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ABSTRACT 

Many of Ule fundamental problems in computer graphics 
involve Ute notion of visibility. In one approach to Ute 
hidden-surface problem, priorities are assigned to Ute faces 
of a scene. A realistic image is Uten rendered by displaying 
the faces wiUt Ute resulting priority ordering. We introduce 
a tree-based formalism for describing priority orderings Utat 
simplifies an existing algoriUtm. As well, a decomposition­
based algoriUtm is presented for classes of scenes Utat do not 
in general admit priority orderings. Finally, Ute tree-based 
formalism is used in the development of insertion and dele­
tion algoriUtms Utat solve Ute problem of dynamically main­
taining a priority ordering. 
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1 INTRODUCTION 

When displaying objects, one of the most challenging 
problems encountered involves removing the portions of Ute 
objects obscured by oUters nearer to tile viewing position. 
Depending on wheUter edges or faces are displayed, Ute 
problem is commonly referred to as Ute hidden· line or 
hidden·surface problem. 

Much of the motivation for Ute development of 
hidden-line and hidden-surface algoriUtms stems from their 
ever increasing importance in computer graphics. As a 
result, a considerable portion of Ute total research effort in 
the field has been guided by the practitioner's viewpoint. For 
an overview of Ute algoriUtms designed from this point of 
view see [Sut74]. Only recently, spurred by developments 
in Ute new and flourishing field of computational geometry, 
has the theoretical nature of the problems begun to be inves­
tigated. Many different solutions have been proposed for Ute 
general hidden-line problem [Dev86, Nur85, Ott85, Sch81]. 
By restricting Ute class of input considered, more efficient 
results have been obtained [Gut84, Rap86]. Some theoretical 
results have also been presented in the area of hidden-surface 
removal [McK87, Sch81]. 

One method for solving the hidden-surface problem 
Utat shows great promise is the priority approach. This tech­
nique involves assigning depth priority numbers to the faces 
of a scene. The desired obscuring effect is Uten achieved by 
displaying the faces using the resulting priority ordering. 

Unfortunately, it is not always possible to compute priority 
orderings since cyclic constraints may exist On the other 
hand, many scenes exhibit a remarkable property in that it is 
possible to compute priority orderings for Utem before a 
viewing position is specified. This of course leads to 
significant time savings during image generation. Although 
several papers [Fra7S, FucSO, Hub81] have considered vari­
ous techniques for exploiting the independence of certain 
characteristics of a scene from viewing position, very little 
theoretical insight into priority orderings is obtained. Yao 
[YaoSO] on Ute other hand, investigates Ute underlying 
mathematical nature of priority orderings, and proposes an 
efficient algoriUtm for a restricted class of input. 

In this paper we extend Ute work of Yao [YaoSO]. In 
particular, a tree· based formalism .for describing priority ord­
erings is introduced. This formalism is used to simplify an 
existing algorithm [Ya080]. As well, a class of scenes, 
encompassing Ute class presented in [YaoSO], is introduced. 
Due to the possibility of cyclic constraints, a scene in this 
class will not in general admit a priority ordering. To 
remedy Utis situation, decomposition techniques are used. 
Although finding a minimum decomposition appears 
difficult, a heuristic is presented Utat uses at most twice Ute 
minimum number of horizontal cUls. The resulting algorithm 
requires O(nlogn) time if t = I and O(tnlogn + nlognlogm) 
time if t > I, where n and m are respectively Ute number of 
faces and polyhedra in Ute scene, and t is Ute minimum 
number of horizontal cuts needed to decompose Ute scene. 
Finally, dynamization techniques are used to develop inser­
tion and deletion algorithms for the problem of dynamically 
maintaining a priority ordering. These algorithms, which 
depend on Ute tree-based formalism, require O(n) time. 

We now briefly describe Ute organization of this 
paper. In section two, the class of scenes to be considered is 
defined, and some basic properties of the objects comprising 
Ute scene are deduced. The tree-based formalism and 
simplification of Yao's results are presented in section Utree. 
In section four, the decomposition techniques are considered, 
and Ute resulting algoriUtm is presented. The algorithms for 
dynamically maintaining a priority ordering are developed in 
section five. Finally, the last section concludes the paper and 
suggests some directions for further research. 

