
16

MML: A LANGUAGE AND SYSTEM FOR PROCEDURAL MODELING AND MOTION

Mark Green
Hanqiu Sun

Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada

ABSTRACT

This paper describes a special purpose programming
language, called MML, that has been developed for procedural
models. This language is used to specify both the generation
of the model, and the motion of the objects in the model. A
motion specification technique that works well with natural
phenomena is also described. This motion specification tech
nique has the advantages of being independent of the detailed
structure of the object, and lending itself to the construction of
good user interfaces for animation systems. The MML
language can be used to produce both interactive and batch
animation programs. The user interface for the interactive ani
mation programs is automatically constructed by the MML
system. Several examples of the use of MML are presented.

KEYWORDS : Computer Animation, Natural Phenomena,
Interactive Animation Systems

1. Introduction

A number of procedural modeling techniques have been
developed for natural phenomena. These techniques are based
on using formal systems (such as grammars), or procedures to
generate the geometrical primitives that describe the shape of
an object. Some examples of this approach to natural
phenomena are L-systems, graftals [Smith 1984], fractals
[Fournier et.al 1982], and particle systems [Reeves 1983].
Each of these techniques is capable of describing a range of
phenomena, but none of them is capable of describing the
entire range of natural phenomena that we would like to
model. One exception to this is the work of Smith that has
attempted to generalize the graftal approach to cover the other
modeling techniques [Smith 1987]. One of the major research
topics in natural phenomena is the development of general
modeling techniques.

A major problem with using procedural models in com
puter animation is that the traditional methods of motion
specification don 't work very well with them. It is usually not
possible to use key framing or scripting techniques with the
types of models that these techniques produce, due to the large
number of primitives in them and the use of pseudo random
numbers. In order to conveniently specify the motion of these
objects new motion specification techniques are required.

This issue is explored further in section two of this paper, and
forms another main research area in natural phenomena.

In order to explore both of these research areas we have
been developing a programming language for procedural
models and their motion. The main motivation for developing
this language was our frustration with using regular program
ming languages for the development of procedural models.
The amount of coding required to produce a model using these
languages tended to discourage experimentation. We wanted
a system that would allow us to quickly and easily explore
different types of procedural models and techniques for speci
fying their motion. We also wanted to produce interfaces to
these models that were easy to use. We found that most of our
programs had basically the same structure and used the same
computational techniques. This suggested that there should be
a higher level way of describing these models. The language
described in this paper is our first attempt to produce a higher
level notation for procedural models and motion. This is an
experimental system for exploring the issues in procedural
modeling and motion, it is not intended to be the final solution
to these problems.

The second section of this paper briefly describes the
technique that we have developed for specifying the motion of
procedurally generated objects. The MML language is
described in section three, and its implementation is discussed
in section four. A number of examples of the use of MML are
presented in section five. The last section of this paper
discusses some of the issues that we hope to explore through
the use of this system.

2. Procedural Motion

One of the main problems with procedural modeling is
motion specification. Most procedural models are capable of
generating large numbers of primitives, and the generation
process usually involves pseudo-random numbers. As a
result, the animator cannot directly specify the motion of each
primitive in the model. For example, in the case of a model of
a tree there may be several hundred branches and thousands of
leafs. An animator cannot use a key frame system to position
each branch and leaf in the key frames of an animation. Simi
larly, it would be hard to use a scripting language to specify
the transformations to be applied to each primitive. In order

Graphics Interface '88

to animate this type of object the animator must have some
means of specifying the motion at a level higher than the indi
vidual primitives.

The motion specification technique that we are using for
natural phenomena is based on the use of motion verbs and
motion processes. The animator specifies the motion of the
object in terms of the motion verbs which are acting on the
object. A motion verb is viewed as an atomic motion that is
applied to an object over a fixed length of time. For trees
there could be motion verbs for growing and blowing in the
wind, and for people walk and reach could be motion verbs.
Motion verbs can have parameters that are used to control the
details of the motion. For example, in the case of the blow in
the wind motion verb, the parameters are the wind direction
and wind speed. From the animator's point of view, a motion
verb should be independent of the detailed structure of the
object, and its meaning should be intuitively obvious. A
motion verb should be applicable to a range of objects. That
is, all trees should respond to the same set of motion verbs
(the motion produced will depend upon the type of tree).

