
236

THEORETICAL RESULTS ON
THE PRIORITY APPROACH TO HIDDEN·SURFACE REMOVAL

Peter Egyed

School of Computer Science
McGill University

805 Sherbrooke st. West
Montreal, Quebec, Canada, H3A 2K6

ABSTRACT

Many of Ule fundamental problems in computer graphics
involve Ute notion of visibility. In one approach to Ute
hidden-surface problem, priorities are assigned to Ute faces
of a scene. A realistic image is Uten rendered by displaying
the faces wiUt Ute resulting priority ordering. We introduce
a tree-based formalism for describing priority orderings Utat
simplifies an existing algoriUtm. As well, a decomposition­
based algoriUtm is presented for classes of scenes Utat do not
in general admit priority orderings. Finally, Ute tree-based
formalism is used in the development of insertion and dele­
tion algoriUtms Utat solve Ute problem of dynamically main­
taining a priority ordering.

KEYWORDS: Hidden-Surface Problems, Computational
Geometry, Priority Orderings, Decomposition Techniques,
Dynamization Techniques

1 INTRODUCTION

When displaying objects, one of the most challenging
problems encountered involves removing the portions of Ute
objects obscured by oUters nearer to tile viewing position.
Depending on wheUter edges or faces are displayed, Ute
problem is commonly referred to as Ute hidden· line or
hidden·surface problem.

Much of the motivation for Ute development of
hidden-line and hidden-surface algoriUtms stems from their
ever increasing importance in computer graphics. As a
result, a considerable portion of Ute total research effort in
the field has been guided by the practitioner's viewpoint. For
an overview of Ute algoriUtms designed from this point of
view see [Sut74]. Only recently, spurred by developments
in Ute new and flourishing field of computational geometry,
has the theoretical nature of the problems begun to be inves­
tigated. Many different solutions have been proposed for Ute
general hidden-line problem [Dev86, Nur85, Ott85, Sch81].
By restricting Ute class of input considered, more efficient
results have been obtained [Gut84, Rap86]. Some theoretical
results have also been presented in the area of hidden-surface
removal [McK87, Sch81].

One method for solving the hidden-surface problem
Utat shows great promise is the priority approach. This tech­
nique involves assigning depth priority numbers to the faces
of a scene. The desired obscuring effect is Uten achieved by
displaying the faces using the resulting priority ordering.

Unfortunately, it is not always possible to compute priority
orderings since cyclic constraints may exist On the other
hand, many scenes exhibit a remarkable property in that it is
possible to compute priority orderings for Utem before a
viewing position is specified. This of course leads to
significant time savings during image generation. Although
several papers [Fra7S, FucSO, Hub81] have considered vari­
ous techniques for exploiting the independence of certain
characteristics of a scene from viewing position, very little
theoretical insight into priority orderings is obtained. Yao
[YaoSO] on Ute other hand, investigates Ute underlying
mathematical nature of priority orderings, and proposes an
efficient algoriUtm for a restricted class of input.

In this paper we extend Ute work of Yao [YaoSO]. In
particular, a tree· based formalism .for describing priority ord­
erings is introduced. This formalism is used to simplify an
existing algorithm [Ya080]. As well, a class of scenes,
encompassing Ute class presented in [YaoSO], is introduced.
Due to the possibility of cyclic constraints, a scene in this
class will not in general admit a priority ordering. To
remedy Utis situation, decomposition techniques are used.
Although finding a minimum decomposition appears
difficult, a heuristic is presented Utat uses at most twice Ute
minimum number of horizontal cUls. The resulting algorithm
requires O(nlogn) time if t = I and O(tnlogn + nlognlogm)
time if t > I, where n and m are respectively Ute number of
faces and polyhedra in Ute scene, and t is Ute minimum
number of horizontal cuts needed to decompose Ute scene.
Finally, dynamization techniques are used to develop inser­
tion and deletion algorithms for the problem of dynamically
maintaining a priority ordering. These algorithms, which
depend on Ute tree-based formalism, require O(n) time.

We now briefly describe Ute organization of this
paper. In section two, the class of scenes to be considered is
defined, and some basic properties of the objects comprising
Ute scene are deduced. The tree-based formalism and
simplification of Yao's results are presented in section Utree.
In section four, the decomposition techniques are considered,
and Ute resulting algoriUtm is presented. The algorithms for
dynamically maintaining a priority ordering are developed in
section five. Finally, the last section concludes the paper and
suggests some directions for further research.

2 DEFINITIONS AND TERMINOLOGY

We present in this section Ute necessary definitions
and terminology. As well. Ute class of scenes to be

Graphics Interface '88

considered is introduced and some properties of these scenes
are presented.

2.1 Basic definitions

We represent a simple polygon P by a clockwise
sequence of vertices, Vh V2, ••• , Vu where each vertex VI is
described by its cartesian coordinates (Xj, YI). The sequence
is assumed to be in standard form, i.e., the vertices are dis­
tinct and no three consecutive vertices, indices taken modulo
n, are collinear. A pair of consecutive vertices, say Vio VI+h

indices taken modulo n, termed the tail and head respec­
tively, define Ule i lll edge and is represented by ej. The
sequence eh el, ... , e. of edges forms the boundary of a
polygon P, is denoted by bnd(P}, and partitions the plane
into two open regions: one bounded, termed the interior of
P and denoted by int(P}, and the other unbounded, termed
the exterior of P and denoted by ext(P).

