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ABSTRACT 

Most drawing algorithms produce aliasing images while 
rendering geometric objects in computer graphics applica­
tions. The use of gray levels is a very common technique in 
applying antialiasing algorithms on images. Area antialias­
ing algorithms assign the intensity level related to the occu­
pied area of the drawings for each pixel. These algorithms 
can operate at very high speeds from their given intensity 
level to each pixel while drawing scenes. In this paper, we 
develop an area antialiasing algorithm with more accurate 
results and much flexible operation than previous algorithms. 
This algorithm was designed so that it could be efficiently 
implemented in a parallel hardware architecture. It uses the 
midpoint distance to calculate the shaded area and is suitable 
for most curve drawing applications. The use of this 
antialiasing algorithm is illustrated with examples of lines 
with variable thickness and circle antialiasing operations. 
General considerations involved in using of this algorithm 
for curve drawings are discussed including an algorithmic 
complexity analysis. 

1. Introduction 

In computer graphics applications, aliasing is a display 
degradation problem resulting from inaccurate digital sam­
pling and filtering of computer generated images. The result 
is known as the "jaggy" or "staircase" appearance on 
geometric shapes. Most antialiasing methods use filtering 
techniques, by calculating the filtering function with the 
image then assigning the intensity to each pixel, to smooth 
the sharp lines or edges in the display. The assignment of 
gray-scale, instead of only black and white, for each pixel in 
the frame buffer is required for antialiasing operations in 
raster display systems. Pixel averaging [1], i.e., window 
averaging, is a filtering technique used to produce a pixel in 
a low-resolution image by averaging several pixels in a 
high-resolution image. This technique can achieve very real­
istic antialiasing results but needs a very long processing 
time for operating the window to the whole image buffer. 

Area antialiasing is another simple heuristic technique. 
It assigns an intensity to each pixel according to the area of 
each pixel intersected by the image. Several approaches [2-
4] have been described in the literature which use the idea 

of area antialiasing. These methods are generally easy to 
apply in rendering geometric images and very easy to imple­
ment in hardware. One of them uses a table look-up method 
[2] to implement conical area antialiasing. A variation of this 
algorithm can be used to draw the lines with various line 
thicknesses and to smooth the edges of polygons. The algo­
rithm uses a small number of entries in the table to reduce 
table searching time and memory space. But, because of 
interpolation, it yields less accurate results and longer 
operating time for drawing the lines without having the same 
line slopes as listed in the table. Some direct area antialias­
ing calculation methods combined with the Bresenham line­
drawing algorithm [5] generate the shaded pixels for line or 
edge antialiasing [3], [4]. These algorithms can be executed 
at high speed. But the accuracy of the results and the flexi­
bility of applying the algorithms to other drawing algorithms 
represent serious deficiencies. 

This paper describes and illustrates a direct area 
antialiasing algorithm, which is more realistic than previous 
algorithms. The algorithm (known as the CFO algorithm) 
works with the curve-drawing algorithms for curve antialias­
ing. Because the processes in the algorithm can be executed 
in parallel, the algorithm may be efficiently implemented in 
a parallel hardware. 

2. Background 

Non-parametric curve-drawing algorithms are used to 
select pixels while ' rendering curves on the raster display. 
Most non-parametric curve-drawing algorithms can be 
classified as either the mid-point method or the two-point 
method. For example, the Bresenham line-drawing algo­
rithm [5] uses the difference of the distances from the 
desired line to the two closest points for selecting pixel in 
each drawing step which is also called the two-point line­
drawing algorithm. The Pitteway and Watkinson line­
drawing algorithm [3] uses the relative position between the 
pixel mid-point and the desired line for selecting the pixel in 
each drawing step which is also called the mid-point line­
drawing algorithm. These two methods can be applied to 
other curve-drawing algorithms, such as the Bresenham 
circle-drawing algorithm and the mid-point circle-drawing 
algorithm. A comparison of the mid-point and the two-point 
curve drawing algorithms is provided by Aken and Novak 
[6]. 
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Most area antialiasing algorithms generate the shaded 
pixels in drawing lines or edges. Gupta and Sproull [2] use 
a conic filtering technique to precalculate the intensity infor­
mation, and then store the data into the tables for antialias­
ing operations. This algorithm incrementally calculates the 
distance between the line center and the conic center, and 
then utilizes a look-up table to fetch the intensities of the 
pixels for each line-drawing computation. The table gen­
erated from this algorithm contains the mapping from the 
given distance and the line slope information to the intensity 
results of shaded pixels. Because the GS algorithm gives 
lines which appear to be bended or of non-constant line 
thickness. The utilization of GS algorithm should consider 
the trade-offs among look-up table size, operating speed and 
realism [7]. Pitteway and Watkinson [3] use an unweighted 
area antialiasing technique to incrementally select the pixels 
and the intensity information while drawing lines and edges. 
This PW algorithm has a high operating speed, especially for 
edge shading operations. But it needs to draw a line three 
times to approximately generate a unit-width antialiased line. 
Similarly, Fujimoto and Lwata [4] use an extra intensity 
control variable and an adjustable Fourier window to gen­
erate a pixel's coordinates and intensity simultaneously for 
drawing shaded lines. By using the addressable sub-pixel 
and linearized intensity calculation, this algorithm can be 
used in polygonal curve antialiasing operations. But the 
algorithm merely has variable line thickness results by using 
different Fourier windows. 