Each motion verb is implemented by a collection of
motion processes. A motion process is a (virtual) process that
is attached to one of the primitives in the model. This process
is responsible for the motion of that primitive while the
corresponding motion verb is active. Conceptually the motion
processes are generated at the same time as the primitives in
the model, and they have the same connectivity. That is, the
motion processes for a primitive communicates with the
motion processes on the primitives they are connected to. In
the case of a tree, the motion processes attached to a branch
would communicate with processes on the parent branch and
its child branches.

Conceptually, the motion processes are viewed as exe
cuting concurrently, but in practice this is usually not neces
sary. For most motions, a motion process has two distinct
tasks it must perform. The first task is to determine the state
of the primitive it is attached to, and the environment it is act
ing in. The environment of a motion process usually consists
of the states of the primitives it is connected to, plus any fac
tors external to the model. In the case of blow in the wind, the
motion process must determine the forces exerted on it by its
child branches, and the interaction between the wind and the
branch. The second task is to compute the motion of the prim
itive. The main input to this computation is the state informa
tion that was gathered in the first task. Thus, for each time
step in the motion we need two passes through the primitives
in the model. The first pass starts at the youngest generation
of primitives (leaves in the case of a tree) and works towards
the oldest generation (the root of the tree). This pass com
putes the state of each primitive, which is stored with the
primitive. The second pass starts with the oldest generation
and works towards the youngest generation. The pass com
putes the motion of the primitives.

From the above description of the motion computations,
it can be seen that motion specification is in terms of primitive
types, and not the individual primitives. For each type of
primitive, we need to specify a function, called Cl, that com
putes the state of the primitive, and a function, called fl, that

17

computes the motion of the primitive. When the motion verb
is executed, each primitive's type is used to determine the
functions to be executed in order to compute its motion. Note
that the specification of the motion is independent of the
detailed structure of the object, since the motion is specified in
terms of the primitive types, and not the primitives them
selves.

3. The MML Language

The main purpose of the MML language is to provide a
high level notation for describing procedural models and their
motion. The MML system can produce two types of anima
tion programs, which have two distinct purposes. The first
type of animation program has an interactive interface and is
used in the exploration and evaluation of different types of
procedural models and techniques for specifying their motion.
For this purpose the two most important feature of MML are
the ability to quickly implement a procedural model, and then
be able to interactively vary its parameters and instantaneous-

ly observe the results. The MML system automatically pro
vides the bookkeeping utilities that are normally associated
with procedural modeling, and provides a framework that
facilitates the development of this type of model. It also pro
duces an interactive interface to for the animation program.
This interface is based on the motion verbs in the model, and
the parameters to the motion verbs and the generation process.
Thus, the programmer doesn't need to provide a user interface
to each of the models that he or she creates. This also ensures
that there is some uniformity in the interfaces that are used by
different modeling programs.

The second type of animation program is used for pro
ducing high quality animation based on the procedural model.
These programs are script driven, where the commands in the
script are the motion verbs in the model. These commands
specify the frame in which the motion verb is active, and the
parameter values for the motion verb. The script parser for the
model is automatically produced by the MML system. The
interactive animation programs can be used to produce scripts
that are used as the input to the corresponding batch animation
programs. In this way the animator can interactively develop
a animation using a simple rendering of the objects, and then
reproduce the motion with better rendering through a batch
animation program.

The MML language is an extension of the C program
ming language. There are three reasons for basing MML on
an existing programming language. First, most of the MML
programs perform a fair amount of computation, thus most of
the features of a programming language would need to be
included in MML. We felt that it would be better to use an
existing language for these features, rather than designing one
of our own. Second, the use of an existing language allows us
to use packages and subroutines that have already been writ
ten, saving us some programming effort. This also makes it
easier to intergrate MML programs with our existing anima
tion software. Third, basing MML on an existing program
ming language greatly simplified its implementation. Instead
of writing a compiler for MML, all we needed to do was write
a preprocessor that converts MML programs into C programs.

