, a3 , a4);

if (WX > 1)

(for v=y1-Wx+2; J<y 1+Wx-1 ; J++)
display(x1, J, 1);

display(x1, y1+Wx-1, a2);

. display(x1, y1-Wx+1, a4);
}

else display(x1, y1 , At-a1-a3);

display(x1, y1+Wx, a1);

display(x1, y1-Wx, 03);

if (d<O)

{s=O; d=d+m;

e1 = e1 + m; e2 = e2 - m; }
else { s = 1; d = d - w;

e1 = e1 - W; e2 = e2 + w; }
xl = xl + 1;

y1 = y1 + s;

Assign_area(ei. ail , a.-v

{ if (ePn/4)

{ ail = ei; ail = 1; }

else if (ei~(-ml4»

{ ail = ml8 + e/2; 002 = 1 - ml8 + e/2; }

else { ail = 0; a.2 = 1 + ei; }

Figure 3. The CFO line algorithm with variable
thicknesses.

intensity level, At, in the antialiasing algorithm. Because the
main processing loops in the CFO algorithm use only simple
computations, such as additions and subtractions, the algo­
rithm can have high execution speeds. Furthermore, because
most of the processes, such as the calculation of ei and ai in
the algorithm can be executed in parallel, the CFO algorithm
can be implemented in a parallel hardware architecture.

4. Comparisons and Demonstrations

A comparison of various line antialiasing algorithm
results is given by Pitteway [8]. It contains the intensity
results of the ideal calculation, the Gupta and Sproull [2]
and Pitteway and Watkinson [3] algorithms. Because of the
problem with non-constant line thickness in the results of the
GS algorithm, we only consider the operation results from
the PW algorithm. With the same condition as in [8], the

Graphics Interface '88

CircleAnt(xl, yl, R)

{yl = yl + R ;

xx = 0;

yy = R;

m=O;

w = I;
mstep = -.fiJR;

At = I;

Atstep = (.J2 - 1)*-.fiJR;

d = 3 - 2 * R;

e 1 = Atf2 - LAtl2J - 112;

e2 = eI;
while (~yy)

(Assign_area(el, aI, a2);

Assign_area(e2, a3, a4);

display(xI, yI, At-aI-a3);

display(xI, yI-I, aI);

display(xI , yI+I , a3);

}

m = m + mstep; w = w - mstep;

At = At + Atstep;

eI = (AtI2) - 112; e4 = eI;

if (d<.O)
{ s = 0; d = d + 4*xx +6;

eI = eI + m; e2 = e2 - m; }

else (s = 1; d = d + 4*(xx-yy) + 10;

eI = eI - w; e2 = e2 + w; }

xl = xl + 1; xx = xx + 1;

y I = yI - s; yy = yy - s;

Figure 4. The CFO circle algorithm with Wd = Ipixel

in octant y ~ x ~ o.

line antialiasing results of the CFO algorithm, the PW algo­
rithm and the ideal calculation are listed in Table 1. This
table shows that the area results of the CFO algorithm are
much accurate than that of the PW algorithm. Figure 5
shows a general comparison graph of the shaded area results
related to the distance parameters, ei, of the ideal calculation,
the PW algorithm and the CFO algorithm. It shows that the
maximum error of the CFO result is ml32 which is much less
than that of the PW result, Le., ml8. Figure 6 illustrates the
line results of the PW algorithm,. the CFO line algorithm and
the aliased Bresenham line-drawing algorithm. Figure 7
shows the line results of the CFO line algorithm with several
different line thicknesses. Note that all the demonstrations in
this paper are using 64 intensity levels in SUN 3/160C with
screen size of 1152x900 pixels.