In the algorithm, known as the CFO algorithm, 
presented in this paper, we refine and extend the incremental 
method to draw variable thickness lines and edges and to 
generate intensity and coordinates of shaded pixels in each 
drawing step. We also extend the CFO algorithm to non­
parametric curve antialiasing. 

3. The CFO Algorithm 

The unweighted area antialiasing technique utilizes that 
the intensity of each pixel is proportional to the ratio of 
shaded area to a unit square area. Figure 1 shows the ideal 
case of a unit-width line on the pixel plane. Along the line, 
the shaded area of each pixel represents the amount of inten­
sity of that pixel. In order to get an exact intensity for each 
shaded pixel, we must calculate the shaded area precisely. 
Figure 2 shows all possible cases of the mid-point distance 
parameter, ei, and the slope of the line, m, related to the 
shaded area. From the geometric calculations, we express the 
shaded results as the follows: 

And 

{ 

ei if ei ~ ml2; 

Areal = ml8 + eil2 + ei2/2m if -ml2 < ei < ml2; 
o if ei :S - ml2. 

Area2 = {I ~ ml8 + eil2 + ei2/2m 

1 + ei 

if ei ~ ml2; 

if -ml2 < ei < ml2; 
if ei :S -ml2. 

Note that 

-I :S ei < I, 
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and 

o :S m :S I. 

ei2/2m < I, if - ml4 < ei < ml4. 

Note that each "*" represents the pixel center; 
each unit square in the columns represents the area 
of each pixel. 

Figure 1. An example of a shaded line shown ideally 
on a pixel plane. 

Area2=l 
ei> m/2 

* 
L...:O<<L<.<:=-Areal 

-m/2 < ei < m/2 

* 

ei < -m/2 

Area 1 
=0 

Note that each "*" represents the pixel center; 
m represents the slope of the line; 
each unit square in the columns represents the area 
of each pixel. 

Figure 2. The results of Areal and Area2 with three 
cases of ei. 

Then, by eliminating the complicate computation parts in the 
exact shaded area solutions, we obtain the approximated 
results as shown in the following expressions: 

And 

{ 

ei 

Areal = ~8 + ei/2 

if ei ~ ml4; 

if - ml4 < ei < ml4; 
if ei:S -ml4. 

{

I if ei ~ ml4; 

Area2 = 1 - ml8 + eil2 if -ml4 < ei < ml4; 
1 + ei if ei :S -ml4. 

By calculating the difference between the approximated and 
the exact shaded area solutions, the maximum error of using 
the approximated shaded area solution is only 1/32, i.e., 
3.125%. 
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For different input line widths, Wd, we only have to 
consider two mid-point distance parameters, e1 and e2, which 
are the the highest and the lowest distances from the mid­
point to the line edges. Given the pixel selection information 
from the line drawing algorithm, both e1 and e2 as well as 
their related area results can be calculated independently. 
Assume d is pixel selection variable which will be combined 
in the the CFO algorithm later, the expressions for ei are: 

If d ~ 0, then e1 = e1 - (1 - m) and e2 = e2 + (1 - m). 

Or 

if d < 0, then e1 = e1 + m and e2 = e2 - m. 

Now, to find the number of shaded pixels and the constant 
intensity value in each drawing step, we define 

At = Wd * SQRT(l + rril), 

and 

Wx = LAtl2J + I, 

where At is the area of the intersection of the line with each 
column and 2 * Wx + 1 is the amount of pixels to be shaded 
each step. Therefore, the coordinates of shaded pixels can 
be generated in each drawing step and the expressions of 
initial value of e1 and e2 can be defined as 

e1 = e2 = Ati2 - IAti2J - 112. 