Graphics Interface '88

An MML program is divided into four sections; which
are called Primitives, Generate, Motion, and Render. The
Primitives section describes the geometrical primitives that
appear in the model. The Generate section describes how the
primitives in the model are generated. The motion verbs that

operate on the model are described in the Motion section. The
conversion of the geometrical primitives into display primi
tives is defined in the Render section. The following sections
contain brief discussions of some of the features of MML, a
complete description of the language can be found in its refer
ence manual [Green 1987].

3.1. Primitives Section

In order to describe the generation of the model and its
motion, we need descriptions of the geometrical or modeling
primitives that are used in it. The Primitives section of an
MML program, which starts with the keyword Primitives,
contains the definitions of the primitives in the model. A
primitive definition consists of the name of the primitive fol
lowed by a list of the its properties. Each property definition
consists of a type followed by the property name. The proper
ty definitions have the same syntax as C variable declarations.
Examples of primitive definitions can be found in the exam
ples section. Each of the primitives is converted into a C
structure which can be referenced in the other sections of the
program. The name of this structure is the name of the primi
tive with the prefix "MML_".

3.2. Generate Section

The Generate section describes how the primitives in the
model are generated. A language for procedural modeling
must be based on some general model for the generation of
primitives. At the present time, the rule or grammar based
notations seem to be the most general [Smith 1987]. As a
result, the model that we are using for the generation process
is rule based. The generation process consists of a sequence
of generations. Some of these generations (the number of
generations is under animator control) occur before the first
frame of the animation is generated. After that there is one
generation in each frame. In a generation, each of the primi
tives that are in the model (as of the last generation) is con
sidered by all of the rules in the model. If the primitive
satisfies the rule, it is applied resulting in the generation of
new primitives. Internally, the primitives in each generation
are stored together, and it is easy to detennine the generation
that a primitive belongs to (this information can be used in the
generation rules, and in the motion computations). The
current generation number is available to the rules, making it
possible to have rules that apply to only the primitives in the
previous generation.

The Generate section is divided into three sub-sections.
The first sub-section contains the definitions of the parameters
used in the generation of the model. Each parameter
definition consists of a type, a parameter name, and an option
al range of values. The syntax of the types and parameter
names is the same as in the Primitives section.

The Initial sub-section is used to defined the initial state
of the model, which is the set of primitives that belong to the

18

first generation. Each of these primitives is listed in the Initial
sub-section, along with values for some, or all, of their proper
ties. Any of the primitives in this sub-section can be given a
name so they can be referenced in other sections of the pro
gram.

parent: primitive_type(generation_number)

when: initial
motion
always
generation(expression,expression)
frame(expression,expression)

number(expression,expression)

Fig. 1 MML condition clauses

The Rules sub-section consists of a set of rules that
describe how the primitives in the model are generated. Each
rule has a condition pan and an action pan. The action pan of
the rule is a sequence of C statements. The condition pan of
the rule is made up of a sequence of clauses separated by
semicolons. A clause can be a C expression or one of the
MML clauses shown in fig. 1. The parent clause must be
included in each rule, and it states the type of primitive that
the rule can be applied to. The rule is applied to each primi
tive of the indicated type that satisfies the other clauses in the
condition. The primitive under consideration is called the
parent of the rule, and it can be referenced in the clauses of the
condition, and the body of the rule. The when clause specifies
when the rule is to be applied. A generation rule can be
applied either before the animation stans, or in each frame of
the animation. In the first case the rule is called an initial rule
and in the second case it is called a frame rule. The initial and
generation values for the when clause specify an initial rule,

with the generation value indicating a range of generations
that the rule can be applied in. The motion and frame values
indicate a frame rule, with the frame value specifying a range
of frames that the rule is to be applied in. The always values
specifies that the rule is both an initial and a frame rule. The
number clause specifies that the rule is to be applied a random
number of times for each parent primitive. The two expres
sions in this clause give the range of the uniformly distributed
random number used as the repeat count for the rule.