214

With the comparison of algorithmic complexity for both
algorithms, the CFO algorithm has almost three times com­
plexity than that of the PW algorithm. But, for Wd = 1 piul,

the CFO algorithm can generate three shaded pixels with a
more accurate result in each drawing step instead of drawing
the line three times with less accurate results as with the PW
algorithm. In addition, by adjusting the line width, Wd, the
CFO algorithm can generate very realistic lines and edges.
To reduce the algorithmic complexity, we can modify the
CFO algorithm to have the same antialiasing results as that

of the PW algorithm. Then, the algorithmic complexity of
the modified CFO algorithm is only about one half of the
original algorithmic complexity. Figure 8 shows the
modified CFO algorithm, and Table 2 illustrates the line
antialiasing execution speeds of these three algorithms by
using the sequential software implementations. This result
shows that the CFO algorithm has almost the same execu­
tion speed than that of the PW algorithm, and the modified
CFO algorithm is the fastest one among all three algorithms.

Location PW result CFO result Ideal result
U1 0.114 0.147 0.156
Bl 1.000 0.936 0.918
L1 0.114 0.147 0.156
U2 0.000 0.004 0.024
B2 0.829 0.825 0.805
L2 0.400 0.400 0.400
U3 0.543 0.543 0.543
B3 0.686 0.686 0.685
L3 0.000 0.000 0.001
U4 0.257 0.257 0.264
B4 0.972 0.897 0.889
L4 0.000 0.075 0.076
U5 0.000 0.075 0.076
B5 0.972 0.897 0.889
L5 0.257 0.257 0.264
U6 0.000 0.000 0.001
B6 0.686 0.686 0.685
L6 0.543 0.543 0.543
U7 0.400 0.400 0.400
B7 0.829 0.825 0.805
L7 0.000 0.004 0.024
U8 0.114 0.147 0.156
B8 1.000 0.936 0.918
L8 0.114 0.147 0.156

Note that the location of the pixel and PW indicated
here are the same as the definitions in [7].

Table 1. The area antialiasing results of the ideal,
CFO and PW algorithms from (0,0) to (7,5) with
wd = 1 piul.

Area result

Note:

- is the exact result;
is PW's result;

..... is CFO's result.

-m/2 -m/4

rn/2

m/4 m/2

ei

Figure 5. A comparison graph of shaded area results.

Graphics Interface '88

Figure 6. The results of the PW algorithm (the upper
line), the CFO line algorithm (the central line) and the
Bresenham line algorithm (the lower line) with
line slope = 517, Wd = 1 pixel and 1 pixel = lOXlO
screen-pixel2.

Figure 7. The results of the CFO line algorithm with
line slope = 517, Wd = 0.3, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5,
3.0, 3.5, 4.0 and 4.5 pixels (from left to right) and
1 pixel = lXl screen-pixeI2.

Assign_area(ei. ail . a.iJ

if (e.~)

(ail = ei; ai2 = 1;)

else (ail = 0; ai2 = 1 + ei;)

Figure 8. The modified CFO line algorithm with vari­
able thicknesses. Note that it only shows Assign_area
parts and the main parts of the algorithm is the same
as in Figure 3.

215

Line PW CFO Modified CFO

(10,10)-(80,60) 40 40 20

(0,0)-(700,500) 440 420 300

(0,0)-(1000,600) 640 600 400

Note that all timing test results are given in CPU mil­
liseconds on SUN-3, and PW indicated here is the
same as the definitions in [7] .

Table 2. The execution speed of the PW, CFO and
modified CFO algorithms on three different lines.