2.2 Defining the scene

We define a scene, the class of input to be considered,
as a collection S = (PX h PX 1, ••• , PX,.) of nonintersecting
polyhedral cross·sections. A polyhedral cross-section PX is
a polyhedron of restricted form that is enclosed by base·
faces, simple polygons Plo = (V"h Vu, ... , v,,",,) and

P, = (V,h v,z, ... , v'",) that lie in parallel planes Z = z" and
z = z, respectively, and also by a collection
F = (f h 11, ... , hJ of simple polygons, termed lateral·
faces, that connect Plo and P,. The base-faces Plo and P, are
named with tile convention z, > Z", and termed tile top and
bottom base-face respectively. Given a three-dimensional
object G, let its projection onto the x-y plane, termed the x-y
projection, be denoted by G'. Plo and P, are restricted so
that eiUler P; !::: p,' or p,' !::: P;. Alternate symbols for the
base-faces are derived from the containment relation: if
P; = p,', then the minor base-face, denoted by P,., is P" and
the superior base-face, denoted by p .. is p", otherwise P,.
is the properly contained base-face and P, is the other. If PI
and P, are simple polygons, then for simplicity we shall
denote inJ(PI) n inJ(P,) by r(PIo PI)' The placement of the
polyhedral cross-sections is restricted so that given any pair
PXIo PX, of S, if r(P,:, P,~} ~ 0 and Z"I < z", then
Z'I S z",' i.e., if the x-y projections of PX1 and PX, intersec~
then Uley are separable by some z-plane. A polyhedral
cross-section is composed of base-edges, those that form the
base-faces, and lalera[.edges which together form the
lateral-faces. Let ll, a binary operator on simple polygons, be
defined so that PI II P, = PI - inJ(P,). A lateral-edge links
a vertex of each of P'" and p .. is denoted by eJA, and is res­
tricted so U!at e; e P; II p:". Finally, we denote U!e com-

'" '"
plexity of the scene, l:IP".1 + lP, I = l:n"l + n" by n.

j~l' I 1~1 I

A polyhedral cross-section PX, with lateral-faces
F = (f 10 11, ... , /I) and base ' faces P, and P"" has several
important properties with respect to U!e remainder of this
paper. These properties are: (i) each lateral-face II is either
a triangle or a conv~x <J,uadrilate~~; qi) for ,every pair {I,. fJ
of lateral-faces, nIl, I,) = 0; (ill) F = (f) , 11, ... , /I} IS a
non-overlapping decomposition of P: II P".. The proofs of
the above properties, although easily derived, arc omitted.
Some properties of the x-y projection of a polyhedral cross­
sections PX are highlighted in Fig. 1.

237

3 ELEMENTARY SCENES

In this section we consider hidden-surface removal
with respect to restricted scenes in which U!e set of top
base-faces and U!e set of bottom base-faces each lie in a
fixed z-plane, and each pair of base-faces is congruent Yao
[Ya080] considered this class of scenes and obtained results
on computing priority orderings. We introduce a tree-based
formalism for describing priority orderings that improves
algorithm in [yao80). While the worst-case complexity
remains the same, a simplification of the algoriUun, eliminat­
ing the need for a second pass of U!e data, is obtained. We
have recently learned that this simplification was indepen­
dently discovered by Ottmann and Widmayer [01183] within
the context of line segment translation. We note however,
that our method of proof, which relies on U!e tree-based for­
malism and on which another section of this paper depends,
is of a completely different fiavor.

3.1 PrelIminary considerations

Consider a scene S = (PX 10 PX 2, ... , PX,.) of
polyhedral cross-sections, restricted so that for each
polyhedral cross-section PXio P;I = P,;, Z"I = z", and Z'j = z,
where z" and z, are each a constant. Furthermore, lateral­
edges link the similar vertices of each base-face. We shall
refer to each polyhedral cross-section PXI of such a scene,
as a prism. Since P;j = P,;, we refer to each as Pj.

To define a dominance relation between the faces of a
scene, requires that a viewing model be chosen. We choose
U!e parallel viewing model since it affords a simple analysis
and is of practical importance in many applications. In U!e
parallel model, refer to Fig. 2, parallel rays emanate from an
observer at infinity and head towards the scene. The
observer's view is U!en completely determined by the pair of

-7t 7t
angles (9, ~), 0 S 9 S 27t and T S ~ S 2' formed by U!e

projections of a ray r onto the x-y and x-z planes respec­
tively. We shall defer, until section 4.2, the treatment of U!e

special cases in which ~ = ~ or ~ = -;. We therefore

-7t 7t
assume that T < ~ < 2'

Given an observer, each face whose outward normal
vector has no component in the direction of U!e observer, is
invisible. We call such invisible faces, backfaces, and
describe the remaining potentially visible faces as visible.
Having discarded the back-faces, displaying the remaining
visible faces wiU! a valid priority ordering results in a
correctly rendered scene. Since each of U!e visible base-faces
has an equal and highest priority, solving the hidden-surface
problem for a scene of prisms involves computing a valid
priority ordering for U!e visible lateral-faces.

Let F = (f .. I z, ... , I.) be U!e lateral-faces of S.
Determining a priority ordering for the faces of F in the
direction (9, cjI) is equivalent to determining, in two dimen­
sions, a valid priority ordering for the visible edges of
F' = (f; ; I;, ... , I~) in the direction 9. As a matter of con­
venience, an edge of F' will be referred to by its correspond­
ing face in F .

Consider a clockwise view-inJerval 0> = [Ph pz},
defined so U!at I 0> I is maximized with the condition that if
II is visible for any angle 9 e 0>, then II is visible for all

Graphics Interface '88

angles 9 e co. Since a face" is visible over an interval of
length n, the complete interval [0, 271:] is properly divided
into at most n view-intervals, each of which contains O(n)
faces in general.

3.2 SImplIfyIng Yao's results with a tree structure

Given a scene S and a view-interval co = [Ph pz] we
can, without loss of generality, rotate the scene so that the
view-interval can be expressed as co = [0, p] . Let F., a sub­
set of F, be the faces of the view-interval co. If for a view­
interval co, a face IJ must be assigned a higher priority than
an face 110 we say that IJ dominates I1 and denote the rela­
tionship by IJ dom 1" Referring to Fig. 3, consider an edge
" and define the region R, to include the two half-lines
determining its boundary, but exclude the portion of I1 not
lying on the half-lines. Suppose for view-interval co that
IJ dom I" then IJ must intersect the region R" Of the two
vertices determining a face I" the tail is denoted by
v" = (x", YI,) and the head is denoted by V'I = (%'1' Y'I)'
Suppose IJ dom 1" then either IJ intersects the half-line
boundary of Ri containing V'i ' or it does not; these cases are

denoted respectively by IJ leftdom I1 and fJ righldom".