3.3. Motion Section

The Motion section contains the declarations of the
motion verbs for the object. This section stans with the key
word Motion followed by a list of motion verb declarations.
A motion verb declaration, as shown in fig. 2, is divided into
two pans. The first pan contains the declaration of the param
eters to the motion verb. These declarations have the same
format as the parameter declarations in the Generate section.
The second pan of the declaration consists of the fl and f2
functions that are applied to the primitives in the model. The
body of an fl or f2 function is a sequence of C statements. If
an fl or f2 function is omitted, the primitives of that type are
not processed in the corresponding pass of the motion compu-

Graphics Interface '88

tations. If one of the primitive types is not listed in the Func
tions part of a motion verb declaration, primitives of that type
don't take part in the motion computations.

Parameters

Functions

type parametecname (min,max);

type parameter_name (min,max);

primitive_name
fl: {

f2: {

C statements

C statements

Fig. 2 Motion Verb Declaration

3.4. Render Section

The render section describes how the modeling primi
tives are converted into display primitives. This section con
sists of three sub-sections, as shown in fig. 3. The statements
in this section are used to construct a set of procedures that are
called in each frame of the animation. The statements in the
Initialization section are called at the start of the frame, and
their purpose is to initialize the rendering process. The state
ments in the Finalization section are called at the end of the
frame, and they are responsible for any operations that must
be performed to transfer the image to a display device or file.
The remaining statements in this section specify how the
modeling primitives are converted into display primitives.
Each of the primitive types has a sequence of C statements
associated with it, and these statements are responsible for
performing this conversion. If one of the modeling primitives
is not mentioned in this section, it will not be converted into
display primitives.

4. Implementation

The implementation of MML is divided into two parts.
The first part is a preprocessor that converts MML programs
into C routines. The second part consists of two libraries that
support the interactive and batch versions of the animation
programs. The output from the preprocessor is compiled and
then loaded with one of these libraries to produce either an
interactive or batch animation program. This process is illus
trated in fig. 4.

19

Initialization

C statements

Finalization

C statements

C statements

C statements

Fig. 3 Render Section

Fig. 4 Conversion process for MML programs

The routines produced by the preprocessor fall into two
groups. The first group of routines corresponds to the C state
ments that appear in the MML program. These routines are
responsible for generating the model and computing its
motion. The second group of routines form the interface
between the support library and the first group of routines.
While the preprocessor is processing the MML program it
gathers information about the generation process and the
motion verbs. This information includes the names, types and
ranges of the parameters for the generation process and the
motion verbs, and the names of the motion verbs. This infor-

Graphics Interface '88

\

mation is used to construct the user interface in the interactive
animation system. The batch version of the animation system
uses this information to parse the script provided by the ani
mator.

The user interface that is provided by the MML system is
divided into four sections, which are called view, generate,
motion, and edit. The view part of the user interface is used to
set the viewing parameters and specify whether the frames
produced in the session should be saved for interactive play-

back. The view part of the user interface is also responsible
for the playback of the recorded frames. All the view parame
ters can be modified through the use of graphical potentiome
ters.

The generation part of the user interface controls the gen
eration of the primitives in the model. When this part of the
user interface is entered, a bank of graphical potentiometers is
displayed across the bottom of the screen. There is one poten
tiometer for each of the parameters in the Generation section
of the MML program, and a potentiorneter for specifying the
number of generations to be produced before the first frame of
animation. Once the parameter values have been selected the
animator can select the start command from the menu to pro
duce the model. There is an erase command that can be used
to remove all the primitives from the model, allowing the ani
mator to start over again with a new set of parameter values.

The motion part of the user interface is used for control
ling the motion verbs that are applied to the model. This part
of the user interface has a menu containing the names of all
the motion verbs. When the animator selects a motion verb
from this menu, a bank of potentiometers appears across the
bottom of the screen. There is one potentiometer for each of
the parameters to the motion verb, and one potentiometer for
specifying the number of frames that the motion verb is active
in. Once the animator has selected the parameter values that
he or she wants, the okay command is selected from the menu.
This command is used to add the motion verb to a table of
currently active motion verbs. At this point the animator can
select other motion verbs to be applied to the model, or select
the start command to start the computation of the motion.
Before the motion is computed, the table of currently active
motion verbs is scanned to find the motion verb with the shor
test duration. The motion is then computed up to the last
frame in which this motion verb is active. The animator can
then enter new motions, or restart the motion computations.