2 DEFINITIONS AND TERMINOLOGY 

We present in this section Ute necessary definitions 
and terminology. As well. Ute class of scenes to be 
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considered is introduced and some properties of these scenes 
are presented. 

2.1 Basic definitions 

We represent a simple polygon P by a clockwise 
sequence of vertices, Vh V2, ••• , Vu where each vertex VI is 
described by its cartesian coordinates (Xj, YI). The sequence 
is assumed to be in standard form, i.e., the vertices are dis­
tinct and no three consecutive vertices, indices taken modulo 
n, are collinear. A pair of consecutive vertices, say Vio VI+h 

indices taken modulo n, termed the tail and head respec­
tively, define Ule i lll edge and is represented by ej. The 
sequence eh el, ... , e. of edges forms the boundary of a 
polygon P, is denoted by bnd(P}, and partitions the plane 
into two open regions: one bounded, termed the interior of 
P and denoted by int(P}, and the other unbounded, termed 
the exterior of P and denoted by ext(P). 

2.2 Defining the scene 

We define a scene, the class of input to be considered, 
as a collection S = (PX h PX 1, ••• , PX,.) of nonintersecting 
polyhedral cross·sections. A polyhedral cross-section PX is 
a polyhedron of restricted form that is enclosed by base· 
faces, simple polygons Plo = (V"h Vu, ... , v,,",,) and 

P, = (V,h v,z, ... , v'",) that lie in parallel planes Z = z" and 
z = z, respectively, and also by a collection 
F = (f h 11, ... , hJ of simple polygons, termed lateral· 
faces, that connect Plo and P,. The base-faces Plo and P, are 
named with tile convention z, > Z", and termed tile top and 
bottom base-face respectively. Given a three-dimensional 
object G, let its projection onto the x-y plane, termed the x-y 
projection, be denoted by G'. Plo and P, are restricted so 
that eiUler P; !::: p,' or p,' !::: P;. Alternate symbols for the 
base-faces are derived from the containment relation: if 
P; = p,', then the minor base-face, denoted by P,., is P" and 
the superior base-face, denoted by p .. is p", otherwise P,. 
is the properly contained base-face and P, is the other. If PI 
and P, are simple polygons, then for simplicity we shall 
denote inJ(PI) n inJ(P,) by r(PIo PI)' The placement of the 
polyhedral cross-sections is restricted so that given any pair 
PXIo PX, of S, if r(P,:, P,~} ~ 0 and Z"I < z", then 
Z'I S z",' i.e., if the x-y projections of PX1 and PX, intersec~ 
then Uley are separable by some z-plane. A polyhedral 
cross-section is composed of base-edges, those that form the 
base-faces, and lalera[.edges which together form the 
lateral-faces. Let ll, a binary operator on simple polygons, be 
defined so that PI II P, = PI - inJ(P,). A lateral-edge links 
a vertex of each of P'" and p .. is denoted by eJA, and is res­
tricted so U!at e; e P; II p:". Finally, we denote U!e com-

'" '" 
plexity of the scene, l:IP".1 + lP, I = l:n"l + n" by n. 

j~l' I 1~1 I 

A polyhedral cross-section PX, with lateral-faces 
F = (f 10 11, ... , /I) and base ' faces P, and P"" has several 
important properties with respect to U!e remainder of this 
paper. These properties are: (i) each lateral-face II is either 
a triangle or a conv~x <J,uadrilate~~; qi) for ,every pair {I,. fJ 
of lateral-faces, nIl, I,) = 0; (ill) F = (f) , 11, ... , /I} IS a 
non-overlapping decomposition of P: II P".. The proofs of 
the above properties, although easily derived, arc omitted. 
Some properties of the x-y projection of a polyhedral cross­
sections PX are highlighted in Fig. 1. 