Summing all the definitions and formula listed above, 
we form the CFO line algorithm shown in Figure 3 with the 
case of Xl ~ xl and 0:;; m:s: 1. The CFO line algorithm can 
draw the antialiasing line from (xl , y1) to (x2, y2) with line 
thickness, Wd. Note that in the algorithm, d and s are the 
pixel selection variables used for selecting pixels and ai is 
the area parameter, where 

0:;; ai :;;1 ; 

i = I, 2, 3 and 4. 

Also, a1 and 02, which were generated by e l , are related to 
the intensities of upper two pixels. Whereas, a3 and a4, 

which were generated by e2, are related to the intensities of 
lower two pixels. The algorithm will only use upper pixels' 
operation, i.e., the computations of el, a1 and a2, for polygon 
edge antialiasing. One can adjust the level of realism by 
controlling the line thickness, Wd, in the CFO algorithm, 
since Wd can be chosen to be any positive real value. 

We can apply the algorithm to non-parametric curve 
antialiasing by modifying the line slope, m, and the constant 
intensity value, At. Figure 4 shows the Bresenham circle­
drawing algorithm combined with the modified CFO algo­
rithm in octant y ~ x ~ 0 and Wd = 1 pixel case. Note that 
(xl, y1) is the circle center and R is the circle radius. The 
CFO circle algorithm uses an incremental line slope, mstep, 

and a incremental constant intensity value, Atstep, to maintain 
the circle edge width. Both are also used for replacing the 
complicated computations and generating the approximate 
circle antialiasing results. Similarly, by accompanying with 
the pixel section result from the non-parametric curve­
drawing algorithm, the CFO algorithm can be applied to all 
the non-parametric curve-drawing algorithms. 

Therefore, the generalization of the CFO algorithm is 
possible if we can specify the line slope, m, and the constant 
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LineAnt(x1, y1, Xl , y2, Wd) 

{m = (y2 - y1) I (Xl - xl); 

w=l-m; 

At = Wd * SQRT(l + rril); 
Wx = IAtl2J + 1; 

d= 112 - w; 

e 1 = Atl2 - IAtl2J - 112; 
e2 = e1; 

for (i=1; i«Xl-x1)+2; i++) 

( Assign_area( el , aI , a2); 

Assign_area( e2, a3 , a4); 

if (WX > 1) 

( for v=y1-Wx+2; J<y 1+Wx-1 ; J++) 
display(x1, J, 1); 

display(x1, y1+Wx-1, a2); 

. display(x1, y1-Wx+1, a4); 
} 

else display(x1, y1 , At-a1-a3); 

display(x1, y1+Wx, a1); 

display(x1, y1-Wx, 03); 

if (d<O) 

{s=O; d=d+m; 

e1 = e1 + m; e2 = e2 - m; } 
else { s = 1; d = d - w; 

e1 = e1 - W; e2 = e2 + w; } 
xl = xl + 1; 

y1 = y1 + s; 

Assign_area( ei. ail , a.-v 

{ if (ePn/4) 

{ ail = ei; ail = 1; } 

else if (ei~(-ml4» 

{ ail = ml8 + e/2; 002 = 1 - ml8 + e/2; } 

else { ail = 0; a.2 = 1 + ei; } 

Figure 3. The CFO line algorithm with variable 
thicknesses. 

intensity level, At, in the antialiasing algorithm. Because the 
main processing loops in the CFO algorithm use only simple 
computations, such as additions and subtractions, the algo­
rithm can have high execution speeds. Furthermore, because 
most of the processes, such as the calculation of ei and ai in 
the algorithm can be executed in parallel, the CFO algorithm 
can be implemented in a parallel hardware architecture. 