By using antialiasing line-drawing operations, most
antialiasing algorithms can be applied to polygonal curve
drawings. This piecewise curve-drawing operation takes a lot
of time to figure out the polygonal lines of curves, and then
to draw all the antialiasing lines for curve antialiasing. Also,
most antialiasing algorithms can not operate with non­
parametric curve-drawing algorithms, such as Bresenham
circle-drawing algorithm, for curve antialiasing. The CFO
algorithm can not only be used for line and edge antialias­
ing, but can be applied to curve antialiasing as well. With a
little modification to the nominal CFO algorithm, the CFO
circle algorithm, which combines with the Bresenham
circle-drawing algorithm, can generate antialiasing circle
results incrementally. Figure 9 compares the results of the
CFO circle algorithm with the Bresenham circle algorithm.
The results show that the CFO circle algorithm will smooth
the small jaggy edges but does not have a significant
improvement on the large jaggy edges. This problem can be
solved by applying the accurate line slope, rn, and distant
parameter, ei, in each drawing step. Figure 10 illustrates the
results of this improved circle antialiasing operation, the
CFO circle algorithm and the aliased Bresenham circle algo­
rithm. Although it shows a very realistic circle result, this
improved circle antialiasing operation will involve more
complicated computations than that of the nominal CFO cir­
cle algorithm.

Ul~_ • . " .
Figure 9. The results of the CFO circle algorithm
(the upper circle) and the Bresenham circle algorithm
(the lower circle) with R = 19 pixels, Wd = 1 pixel and
1 pixel = lOXI0 screen-pixeI2.

Graphics Interface '88

111-..
Ill'

Figure 10. The results of the improved CFO circle
algorithm (the lower circles), the CFO circle alg?­
rithm (the upper-right circles) and the Bresenham CIr­

cle algorithm (the upper-left circles) with R =

3010310 slep 20 pixe/s, Wd = I pixe/ and I pixe/ = IXI

screen-pixe/2•

5. Conclusions

Area antialiasing is one of the useful antialiasing tech­
niques. Most area antialiasing algorithms operate in a high
operating speed and have acceptable line antialiasing results.
When required to have a high degree of realism, we should
have accurate pixel intensity information and the adjustable
line width in the antialiasing algorithms. This paper provides
a more accurate antialiasing algorithm than previous algo­
rithms, and the algorithm can draw lines with various line
thicknesses and can generate all shaded pixels in each draw­
ing step. Since the CFO algorithm can generate the special
line endpoints which edges are parallel to x or y axes, one
can use other related papers for squared or rounded line
ends. The operating speed of the CFO algorithm can be very
fast when implemented in a parallel hardware architecture.
Furthermore, the CFO algorithm also can be applied to all
non-parametric curve-drawing algorithms, which can gen­
erate pixel selection signal.

Thus, the results of this paper provide an improved
antialiasing algorithm with enhanced performance coupled
with a versatile operational environment for the users.
Because the intensity decision processes in the CFO algo­
rithm are very regular and incremental, it is suitable to
implement the CFO algorithm into a VLSI architecture and
work with other drawing facilities in the advanced computer
graphics system.

216

REFERENCES

1. Rogers, D. F., "Procedural Elements for Computer
Graphics," McGraw-Hill Inc., 1985.

2. Gupta, S. and Sproull, R. F., "Filtering Edges for
Gray-Scale Displays," Computer Graphics, Vol. 15, No.
3 (August 1981).

3. Pitteway, M. L. V. and Watkinson, D, "Bresenham's
Algorithm with Grey Scale," Communications of the
ACM, Vol. 23, No. 11 (November 1980).

4. Fujimoto, A. and Lwata, K., "Jag-Free Image on Raster
Displays," IEEE Computer Graphics and Applications,
Vol. 3, No. 9 (December 1983).

5. Foley, J. D. and Van Dam, A., "Fundamentals of
Interactive Computer Graphics," Addison-Wesley, 1982.

6. Aken, J. V. and Novak, M., "Curve-Drawing Algo­
rithms for Raster Displays," ACM Transactions on
Graphics, Vol. 4, No. 2 (April 1985).

7. Earnshaw, R. A., "Fundamental Algorithms for Com­
puter Graphics," NATO ASI Series, Vol. F17, Spring­
Verlag Berlin Heidelberg (1985).

8. Pitteway, M. L. V., "On Filtering Edges for Grey-Scale
Displays," Computer Graphics, Vol. 15, No. 4
(December 1981).

Graphics Interface '88