All the motion verbs that the animator enters in a session
are recorded in a motion table. This table can be edited in the
edit part of the user interface, and can be used to generate a
script for a batch animation program. In the edit section of the
user interface, the motion table is displayed on the screen, and
the user can edit its contents by pointing at a field and entering
a new value for it. If the motion table doesn ' t fit on the
screen, there are commands that can be used to scroll forward
and backwards through the table.

20

5. Examples

In this section three examples of the use of MML are
presented. The purpose of these examples is to illustrate the
range of models that can be represented in MML, and show
how the features of this language are used.

The first example, shown in fig. 5, is a model of a water
fountain. In this example a water is modeled as a collection of
particles. There are two types of primitives in this model, the
water particles and the source of the water fountain . The
source of the water fountain rotates about the z axis, and the
rate of this rotation is specified when the model is created.

Primitives small
source

double x, y, z; /* source position */
double x_size, y _size, z_size;/* size of source * /
double vx, vy, vz ; /* mean velocity of particles */
double theta; 1* current angle * /

end;

particle
double x, y, z;
double vx, vy, vz ;
int life_time ;

end;

Generate
Parameters

int nparticle (20, 500) ;
int life (10, 100) ;
double dtheta (0, 5) ;

Initial
source fountain

x = 0.0 ; y = 0.0 ; z = 0.0 ;

/* particle position • /
/* particle velocity • /
1* length of time left for particle • /

/* mean number of particle produced • /
/* average life of a particle • /
/. increment in source angle • /

x_size = 0.0 ; y_size = 0.0 ; z_size = 0.0 ;
vx = 0.2; vy = 0.2 ; vz = 10.0 ;
theta = 0;

end;

Rules

/* rotate the source about the zaxis in each frame
of the animation

./

parent: source ; when: motion
=> (

struct MML_source .p;

};

double cosO, sinO;

p = get--primitive(parent);
p->vx = 0.4 • cos(p->theta);
p->vy = 0.4 • sin(p->theta);
p->theta = p->theta + dtheta;

/* generate a random number of new particles ./

parent: source; when: motion; number(nparticle-lO,nparticle+ 10)
=> (double t ;

struct MML_source .p ;
struct MML--particle ·current;
double rangeD;

Graphics Interface '88

p = getJ)rimitive (parent) ;
current = generate (particle) ;
current->x = range (p->x - p->x_size, p->x + p->x_size) ;
current->y = range (p->y - p->y_size, p->y + p->y_size) ;
current->z = range (p->z - p->z_size, p->z + p->z_size) ;
current->vx = range (p->vx - 0.1, p->vx + 0.1)
current->vy = range (p->vy - 0.1, p->vy + 0.1)
current->vz = range (p->vz - 1.0, p->vz + 1.0)
current->life_time = irange (life - 5, life + 5) ;
t = range (0.0, 1.0) ;
current->x += t • current->vx ;
current->y += t • current->vy ;
current->z += t • current->vz ;
add-primitive(current);

);

I'" delete particle at the end of their life time • /

parent: particle; when: motion ;
(p->life_time < 0)
=> remove-primitive (parent) ;

I'" delete particles that fall below the ground level·,

parent: particle; when: motion
=> (

struct MML-particle ·c;

c=p;
if(c->z + c->vz < 0)
remove_primitive (parent);

) ;

Motion

Update

Parameters
double g (0, 25) ;

Functions
particle

I'" gravitational constant .,

I'" compute the motion of a water particle • /

12: (

end;

Render

struct MML-particle ·c;

c = current;
c->x += c->vx ;
c->y += c->vy ;
c~>z += c->vz ;
c->vz -= g;
c->life_time -= I ;

) ;

Initialization
color(BLACK) ;
clearO ;

Finalization
swapbuffersO ;

21

particle
color(WIDTE) ;
pnt(current->x, current->y, current->z) ;

Fig. 5 MML Code for water fountain example

The generate section of the model has four rules. The
first rule is responsible for rotating the source of the water
fountain. The second rule is responsible for the generation of
the particles in the water fountain. In this rule the generate
function is used to allocate memory for the primitives, and the
add_primitive procedure is used to add the primitive to the
model. In an MML program the primitives are referenced by
an integer primitive number. This allows the run-time system
to select the most efficient scheme for storing the primitives
(for example, in the case of large models some of the primi
tives can be stored on disk) without changing the MML pro
gram. The gecprimitive function is used to convert a primi
tive number into a pointer to its C structure. The last two
rules delete particles from the system when they reach the end
of the lifetime, or when they fall below ground level.