4. Comparisons and Demonstrations 

A comparison of various line antialiasing algorithm 
results is given by Pitteway [8]. It contains the intensity 
results of the ideal calculation, the Gupta and Sproull [2] 
and Pitteway and Watkinson [3] algorithms. Because of the 
problem with non-constant line thickness in the results of the 
GS algorithm, we only consider the operation results from 
the PW algorithm. With the same condition as in [8], the 
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CircleAnt(xl, yl, R) 

{yl = yl + R ; 

xx = 0; 

yy = R; 

m=O; 

w = I; 
mstep = -.fiJR; 

At = I; 

Atstep = (.J2 - 1)*-.fiJR; 

d = 3 - 2 * R; 

e 1 = Atf2 - LAtl2J - 112; 

e2 = eI; 
while (~yy) 

( Assign_area( el, aI, a2); 

Assign_area( e2, a3, a4); 

display(xI, yI, At-aI-a3); 

display(xI, yI-I, aI); 

display(xI , yI+I , a3); 

} 

m = m + mstep; w = w - mstep; 

At = At + Atstep; 

eI = (AtI2) - 112; e4 = eI; 

if (d<.O) 
{ s = 0; d = d + 4*xx +6; 

eI = eI + m; e2 = e2 - m; } 

else ( s = 1; d = d + 4*(xx-yy) + 10; 

eI = eI - w; e2 = e2 + w; } 

xl = xl + 1; xx = xx + 1; 

y I = yI - s; yy = yy - s; 

Figure 4. The CFO circle algorithm with Wd = Ipixel 

in octant y ~ x ~ o. 

line antialiasing results of the CFO algorithm, the PW algo­
rithm and the ideal calculation are listed in Table 1. This 
table shows that the area results of the CFO algorithm are 
much accurate than that of the PW algorithm. Figure 5 
shows a general comparison graph of the shaded area results 
related to the distance parameters, ei, of the ideal calculation, 
the PW algorithm and the CFO algorithm. It shows that the 
maximum error of the CFO result is ml32 which is much less 
than that of the PW result, Le., ml8. Figure 6 illustrates the 
line results of the PW algorithm,. the CFO line algorithm and 
the aliased Bresenham line-drawing algorithm. Figure 7 
shows the line results of the CFO line algorithm with several 
different line thicknesses. Note that all the demonstrations in 
this paper are using 64 intensity levels in SUN 3/160C with 
screen size of 1152x900 pixels. 
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With the comparison of algorithmic complexity for both 
algorithms, the CFO algorithm has almost three times com­
plexity than that of the PW algorithm. But, for Wd = 1 piul, 

the CFO algorithm can generate three shaded pixels with a 
more accurate result in each drawing step instead of drawing 
the line three times with less accurate results as with the PW 
algorithm. In addition, by adjusting the line width, Wd, the 
CFO algorithm can generate very realistic lines and edges. 
To reduce the algorithmic complexity, we can modify the 
CFO algorithm to have the same antialiasing results as that 

of the PW algorithm. Then, the algorithmic complexity of 
the modified CFO algorithm is only about one half of the 
original algorithmic complexity. Figure 8 shows the 
modified CFO algorithm, and Table 2 illustrates the line 
antialiasing execution speeds of these three algorithms by 
using the sequential software implementations. This result 
shows that the CFO algorithm has almost the same execu­
tion speed than that of the PW algorithm, and the modified 
CFO algorithm is the fastest one among all three algorithms. 

Location PW result CFO result Ideal result 
U1 0.114 0.147 0.156 
Bl 1.000 0.936 0.918 
L1 0.114 0.147 0.156 
U2 0.000 0.004 0.024 
B2 0.829 0.825 0.805 
L2 0.400 0.400 0.400 
U3 0.543 0.543 0.543 
B3 0.686 0.686 0.685 
L3 0.000 0.000 0.001 
U4 0.257 0.257 0.264 
B4 0.972 0.897 0.889 
L4 0.000 0.075 0.076 
U5 0.000 0.075 0.076 
B5 0.972 0.897 0.889 
L5 0.257 0.257 0.264 
U6 0.000 0.000 0.001 
B6 0.686 0.686 0.685 
L6 0.543 0.543 0.543 
U7 0.400 0.400 0.400 
B7 0.829 0.825 0.805 
L7 0.000 0.004 0.024 
U8 0.114 0.147 0.156 
B8 1.000 0.936 0.918 
L8 0.114 0.147 0.156 

Note that the location of the pixel and PW indicated 
here are the same as the definitions in [7]. 

Table 1. The area antialiasing results of the ideal, 
CFO and PW algorithms from (0,0) to (7,5) with 
wd = 1 piul. 

Area result 

Note: 

- is the exact result; 
is PW's result; 

..... is CFO's result. 