Theorem 1. For any view-interval co = [0, p] of a scene
composed of prisms, there exists a priority ordering on the
faces of F. [Yao80].

The proof relies on the fact that, of the faces of F.
that are maximal with respect to leftdom, the one whose tail
has the largest x-(;oordinate is not dominated by any other
face.

Consider a relation ileftdom, defined so that
IJ ilefldom I1 if and only if IJ left-dominates I1 immedi­
ately from above. Suppose we add a face I mu that left­
dominates all other faces. The only face now maximal with
respect to ileftdom is I IIWJ and so the relation ileftdom can
be represented by a trec T rooted by 1-,. Let T be
arranged so that the children of a node I, those immediately
left-dominated by I, are ordered from left to right by the
value of the x-coordinate of their tail. Suppose the sub trees
of a tree T, ordered from left to right, are Tit T 1, ... , T,.
Consider the following recursive definition of the post order
traversal of T: list the nodes of Tit T 10 ... , T, in postorder
all followed by the root of T. Thus, if the children of a node
h, ordered from left to right, are h 10 hlo ... , h .. then in the
postorder listing of T Ute nodes hit hl' ... , h .. h appear in
the given order.

Theorem 2. The postorder traversal of the tree T yields a
priority ordering on F •.

Proof. Let I be a face of F,., then referring to Fig. 4, let T,
be the sub tree of T in which the faces occurring before I in
a left to right postorder traversal of T. have been eliminated.
Also, let L, be the left most path, from root to leaf. of T,
and note that the leaf of L, is I. It is sufficient to show that
given I and the faces of T - T" of the faces maximal with
respect to leftdom, the tail of I has the largest x-coordinate.
Referring to Fig. 5. consider the partition of the faces in F.
induced by the ilefldom sequence represented by L,. A line
is said to be monotone with respect to a direction 9. if when
traversed, it yields a monotonically increasing projection
onto a line in the direction 9. Denote the partitioning line

238

by Cl and note that Cl is either piecewise linear and mono­
tone with respect to the x-axis. or vertical. Also. by the
definition of ileftdom no two partitioning lines may cross.
Clearly then, given a face of T - TI • either its tail lies left
of Cl or it is a descendant of I in T. Therefore, given I
and Ute faces of T - TI • I is maximal with respect to left­
dom, and of Utose faces Utat are maximal wiUt respect to
leftdom, the tail of I is rightmosl Q.E.D.

Theorem 3. The postorder listing of the tree T can be
optimally computed in O(nlogn) time.

Proof. Suppose the faces are processed so that a face I and
those faces immediately left-dominated by I. I It 110 fA,
ordered by the x-(;oordinate of Uteir tail. are encountered in
the order I, I It 110 I.. This enables the construction of
a doubly-linked-list in which a face is inserted before the
face Utat immediately left-dominates it, achieving Ute desired
suborder of I It 110 t.. I. The problem is solved wiUt a
plane sweep technique identical to that described in [Ya080].
Consider a vertical line I through V,. the tail of a face I,
and its intersection with Ute elements of F.. The order of
the intersections of the faces with I, as I is swept from left
to right, can be maintained in a balanced tree in which a
face I is inserted when its tail is processed. and deleted
when its head is processed. The face that immediately left­
dominates I is found when I is inserted. Since the tails are
encountered from left to right, a face I and I It 110 ... , fA,
those faces immediately left-dominated by I, are encoun­
tered in the order I • I It I:z, t. as desired. The optimality
of the algorithm follows simply since, as noted in [ya080],
sorting is linear time transferable to the priority ordering
problem. Q.E.D. .

A scene is said to be k-regular if Ute number of view
intervals is k. In general k = n, however, there exists scenes
in which k < n. The k priority orderings, which are
sufficient for all views, and the corresponding k lists can be
calculated in O(knJogn) time. As well. O(n) display com­
mands are required to render an image.

4 COMPLEX SCENES

In this section we examine a more general class of
scenes in which the placement of base-faces is not so rigidly
confined. These scenes do not in general admit priority ord­
erings. To remedy this situation, various decomposition
techniques are introduced.

4.1 NonoverlappIng scenes

Consider a scene S = (PX h PXz • ... , PX".) of
polyhedral cross-sections and let F = (f It I:z, I ~) be the
corresponding lateral-faces. Restrict S so that for any pair
PX" PXJ of polyhedral cross-sections, [(P,i•• P,J,> = 0.
Call each polyhedral cross-section of such a scene a column.

Unlike in a scene composed of prisms, for a fixed
viewing position (9, «1». the visible base-faces of a scene
constructed from columns. do not necessarily have equal and
highest priority. Referring to Fig. 6, it is simple to construct
a scene of columns in which for any viewing position, there
exists a base-face. lateral-face pair. of which neither can
have a higher priority than the other. To remedy this situa­
tion. we will introduce a vertical decomposition of the scene

Graphics Interface '88

which easily adapts to the existing framework.

It is of course desirable to render Ute problem
independent of ell. WiUt Utis in mind. we adopt a strategy
that computes a view-interval dependent total ordering of Ute
faces in a scene. Given a viewing position. Ute back-faces
can Uten be quickly eliminated.

Suppose each minor base-face of S is triangulated.
Euler showed Utat a planar graph on n vertices has O(n)
edges and faces. Consequently. the decomposition of Ute
minor base-faces yields O(n) Iriangular-Iaces and induces a
vertical decomposition of S . Redefine F = if 10 120 ...• 1ft) to
include boUt Ute lateral-faces and triangular-faces of S. As
well. define '¥(F. r) to be Ute partial ordering of Ute faces
of F induced by Uteir order of intersection wiUt a ray r.