The Update motion verb updates the particle properties
on each frame of the animation. The Render section of the
program converts the particles into point primitives that are
displayed on an IRIS workstation.

The MML program shown in fig. 5 can be converted into
an interactive animation program by following the steps out
lined in section 4. When this program is executed the display
shown in fig. 6 appears on the screen. This part of the inter
face coordinates the execution of the different parts of the user
interface. At this point in the interaction the user would enter
the generate system and create the initial primitive in the
model. The user would then enter the motion part of the user
interface. When this happens the display shown in fig. 7
appears on the screen. In this display the user has selected the
Update motion verb, and the potentiometer for its parameter
has appeared at the bottom of the screen. The user can now
select the okay and start commands from the menu. Once
these actions have been performed, the program will calculate
the frames in the animation and show them to the user as they
are computed.

Fig. 6 Initial screen display

Graphics Interface '88

..,t ,on "1'~ 1 ...

.. t 1

.. ~

...... ,.

.. ~

... 1

Z._ "

I 1 , ,,-

Fig. 7 Motion system display

Once the motion has been computed, the view part of the
user interlace can be used to view the frames at a controlled
rate. Fig. 8 shows the one frame of the water fountain anima
tion viewed through the view system. The speed potentiome
ter controls the rate of display, in terms of the delay between
frames (in units of 1/60 second) .

p l .yb<.d.

Fig. 8 View system and water fountain

The MML program shown in fig. 9 implements the blow
in the wind motion verb for trees. The tree model developed
by Aono and Kunii [Aono and Kunii 1984] is used to generate
the model of the tree. The single rule in the Generate section
of the program generates two new child branches for each
branch produced in the previous generation.

22

Primitives small
branch
double position[3];
double B[3];
double fJ;
double mass;
double length;
double radius;

int childl, child2;
int parent;

end;

Generate
Parameters

1* distal end of branch *'
'* vector along the length of the branch *'
'* fl value for the branch *'
/* mass of the branch * /
/* length of the branch *'
/* radius of the branch */

1* the branch's children */
/* the branch's parent */

1* parameters for tree model * /

Initial

1* generation of initial branch */

Rules

parent: branch(generation-I) ; when: initial
=> (

1* generate child branches * /

);

Motion

blow

Parameters
double wx (0, 30);
double wy (0, 30);
double wz (0, 30);
double strength (0,20);

Functions
branch

/* wind direction */

/* wind speed */

1* compute the forces acting on a branch * /

fJ: (
struct MML_branch *b, *p;
double I, sqrtO;
double X,Y,z;
double t;
double rangeO;

b = current;

1* compute direct interaction between wind
and the branch

*/

I = sqrt(wx*wx + wy*wy + wz*wz);
t = wx*b->B[O] + wy*b->B[I] + wz*b->B[2] ;
t = t/(b->Iength * I);
b->fl = range(O.1 ,0.3) * strength * b->radius * (I-t);

/* add in the forces from the children * /

if(b->child I != 0) (
P = gecprirnitive(b->childl);
b->fl += 0.1 * p->fl ;
P = get_primitive(b->child2);
b->fl += 0.1 * p->fl ;

)
);

Graphics Interface '88

I" compute the motion of the branch *'

1'2: (
struct MML_branch *b, *p;
double I, sqnO;
double x,y,z;
double t;
doublew;

b = current;

I" compute w, the relative displacement of
the branch

*'
1= sqn(wx*wx + wy*wy + wz*wz);
t = wx * b->B[O] + wy*b->B[I] + wz*b->B[2];
t = tt (b->length*I);
w = 0.2 * b->fl * (1-t) , b->mass;

I" compute the vector from the proximal to
the distal end point of the branch

*'
x = (w*wx + (I-w)*b->B[O]/b->Iength) * b->Iength;
y = (w*wy + (I-w)*b->B[I]/b->Iength) * b->Iength;
z = (w*wz + (I-w)*b->B[2]/b->length) * b->Iength;