237 

3 ELEMENTARY SCENES 

In this section we consider hidden-surface removal 
with respect to restricted scenes in which U!e set of top 
base-faces and U!e set of bottom base-faces each lie in a 
fixed z-plane, and each pair of base-faces is congruent Yao 
[Ya080] considered this class of scenes and obtained results 
on computing priority orderings. We introduce a tree-based 
formalism for describing priority orderings that improves 
algorithm in [yao80). While the worst-case complexity 
remains the same, a simplification of the algoriUun, eliminat­
ing the need for a second pass of U!e data, is obtained. We 
have recently learned that this simplification was indepen­
dently discovered by Ottmann and Widmayer [01183] within 
the context of line segment translation. We note however, 
that our method of proof, which relies on U!e tree-based for­
malism and on which another section of this paper depends, 
is of a completely different fiavor. 

3.1 PrelIminary considerations 

Consider a scene S = (PX 10 PX 2, ... , PX,.) of 
polyhedral cross-sections, restricted so that for each 
polyhedral cross-section PXio P;I = P,;, Z"I = z", and Z'j = z, 
where z" and z, are each a constant. Furthermore, lateral­
edges link the similar vertices of each base-face. We shall 
refer to each polyhedral cross-section PXI of such a scene, 
as a prism. Since P;j = P,;, we refer to each as Pj. 

To define a dominance relation between the faces of a 
scene, requires that a viewing model be chosen. We choose 
U!e parallel viewing model since it affords a simple analysis 
and is of practical importance in many applications. In U!e 
parallel model, refer to Fig. 2, parallel rays emanate from an 
observer at infinity and head towards the scene. The 
observer's view is U!en completely determined by the pair of 

-7t 7t 
angles (9, ~), 0 S 9 S 27t and T S ~ S 2' formed by U!e 

projections of a ray r onto the x-y and x-z planes respec­
tively. We shall defer, until section 4.2, the treatment of U!e 

special cases in which ~ = ~ or ~ = -;. We therefore 

-7t 7t 
assume that T < ~ < 2' 

Given an observer, each face whose outward normal 
vector has no component in the direction of U!e observer, is 
invisible. We call such invisible faces, backfaces, and 
describe the remaining potentially visible faces as visible. 
Having discarded the back-faces, displaying the remaining 
visible faces wiU! a valid priority ordering results in a 
correctly rendered scene. Since each of U!e visible base-faces 
has an equal and highest priority, solving the hidden-surface 
problem for a scene of prisms involves computing a valid 
priority ordering for U!e visible lateral-faces. 

Let F = (f .. I z, ... , I.) be U!e lateral-faces of S. 
Determining a priority ordering for the faces of F in the 
direction (9, cjI) is equivalent to determining, in two dimen­
sions, a valid priority ordering for the visible edges of 
F' = (f; ; I;, ... , I~) in the direction 9. As a matter of con­
venience, an edge of F' will be referred to by its correspond­
ing face in F . 

Consider a clockwise view-inJerval 0> = [Ph pz}, 
defined so U!at I 0> I is maximized with the condition that if 
II is visible for any angle 9 e 0>, then II is visible for all 
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angles 9 e co. Since a face" is visible over an interval of 
length n, the complete interval [0, 271:] is properly divided 
into at most n view-intervals, each of which contains O(n) 
faces in general. 

3.2 SImplIfyIng Yao's results with a tree structure 

Given a scene S and a view-interval co = [Ph pz] we 
can, without loss of generality, rotate the scene so that the 
view-interval can be expressed as co = [0, p] . Let F., a sub­
set of F, be the faces of the view-interval co. If for a view­
interval co, a face IJ must be assigned a higher priority than 
an face 110 we say that IJ dominates I1 and denote the rela­
tionship by IJ dom 1" Referring to Fig. 3, consider an edge 
" and define the region R, to include the two half-lines 
determining its boundary, but exclude the portion of I1 not 
lying on the half-lines. Suppose for view-interval co that 
IJ dom I" then IJ must intersect the region R" Of the two 
vertices determining a face I" the tail is denoted by 
v" = (x", YI,) and the head is denoted by V'I = (%'1' Y'I)' 
Suppose IJ dom 1" then either IJ intersects the half-line 
boundary of Ri containing V'i ' or it does not; these cases are 

denoted respectively by IJ leftdom I1 and fJ righldom". 