Lemma 1. Any priority ordering on Ute elemenis of F' for a
fixed direction e. is valid on Ute faces of F for every direc­
tion (e. ell).
Proof. Let r be any ray wiUt direction e in Ute x-y plane.
Define R to be Ute family of rays for which for each ray
s ER. s' = r. In order to establish Ute required result, it is
sufficient to demonstrate Utat for any ray s ER. '¥(F. s)
and ,¥(F'. r) are consistent Let I1 be any face of F. and s
any ray of R . Since li is convex. s intersects I1 and r inter­
sects Is' at most once. Then. referring to Fig. 7. since for
any pair 11. IJ of F. r(ls'. Ij) = 0. '¥(F. s) and '¥(F'. r)
are consistent Q.E.D.

In order to process a scene S. a suitable representa­
tion of each column of S is required. From such a represen­
tation. Ute base-faces and lateral-faces must be immediately
available. As well. Ute representation must support fast
insertion of Ute triangular-faces. To satisfy Utese conditions.
a planar graph structure. such as Ute doubly-connected-edge­
list of Muller and Preparata [MuI78). can be used.

Lemma 2. The set M = (P ...
1
• P ...

l
• •••• P) of minor base­

faces can be triangulated in O(nJogn) time.

Proof. Many algoriUtms (see for example [Cha83]) exist for
triangulating a simple polygon in O(nJogn) time. Each minor
base-face is a simple polygon. Since Utere are O(n) vertices
determining the m minor base-faces. the m minor base-faces
can be triangulated in O(nJogn) time. Q.E.D.

Let P be a convex polygon. A line I is a line 01 sup­
pori of P if Ute interior of P lies completely to one side of
I. A pair of vertices v" vJ of P is an anlipodal pair if it
admits parallel lines of support Call Ute edge e determined
by an antipodal pair. a shadow-edge.

Lemma 3. When computing a priority ordering of F' for a
fixed direction e. it suffices to replace each polygon by an
appropriate shadow-edge.

Proof. Referring to Fig. 8. consider Ute parallel lines of sup­
port of a polygon Is' of F' in Ute direction e. and let e
denote Ute corresponding shadow-edge determined by Ute
antipodal pair VJ' Vi. Since Is' is convex. e lies within is'.
and. as remarked by Guibas and Yao [Gui80). Is' and e
sweep Ute same area when translated in Ute direction e.
Furthermore. for any pair of faces 11. IJ of F.
rifs'. I j) = 0. and so el and eJ. Ute shadow-edges of I1
and IJ wiUt respect to e. do not intersect However. el and

239

ej may overlap. Fortunately. this is not a problem since
each face of F is either a triangle or a quadrilateral. and so
in constant time Ute ordering of Is' and I j wiUt respect to e
can be computed. Finally. since no edge and shadow-edge of
F' intersect (overlap is handled as above). it suffices to
replace each polygon of F' by its shadow-edge for Ute direc­
tion e. Q.E.D.

Lemma 4. The polygons of F' have O(n) shadow-edges.
each valid through some range of e. which can be computed
in O(n) time.

Prool. It can be shown [Pre8S] Utat, for a convex polygon
P on n vertices. Ute O(n) antipodal pairs of of P can be
computed in O(n) time. In addition, each antipodal pair
defines a family of parallel lines of support through a clock­
wise angular-interval (l = [Oh oz) and its reflection
(lr = [01+1t. Ol+1t]. Note Utat I (l I = I a,. I < 1t. The result
then follows simply since each antipodal pair defines a
shadow-edge. and also since the polygons of F' are deter­
mined by a total of O(n) vertices. Q.E.D.

For a scene S. there are then O(n) edges and
shadow-edges. Associated with each edge e are two nono­
verlapping intervals of lengUt 1t. reflecting the distinct sides
of e. The visibility of each side of e will be associated with
the corresponding interval. Likewise. the two angular­
intervals (l and (lr of a shadow-edge e. define the visibility
of the two sides of e. Let E = (eh el • eft) be the edges
and shadow-edges of F'. A view-interval Cl) = [Ph pz). is
redefined so that I Cl) I is maximized with the condition that if
ej is visible for any angle e E (1). then el is visible for all
angles e E (1). The visibility of each edge el E E is defined
wiUt respect to two equal but opposite intervals. As a result,
each view-interval Cl) = [Ph pz) has a mirror image
(1)r = [PI+1t. Pl+1t). Since e E Cl) if and only if 9+1t E (1) ..

reversing tile priority ordering determined for Cl) yields a
valid priority ordering for (1)r' Therefore. rather than consid­
ering the complete interval [0. 21t]. it is sufficient to deter­
mine priority orderings over the interval [0. 1t). Without loss
of generality. S can be rotated so that a view-interval
Cl) = [Ph pz) can be expressed as Cl) = [0. p). Clearly. the
interval [0. 1t] is properly divided into O(n) view-intervals.
each of which contains O(n) edges.

Theorem 4. For any view-interval Cl) = [0. p] of a scene
composed from columns. there exists a priority ordering on
F' which can be optimally calculated in O(nJogn) time.

Proof. The proof follows directly from lemmas 1-4 and
theorem 3. Q.E.D.

Given a k-regular scene composed of columns. the
corresponding k priority orderings can be determined in
O(knJogn) time. Since each non vertical face has a portion
of a major base-face associated with it, the relative ordering
of the pair must be considered in the case where neither is a
back-face. Suppose this is the case. their relative ordering
will then be arbitrary since otherwise a ray in the direction
(e. ell) must intersect both. with the result that one must be a
back-face. Finally. O(n) display commands are needed to
render an image.