1* update the distal position of the branch *'

if(b->parent = 0) (
b->position[O] = x;
b->position[l] = y;
b->position[2] = z;

) else (
p = get.Jlrimitive(b->parent);
b->position[O] = p->position[O] + x;
b->position[l] = p->position[l] + y;
b->position[2] = p->position[2] + z;

}
};

end;

Render

I" draw the tree *'

Fig_ 9 MML code for tree example

The Motion section of the program contains the declara
tion of the blow motion verb. This motion verb uses an fl and
an f2 function in the computation of the tree's motion. The fl
function computes the force acting on the branch and stores
the result in the fl property of the branch. This force is divid
ed into two components. The first component is due to the
direct interaction between the wind and the branch. This com
ponent is proportional to the strength of the wind and the dot
product between the wind direction and the branch direction.
The second component of the force is generated by the child
branches_ In this example a fraction of the child's force is
added to the force on the parent.

The f2 function computes the new position of the distal
end of the branch. It is assumed that the new position will lie
on the plane defined by the wind direction and the initial
direction of the branch. A weighting factor, which is propor
tional to the force on the branch, the dot product between the

23

wind direction and branch direction, and inversely proportion
al to the mass of the branch, is used to determine the branch
position within this plane.

Fig. 10 shows a tree produce by the MML program in fig:
9.

pl.~

I ••• 1 1 ... 1 . ..1 . ..11 ... 1_1
~--.----------------

Fig. 10 Tree model

The MML program in fig. 11 computes a fractal based on
a set of three seed triangles. The technique used to generate
the fractal is essentially the same as the one described in
[Fournier et.a!. 1982]. The procedure middle, used in the
Generate section of the program computes the midpoint of a
stochastic line_ The motion verb, Update, rotates the eye
about the z axis to give different views of the fractal. One
view of the fractal is shown in fig. 12.

Primitives small
triangle

double v1[3], v2[3], v3[3]; I" vertices of the triangle *'
double ni, n2, n3;
int color;

end;

eye
double x, y, z;
double radius;
double theta;

end;

Generate
Parameters
int levels (10, 50);
double rough_ratio (0.1, 1.0);

Initial
triangle

1* eye position *'
'* distance between eye and origin *'
I" angle of eye about the z axis *'

vI[O] = -2.5; vl[l] = -2.5; v1[2] = 0.0;
v2[0] = 0.5; v2[l] = 2.5; v2[2] = 0.0;
v3[0] = 2.5; v3[1] = -2.5; v3[2] = 0.0;

end;

eye Eye
x = 10; y = 10; z = 10;
radius = 10;
theta = 0;

end;

Graphics Interface 'SS

Rules

parent: triangle; when: initial
=> (struct MML_triangle *p, *p I, *p2, *p3, *p4;

double m1[3],m2[3],m3[3];
int i;

p = gecprimitive(parent);
pI = generate(triangle);

p2 = generate(triangle);
p3 = generate(triangle);
p4 = generate(triangle);
middle(p->v 1 ,p->v2,m 1 ,roughJatio);
middle(p->v2,p->v3,m2,rough_ratio);
middle(p->v3,p->v 1 ,m3,rough_ratio);

!* store the vertices of the new triangles *'

addJlrimiti ve(p 1);
addJlrimitive(p2);
addJlrimiti ve(p3);
addJlrimitive(p4);
removeJlrimitive(parent);
);

Motion

Update

Parameters
doubledtheta(- I , I);

Functions
eye

f2: (

!* update the eye position *'

);
end;

Render

Initialization
struct MML_eye *e;
color(BLACK);
clearO;
perspective(450,1.0,0.0,900.);
e = getJlrimitive(Eye);
lookat(e->x,e->y ,e->z,0.0,0.0,0.O,1200);

Finalization
swapbuffersO;

triangle
color(WHITE);
move(current->vl [O],current->v 1 [1],current->vl [2]);
draw(current->v2[0],current->v2[I],current->v2[2]);
draw(current->v3 [0] ,current->v3 [1],current->v3[2]);
draw(current->vl [0] ,current->v 1 [1] ,current->v 1 [2]);

Fig. 11 MML code for fractal

24

--

I I " ~ , ,,-q.. !J'~"" a t , nn l"

Fig. 12 Fractal display

6. Issues

The main reason for producing the MML system was to
investigate different issues in the generation and motion of
models of natural phenomena. These issues can be divided
into two groups. The first group of issues address the basic
research problems, while the second group is related to the
production of animation software. In this section some of
these issues are briefly discussed.