-m/2 -m/4 

rn/2 

m/4 m/2 

ei 

Figure 5. A comparison graph of shaded area results. 
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Figure 6. The results of the PW algorithm (the upper 
line), the CFO line algorithm (the central line) and the 
Bresenham line algorithm (the lower line) with 
line slope = 517, Wd = 1 pixel and 1 pixel = lOXlO 
screen-pixel2. 

Figure 7. The results of the CFO line algorithm with 
line slope = 517, Wd = 0.3, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5, 
3.0, 3.5, 4.0 and 4.5 pixels (from left to right) and 
1 pixel = lXl screen-pixeI2. 

Assign_area( ei. ail . a.iJ 

if (e.~) 

( ail = ei; ai2 = 1; ) 

else ( ail = 0; ai2 = 1 + ei; ) 

Figure 8. The modified CFO line algorithm with vari­
able thicknesses. Note that it only shows Assign_area 
parts and the main parts of the algorithm is the same 
as in Figure 3. 
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Line PW CFO Modified CFO 

(10,10)-(80,60) 40 40 20 

(0,0)-(700,500) 440 420 300 

(0,0)-(1000,600) 640 600 400 

Note that all timing test results are given in CPU mil­
liseconds on SUN-3, and PW indicated here is the 
same as the definitions in [7] . 

Table 2. The execution speed of the PW, CFO and 
modified CFO algorithms on three different lines. 

By using antialiasing line-drawing operations, most 
antialiasing algorithms can be applied to polygonal curve 
drawings. This piecewise curve-drawing operation takes a lot 
of time to figure out the polygonal lines of curves, and then 
to draw all the antialiasing lines for curve antialiasing. Also, 
most antialiasing algorithms can not operate with non­
parametric curve-drawing algorithms, such as Bresenham 
circle-drawing algorithm, for curve antialiasing. The CFO 
algorithm can not only be used for line and edge antialias­
ing, but can be applied to curve antialiasing as well. With a 
little modification to the nominal CFO algorithm, the CFO 
circle algorithm, which combines with the Bresenham 
circle-drawing algorithm, can generate antialiasing circle 
results incrementally. Figure 9 compares the results of the 
CFO circle algorithm with the Bresenham circle algorithm. 
The results show that the CFO circle algorithm will smooth 
the small jaggy edges but does not have a significant 
improvement on the large jaggy edges. This problem can be 
solved by applying the accurate line slope, rn, and distant 
parameter, ei, in each drawing step. Figure 10 illustrates the 
results of this improved circle antialiasing operation, the 
CFO circle algorithm and the aliased Bresenham circle algo­
rithm. Although it shows a very realistic circle result, this 
improved circle antialiasing operation will involve more 
complicated computations than that of the nominal CFO cir­
cle algorithm. 

Ul~_ • . " . 
Figure 9. The results of the CFO circle algorithm 
(the upper circle) and the Bresenham circle algorithm 
(the lower circle) with R = 19 pixels, Wd = 1 pixel and 
1 pixel = lOXI0 screen-pixeI2. 
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Figure 10. The results of the improved CFO circle 
algorithm (the lower circles), the CFO circle alg?­
rithm (the upper-right circles) and the Bresenham CIr­

cle algorithm (the upper-left circles) with R = 

3010310 slep 20 pixe/s, Wd = I pixe/ and I pixe/ = IXI 

screen-pixe/2• 

5. Conclusions 

Area antialiasing is one of the useful antialiasing tech­
niques. Most area antialiasing algorithms operate in a high 
operating speed and have acceptable line antialiasing results. 
When required to have a high degree of realism, we should 
have accurate pixel intensity information and the adjustable 
line width in the antialiasing algorithms. This paper provides 
a more accurate antialiasing algorithm than previous algo­
rithms, and the algorithm can draw lines with various line 
thicknesses and can generate all shaded pixels in each draw­
ing step. Since the CFO algorithm can generate the special 
line endpoints which edges are parallel to x or y axes, one 
can use other related papers for squared or rounded line 
ends. The operating speed of the CFO algorithm can be very 
fast when implemented in a parallel hardware architecture. 
Furthermore, the CFO algorithm also can be applied to all 
non-parametric curve-drawing algorithms, which can gen­
erate pixel selection signal. 

Thus, the results of this paper provide an improved 
antialiasing algorithm with enhanced performance coupled 
with a versatile operational environment for the users. 
Because the intensity decision processes in the CFO algo­
rithm are very regular and incremental, it is suitable to 
implement the CFO algorithm into a VLSI architecture and 
work with other drawing facilities in the advanced computer 
graphics system. 
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