Graphics Interface '88

4.2 General scenes

We now consider the most general class of scenes.
Let S = (PX h PX 2, ... , PX".) be a scene of polyhedral
cross-sections. The placement of the polyhedral cross­
sections is restricted so that given any pair PX" PXj , if
[(P,: ' P ~) '" 0 and %b

l
< %bj , then %'1 S %bj' Yao [Yao80]

showed that for such a class, it is possible to construct
scenes in which for any viewing position there exists a set of
lateral-faces that determine a cycle. In order to avoid such a
situation, we introduce a horizontal decomposition of the
scene.

First consider the cases in which ell = -; and ell = f·
If the top base-faces are sorted and renamed so that
%, S %, S ... S %" then assigning each face of a
'2 ".

polyhedral cross-section PXI the priority j, induces a priority

ordering on the faces for ell = ~. A similar result holds fur

-1t
eII=T'

Consider partitioning space into 1 + 1 horizontal slabs
with a series of 1 z-planes % = %, < % = %1 < ... < % = zj.
Suppose a scene S is decomposed by such a partitioning into
1 + I subscenes so that within each subscene
[(P,:, PI~) = 0 for any pair PXj , PXj of polyhedral cross-

sections. Any ray r in a fixed direction (9, ell) either passes
through a single slab (ell = 0) or traverses the slabs in a fixed
order. In the case where ell < 0, r passes through the slabs
bottom-up intersecting the z-planes in the order
% = %h % = %2, ... , % = %,. The ordering is simply reversed if
ell > O. It therefore suffices to process and display the sub­
scenes independently. For each sub scene the priority order­
ings are computed as in section 4.1.

Determining where to cut a scene is a major con­
sideration since it could adversely effect the complexity of
the scene. Minimizing the complexity of the scene, i.e.,
minimizing the number of lateral-faces cut by U,e z-planes,
is a difficult problem. Instead, we concentrate on minimizing
the number of cuts. A scene S is said to be I-cUltable if 1 is
the minimum number of z-planes required to decompose S
so that within each subscene, no two x-y projections of supe­
rior base-faces intersect We now present an algorithm that
decomposes a scene S as required. The algorithm determines
at most 2t z-planes and so minimizes within a constant fac­
tor.

The problem of deciding where to cut a scene is basi­
cally one of determining two-dimensional intersections.
Given two polyhedral cross-sections PX, and PXj such that
[(P,: ' P ~) '" 0 and %b

l
< %b

j
, the scene must be cut with

some z-plane % = %e, %'1 S %e S %bj' Suppose the scene is cut

with a series of z-planes % = %, , % = %, , ... , % = %, • , 2 m

Clearly, such a decomposition always appropriately cuts the
scene, and so 1 S m. It is easy to realize scenes in which m
cuts are necessary simply by stacking polyhedral cross­
sections one on top of another. Consider the x-y projection
of a scene. In the worst case as many as 0(n2) intersections
will exist between the x-y projections of the superior base­
faces, and so any algorithm that computes all the intersec­
tions will require O(~) time in the worst case. Since at
most O(n) cuts are required to decompose a scene, it would

240

be advantageous to eliminate the excess from consideration.
Consi~er a. pol)'hedral cross-section PXI and let
11 = U I [(P,j , P,j) '" 0 and %b

j
< %b

j
}. Also, let

mini = min(%b
j
), i Ell ' Clearly, cutting the scene with the

z-plane z = %e, %'j S %e S mini, eliminates the intersections
above, and in part due to, PXI •

The key to the quickness of our algorithm will lie in
its ability to locate the intersections between polyhedral
cross-sections in close proximity. The algorithm uses a
divide-and-conquer scheme. During the divide phase, the
scene is decomposed with a set of at most 2t z-planes. This
is followed by the conquer phase which then selects 0(1) of
the z-planes. At the heart of the algorithm is intersection
testing. By decomposing the superior base-faces as
described in section 4.2, we are able to make use of the
intersection detection algorithm of Shamos and Hoey
[Sha76]. Given a set of n triangles and quadrilaterals, their
algorithm can detect whether any pair of objects intersect in
O(nJogn) time. Using this algorithm, a O-cuttable scene
could be quickly detected.

Theorem S. For any scene S that is t-cuttable, a set of at
most 2t z-planes that properly decompose S, can be com­
puted in O(nlognlogm) time.

Proof For each polyhedral cross-section PXj , let tj and bj

denote %b
j

and %'1 respectively, and let DI denote the set of

components of the decomposition of P't' Sort the tj' sand

bl ' s separately, and rename the polyhedral cross-sections so
that t, S t2 S ... S t".. Merge the sorted sequences of tt's
and bj ' s using the convention that if tj = bj , then in the ord­
ering tj comes before bj • Call the resultant sequence Q
and append to it, as its bottommost symbol, the dummy
symbol to. Now each intersection can be characterized as
follows: suppose j < i, then tl S bj and r(Dh Dj) '" 0. To
complete the divide phase, consider the triple
GI = (Qj, Bit TI). QI is tile subsequence of Q above tl _1t
up \0 and including tl . B j and Tit which denote the bottom
and top search boundaries within Gj , are respectively set
equal to the first and last symbols of QI. Note that by the
definition of a scene, each GI initially defines a slab within
which there are no intersections.

At each level of the conquer phase adjacent pairs of
Gj • s are merged, and any intersection between the pair is
detected. If any intersection is detected, then a cut splitting
the pair is introduced and any intersections straddling the cut
are eliminated. Let r denote the number of GI ' s at the

current level of the conquer phase, thus initially r = m. At

each level, for all odd j, 1 S j S r, let i = j + 1 . If i + 1 S r
. 2

then GI and G j +1 are merged into Gj , otherwise GI is simply
renamed Gj • After each level, r is updated as follows: if r
. dd r+l th' r
150 r = -2-' 0 erwlSe r = 2'

It at each level the intersections between the merged
pairs are detected and eliminated, then clearly the resulting
set of cuts will appropriately decompose S. Once an inter­
section has been detected, and a cut made, it would be
senseless to search for intersections straddling the cut To
prevent this from happening, when GI and GI +I are merged,
only intersections between BI and TI+l will be considered.