Model generation in MML is based on a collection of
rules applied to the primitives in the model. As the examples
show, this technique is general enough to handle fractals, par
ticle systems, and trees, but is it general enough to handle oth
er types of natural phenomena? Objects that are based on
meshes of primitives, such as bodies of water, don' t seem to
fit into this framework very well. We have thought of rule
schemes that produce meshes, and since MML is based on C,
we could always use a for loop to generate the primitives.
These solutions don't seem to be the most elegant ones, but
they do work.

Motion computation in MML is based on two passes
through the primitives in the model, for each time step of the
animation. This scheme has handled all the types of motion
that we have tried so far, but we may be biased by what we
know is possible. When we start studying mesh based models
we may find that this scheme doesn't work as well.

Both the interactive and batch animation programs allow
multiple motion verbs to be acting on an object at the same
time. There is the possibility that these motion verbs could
interfere with each other. At the present time the MML sys
tem doesn't detect this interference, the motion verbs are exe
cuted in the order they were entered in the motion table
without consideration for other motions in the object. We
have taken this approach because we don't have a better solu
tion to the problem. We could attempt to detect interfering
motion verbs and apply some conflict resolution strategy, but
it is not clear how expensive this would be and whether the
results would be worthwhile. We are currently investigating
techniques for handling conflicting motions.

Graphics Interface 'SS

A related problem is the interaction between objects in
the same environment. This interaction could vary from
objects avoiding obstacles and following terrain, up to com
plex synchronized motions between multiple objects (such as
a group of dancers). This type of behavior requires some form
of communications between the objects in the model and their
motion processes.

The motion verb technique currently has no mechanism
for combining several motions into one compound motion.
Such a mechanism would allow the programmer or animator
to develop complex motions out of simpler motions, and thus
extend the animation system. Some of the mechanisms that
we have considered are the parallel execution of several
motion verbs (which brings us back to the previous issues),
and the sequential execution of a set of motion verbs. Prob
ably several composition mechanisms will be required.

There are several aspects of the MML system that we
would like to improve. In the Generate section, the initial
primitives in the model must be explicitly listed with their
property values. In some cases this is not the most convenient
way of specifying them. We would like to have interaction
techniques for entering the primitives, a database system
where different sets of initial primitives could be stored, and a
means of computing the initial primitives.

MML is an extension of the C programming language,
and as a result there is a tendency to use C code whenever
MML doesn't provide the appropriate language construct. We
would like to have a notation that is at a higher level and at the
same time gives us the same flexibility that we have with
MML.

Acknowledgements

We would like to thank our colleagues in the department
for their comments on our work, and Christina Lau for imple
menting the first version of the MML preprocessor.

References

[Aono and Kunii 1984] Aono M., T.L Kunii, Botanical Tree
Image Generation, IEEE Computer Graphics and
Applications, volA, no.5, p.l0-34, 1984.

[Fournier et.al 1983] Fournier A., Fussel D., Carpenter L.,
Computer Rendering of Stochastic Models, Comm.
ACM, Vol. 25, p. 371-384, 1982.

[Green 1987] Green M., MML: A Modeling and Motion
Language, Department of Computing Science, Univer
sity of Alberta, 1987.

[Reeves 1983] Reeves W., Particle Systems - A Technique for
Modeling a Class of Fuzzy Objects, ACM Transac
tions on Graphics, Vol. 2, p. 91-108, 1983.

[Smith 1984] Smith A.R., Plants, Fractals, and Formal
Languages, Siggraph'84 Proceedings, p. 1-10, 1984.

25

[Smith 1987] Smith A.R., Formal Geometric Languages for
Natural Phenomena, The Modeling of Natural
Phenomena, Siggraph'87 Course Notes, 1987.

Graphics Interface 'SS