Graphics Interface 'SS

Note that frorii- B, 10 the topmost symbol of QIo and from
the bottommost symbol of Q'+I to T,+1t there are no intersec­
tions. Suppose G, and G

'
+1 are about to be merged. then any

intersection between the pair can be characterized as follows:
if j < k then 'I e Q,. IJ ~ Bit bl; e Q,+1t bl; ~ T

'
+1t and

[(DJ. DI;) "" 0. Let V, = {j I IJ e S,} and let
W, = {j I bJ e S,}. then detecting an intersection involves
determining for any pair DJ. DI;. j e V, and Je e W,+1t
whether [(DJ. DI;) "" 0. For this purpose. we use the algo­
rithm of Shamos and Hoey. If an intersection is detected.
then cutting at IJ. the topmost symbol of Qi. eliminates all
intersections between G, and G,+1• What remains is to
merge G, and G

'
+1 into GJ• There are two cases to consider

depending on whether or not an intersection is detected. In
both cases QJ is determined by concatenating Q, and Q'+I.
Referring to Fig. 9. if an intersection is detected then
TJ = T, and BJ = B'+I. Note that if BI; < TI; then QI; has not
been cut. Referring to Fig. 10. consider the case in which an
intersection is not detected. If B, < T, then TJ = T'+1t other­
wise TI = T,• On the other hand. if B'+I < T'+I then
BJ = Bit otherwise DJ = B'+I.

Let us consider the complexity of the algorithm. In
the divide phase the running time is dominated by the sort-

ing. and so O(mlogm) time is required. Since at each level

of the conquer phase l; J merges occur. there are O(logm)

levels. At each level the intersection detection computations
dominate the running time. Since the sum of the number of
components of the D, ' s is O(n). and since each component is
considered at most twice. once for each of " and bit the
total time time spent detecting intersections at each level is
O(nlogn). Therefore. the running time of the algorithm is
O(nlognlogm). -

What remains to be shown is that at most 2t cuts are
made. Referring to Fig. 11. suppose that while merging G,
and G,+1t an intersection is detected. Let j and Je. j < Je.
denote the intersection pair. then IJ e Q, and bl; e Q'+I.
Also. let C denote the topmost symbol of Q, . Clearly. the
line segment 1 = (IJ. bl;) must be cut Choosing c achieves
this and ensures all intersections straddling c are eliminated.
it does not however guarantee minimality. Let d denote the
number of cuts made. It is possible that an intersection will
be detected between G, and what is below G,• and between
G

'
+1 and what is above G,+1• Still referring to Fig. 11. let 16

and I, denote the line segments that would need to be cut
Clearly. 1 and 16• and, I and I, may overlap. however. 16 and
I, will not Thus. if we consider the sequence of d cuts in
bottom-to-top order. then of the corresponding d segments.

every second segment is nonoQverlapping. Hence at least

: r ~ 1 cuts are required and so at most 2t cuts have been

'made. Q.E.D.

Cutting 8 polyhedral cross-section PX is simple since
each of the resultant objects has the same structure as PX. In
order to determine which polyhedral cross-sections are cut,
sort the cuts and denote the resulting list by
C = (Ch C2 • •••• c,). Next, merge Q and C. ordering "
before cJ if " = Cl. Now. scan the resultant list, inserting
PX, into an active list when bi is encountered. and deleting
it when " is encountered. Further. when c, is encountered.

241

output it and the active list. Therefore. the scene can be cut
in O(ln+tlog/) time. Let us say a scene is k.regular if the
maximum number of view-intervals in any slab. is k. In
total. O(lnlogn) time is required to determine the O(kn)
view-intervals. The corresponding priority orderings can be
computed in O(lknlogn) time. Finally. O(In) display com­
mands are required to render an image.

5 DYNAMIC PRIORITY ORDERINGS

In this section we present a dynamization technique
that solves the problem of dynamically maintaining a priority
ordering. Consider a set F of faces (edges). a view-interval
0). and let FI» = if It 12 • ••.• I,,) denote the faces of co. As
usual. we assume the view-interval 0) = [Ph P2] has been
rotated so that 0) = [0. p]. Suppose we add an extra face
I mu. which left-dominates all other faces. including any that
will be inserted. As shown in section 3.2. the ileftdom rela­
tion can be represented by a tree T that is rooted by I mu.

and the postorder traversal of T yields a priority ordering on
FI». Maintaining a correct priority ordering through a series
of insertions and deletions will amount to updating T in
order to reflect the changes in the Uelldom relation.

5.1 A search technique

In order to represent a tree T. an appropriate data
structure is required. For our purposes the leftmost-child.
right-sibling representation [Ah083] is adequate. Suppose we
wish to construct T directly rather than consider the con­
struction as a series of insertions. This can be done. in
O(nlogn) time. using the algorithm proposed in theorem 3.
provided we store for each face its last child detected.

When a face is inserted or deleted it is necessary to
reconfigure T in order to reflect the changes in the ileftcWm
relation. To do this quickly. T must be systematically
traversed so that any changes in the ileftdom relation can be
reported in some orderly manner. Suppose the sub trees of
T. ordered from left to right, are Tit T 2. • ••• T,. Consider
the following recursive definition of the left to right prepos­
torder traversal of T: list the root of T. followed by the
prepostorder listings of Tit T 2 ••••• T" all followed by the
root of T. Each node of T then is visited twice. once before
its descendants, and once after.

Let I, be a face of F .. and let L, denote the path in T
from the root to f,. As described in section 3.2. L, induces a
partition of the faces in FI». As well. C,. the line representing
the partition. which we shall call a chain. is either piecewise
linear and monotone with I?pect to the x-axis. or vertical.
Referring to Fig. 12. let C, denote the chain which results
when f, and C, are combined. Clearly. C; is also monotone
with respect to the x-axis. Suppose we wish to determine
which face of F", immediately left-dominates some face I
with tail V,. To solve the problem we modify the prepos­
torder traversal so that at every step it is determined whether
a particular interval of a face lies directly above V, . Let I
be any face of F"" and let Ip and I I. 12t ...• 11; respectively
denote. provided they exist, the parent and children of I .
Referring to Fig. 13. we now modify the prepostorder traver­
sal of T as follows: when I is first encountered. consider
the interval of Ip left of V,; during the second encounter.
consider the interval of I right of V'I;. The two special cases

must also be examined: if I = I maxt then no interval is

Graphics Interface '88

considered during the first encounter; if I is a leaf, then all
of I is considered during Ute second encounter. To sum­
marize, Ute interval(s) of I left of V'i are examined when

I to 12, ... , li are first encountered, and the remainder of I
is examined when I is encountered for the second time.

Lemma 5. The first face discovered during Ute modified
prepostorder traversal of T Utat lies directly above V"

immediately left-dominates I.
Proof. Clearly, all portions of all faces are considered and
so some solution will be found. Suppose Ute algorithm
stopped when I, was encountered, however the correct solu­
tion lu was not reported. Referring to Fig. 14, Ute algo­
riUtm will have reported eiUter 1/, Ute parent of I/o or I,
itself, depending on wheUter it was Ute first or second
encounter of I,. If fJ was reported, then v, .. lies left of C"

o Uterwise, v, lies left of C;. Whichever Ute case may be, ..
denote Ute chain by C. Now, C and C .. do not cross, and,
each is monotone wiUt respect to the x-axis. Therefore, C"
lies left of C and so the appropriate interval of I .. will
already have been considered. We thus have a contradiction.
Q.E.D.

5.2 The Insertion problem

Consider the following problem: given a tree T
representing the ileftdom relation on a set
Fm = (f h 12, ... , I ..) of faces, insert a new face I into Fm
and update T in order to reflect the changes in Ute ileftdom
relation. To realize the changes, we must determine Ute face
Ip that immediately left-dominates I, and the faces
I to 12, ... , Ii, ordered from left to right, immediately left­
dominated by I .

As proved in lemma 5, the modified prepostorder
traversal of T will compute Ip. As well, the traversal exam­
ines the intervals of Ip from left to right, and so the position
of I amongst the children of Ip can easily be determined.

All that remains then is to calculate I h 12, ... , h,
preferably in their natural order. Suppose the sub trees of a
tree T, ordered from left to right, are T h T 2, ... , T,. Con­
sidcr lhe following recursive definition of the left to right
preorder Iraversal of T: list the root of T followed by the
preorder listings of T h T 2, ... , T,. Thus, if the children of a
node h, ordered from left to right, are h h h 1, ... , h, Uten in:
the preorder listing of T the nodes h, h to hz, ... , h, appear
in the given order. Referring to Fig. 15, determining which
faces are immediately left-dominated by I is equivalent to
determining which of Ute relevant vertical sections of the
chains are cut by I. Let I be any face of F .. and let Ip be
lhe face lhat immediately left-dominates I. Suppose we
modify lhe preorder traversal of T so tllat when I is
encountered we determine if the vertical interval of C
between v, and Ip is cut by I. For the special case in which
I = I , no interval is examined.

Lemma 6. The faces I h 12, ... , Ii, Utose immediately left­
dominated by I, are discovered in order during the modified
prepostorder traversal of T.

Proof. Clearly, all the relevant vertical intervals are con­
sidered, and so I to I z, ... , Ii will be found. We need to
show then that if x" < Xli' then I1 is found before 1/. Since

242

I does not intersect any faces of F"" and also since each
chain is monotone with respect to the x-axis, I may inter­
sect a given chain at most once. Referring to Fig. 16,
x,, < x,/ and so I cuts C, left of C/ with Ute result Utat I,
will have been considered before fJ. Q.E.D.

Theorem 6. The priority ordering on the faces of F .. can be
maintained at a cost of O(n) time per insertion.

Proof. The cost of updating T is dominated by the time
required to execute the modified prepostorder and preorder
traversals on T, each of which requires O(n) time. Since
determining the resulting priority ordering amounts to com­
puting the postorder traversal of T, the priority ordering can
be maintained at a cost of O(n) time per insertion. Q.E.D.

5.3 The deletion problem

Consider Ute following problem: given a tree T,
representing the ileftdom relation on a set
Fm = (f h 11, ... , I ..) of faces, delete a face I from Fm and
update T in order to reflect the changes in ileftdom relation.
Suppose the faces immediately left-dominated by I, ordered
from left to right, are I h 12, ... , b. To update T requires
that we determine for each I" 1 S j S t, I pI the face which

immediately left-dominates I, when I is deleted.

Note that Ute sub trees rooted by I to 12, ... , b will
remain intact, and thus need not be considered in the search
for Ipl , Ip2, ... ,Ipi' Given I/o 1 S i S k , we know, from

lemma 5, that the modified prepostorder traversal of T can
be used to determine Ipl" Suppose that in the traversal Ip;
would be found before lp/ if x" < XII' Then a single traver­

sal is sufficient to compute Ipl, Ip1, ... , Ipi .

Lemma 7. The faces Ip1,lp1, ... ,Ipi, those immediately

left-dominated by I hI 10 ... , li, are found in order during
the modified prepostorder traversal of T.

Proof. We need to show that lp, is found before lp/ if

x, < x,, Extend a vertical half line upwards from each of , /
x, and x,, denoting lhem by Ij and 1/ respectively. Since , /
each chain is monotone wilh respect to the x-axis, each of Ij
and 1/ may cross a given chain at most once. Clearly, if
CP, ~ CPI' then since I, lies left of 1/, lp, will have been

considered before Ipl' OUterwise, referring to Fig. 17, since

no pair of chains can cross, and also since I, lies left of 1/,
CPI lies left of Cp/ and so the same result holds. Q.E.D.

During the traversal, the intervals of I pi , 1 S j S k,
are considered in order from left to right, and so the position
of I, amongst Ute children of Ip;, can be easily determined.

Theorem 7. The priority ordering on the faces of Fm can be
maintained at a cost of O(n) time per deletion.

Proof. The cost of updating T is dominated by the time
required to execute, at a · cost of O(n) time, the modified
prepostorder traversal on T. Since determining the resulting
priority ordering demands only a postorder traversal of T,
the priority ordering can be maintained at a cost of O(n)
time per deletion. Q.E.D.

Graphics Interface 'SS

6 CONCLUSION AND DISCUSSION

Several new results pertaining to the priority approach
to hidden-surface removal have been presented. In particular,
a tree-based formalism for describing priority orderings has
been introduced and used to simplify an existing algorithm
[Ya080]. As well, decomposition techniques have been con­
sidered for a variety of classes of scenes in order to elim­
inate the possibility of cyclic constraints. The resulting algo­
rithm requires O(nlogn) time if t = 1 and O(tnlogn +
nlognlogm) time if t > 1. Note that with only minor
modifications, the algorithm presented could be adapted to
include the degeneration of a minor base-face to an edge or
a vertex. Finally, O(n) time insertion and deletion algo­
rithms, which rely on the tree-based formalism, have been
developed to solve the problem of maintaining a priority ord­
ering in a dynamic environment.

There are several interesting and related research
problems that remain unsolved. We have considered decom­
posing a scene in order to avoid potential problem areas. A
better approach would eliminate only actual cyclic con­
straints. Another consideration when decomposing, is minim­
izing the number of faces cut as opposed to simply minimiz­
ing the number of cuts. Lastly, of interest is whether other
dynamization techniques could be used to obtain sublinear
algorithms for the insertion and deletion problems.

1 REFERENCES

[Ah083] A.V Aho, J.H. Hopcrofi and J.D. Ullmann, Data
Structures and Algorithms, Addison-Wesley, Reading (1983),
pp 83-99.

[Cha83] B. Chazclle and J. Incerpi, Triangulating a polygon
by divide-and-conquer, Proc 21st Annual Allerton Confer­
ence on Communication, Control, and Computing (1983), pp
447-456.

[Dev86] F. Devai, Quadratic bounds for hidden-line elimina­
tion, Proc ACM Symposium on Computational Geometry
(1986), pp 269-275.

[Fra78] W.R. Franklin and H.R. Lewis, 3-d graphic display
of discrete spatial data by prism maps, Proc ACM Sig­
graph'78 (1978), pp 70-75.

[Gui80] L.J. Guibas and F.P Yao, On translating a set of
rectangles, Proc 12th Annual ACM Symposium on Theory
of Computing (1980), pp 154-157.

[Gut84] R.H. Guting and T. Ottmann, New algorithms for
special cases of IM hidden-line elimination problem, Tech.
Repl 184, University of Dortmund (1984).

[Fuc80] H. Fuchs, Z.M. Kedem and B.F. Naylor, On visible
surface generation by a priori tree structures, Computer
Graphics 14(3) (1980), pp 124-133.

[Hub81] H. Hubschman and S.W. Zucker, Frame-to-frame
COMrence and tM hidden-surface computation, Computer
Graphics 15(4) (1981), pp 45-54.

[McK87] M. McKenna, Worst-case optimal hidden-surface
removal, ACM Transactions on Graphics 6(1) (1987), pp
19-28.

243

[MuI78] D.E. Muller and F.P. Preparata, "Finding the inter­
section of two conva polyhedra, Theoretical Computer Sci­
ence 1(2) (1978), pp 217-236.

[Nur85] O. Nurmi, A fast line-sweep algorithm for hidden­
line elimination, BIT 25(3) (1985), pp 466-472.

[Ott83] T. Ottmann and P. Widmayer, On translating a set
of line segments, Computer Vision, Graphics, and Image
Processing 24(3) (1983), pp 382-389.

[Ott8S] T. Ottmann, P Widmayer and D. Wood, A worst­
case efficient algorithm for hidden-line elimination, Interna­
tional Journal of Computer Mathematics 18(2) (1985), pp
93-119.

[Pre8S] F.P. Preparata and M.1. Shamos, Computational
Geometry: An Introduction, Springer-Verlag, New York
(1985), pp 170-176.

[Rap86] D. Rappaport, A linear algorithm for eliminating
hidden lines from a polygonal cylinder, The Visual Com­
puter 2 (1986), pp 44-53.

[Sch81] A. Schmitt, Time and space bounds for hidden-line
and hidden-surface algorithms, Proc Eurographics'81 (1981),
pp 43-56.

[Sha76] M.I. Shamos and D. Hoey, Geometric intersection
problems, Proc 17th Annual IEEE Symposium on Founda­
tions of Computer Science (1976), pp 208-215.

[Sut74] I.E. Sutherland, R.F. Sproull and R.A. Schumaker, A
characterization of ten hidden-surface algorithms, Comput­
ing Surveys 6(1) (1974), pp 1-55.

[Yao80] F.F. Yao, On the priority approach to hidden­
surface algorithms, Proc 21st Annual IEEE Symposium on
the Foundations of Computer Science (1980), pp 301-307.

Fig. 1

Graphics Interface 'SS

244

z

1--.... x

1 Fig. 2
Fig. 6

s

Fig. 7

Fig. 4

Fig. 8

1 BJ I------1

G1+1
1

cut -+

B ,
G,

T I

Fig.S Fig. 9

Graphlca Interface '88

T'+1 TJ

G'+1

B'+I -T,

G,

B, B

B'+1 Bj

T'+1
G'+1

-B,
G,

T, T j

Top

11 G'+1

b 'k
I

c

IJ
G, Ib

Bottom

•

Fig. 12

Fig. 13

GJ

GJ

Fig. 11

245

•

Fig. 10

~
c,1

1--1 "
Fig. 14

_rj--c+, ---~i

•

Fig. IS

Fig. 16

I,

(vI
:J (J

vI,
(,

xI,
Fig.I7

xIJ

Graphics Interface '88