Theorem 1. For any view-interval co = [0, p] of a scene 
composed of prisms, there exists a priority ordering on the 
faces of F. [Yao80]. 

The proof relies on the fact that, of the faces of F. 
that are maximal with respect to leftdom, the one whose tail 
has the largest x-(;oordinate is not dominated by any other 
face. 

Consider a relation ileftdom, defined so that 
IJ ilefldom I1 if and only if IJ left-dominates I1 immedi­
ately from above. Suppose we add a face I mu that left­
dominates all other faces. The only face now maximal with 
respect to ileftdom is I IIWJ and so the relation ileftdom can 
be represented by a trec T rooted by 1-,. Let T be 
arranged so that the children of a node I, those immediately 
left-dominated by I, are ordered from left to right by the 
value of the x-coordinate of their tail. Suppose the sub trees 
of a tree T, ordered from left to right, are Tit T 1, ... , T,. 
Consider the following recursive definition of the post order 
traversal of T: list the nodes of Tit T 10 ... , T, in postorder 
all followed by the root of T. Thus, if the children of a node 
h, ordered from left to right, are h 10 hlo ... , h .. then in the 
postorder listing of T Ute nodes hit hl' ... , h .. h appear in 
the given order. 

Theorem 2. The postorder traversal of the tree T yields a 
priority ordering on F •. 

Proof. Let I be a face of F,., then referring to Fig. 4, let T, 
be the sub tree of T in which the faces occurring before I in 
a left to right postorder traversal of T. have been eliminated. 
Also, let L, be the left most path, from root to leaf. of T, 
and note that the leaf of L, is I. It is sufficient to show that 
given I and the faces of T - T" of the faces maximal with 
respect to leftdom, the tail of I has the largest x-coordinate. 
Referring to Fig. 5. consider the partition of the faces in F. 
induced by the ilefldom sequence represented by L,. A line 
is said to be monotone with respect to a direction 9. if when 
traversed, it yields a monotonically increasing projection 
onto a line in the direction 9. Denote the partitioning line 
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by Cl and note that Cl is either piecewise linear and mono­
tone with respect to the x-axis. or vertical. Also. by the 
definition of ileftdom no two partitioning lines may cross. 
Clearly then, given a face of T - TI • either its tail lies left 
of Cl or it is a descendant of I in T. Therefore, given I 
and Ute faces of T - TI • I is maximal with respect to left­
dom, and of Utose faces Utat are maximal wiUt respect to 
leftdom, the tail of I is rightmosl Q.E.D. 

Theorem 3. The postorder listing of the tree T can be 
optimally computed in O(nlogn) time. 

Proof. Suppose the faces are processed so that a face I and 
those faces immediately left-dominated by I. I It 110 .... fA, 
ordered by the x-(;oordinate of Uteir tail. are encountered in 
the order I, I It 110 .... I.. This enables the construction of 
a doubly-linked-list in which a face is inserted before the 
face Utat immediately left-dominates it, achieving Ute desired 
suborder of I It 110 .... t.. I. The problem is solved wiUt a 
plane sweep technique identical to that described in [Ya080]. 
Consider a vertical line I through V,. the tail of a face I, 
and its intersection with Ute elements of F.. The order of 
the intersections of the faces with I, as I is swept from left 
to right, can be maintained in a balanced tree in which a 
face I is inserted when its tail is processed. and deleted 
when its head is processed. The face that immediately left­
dominates I is found when I is inserted. Since the tails are 
encountered from left to right, a face I and I It 110 ... , fA, 
those faces immediately left-dominated by I, are encoun­
tered in the order I • I It I:z, .... t. as desired. The optimality 
of the algorithm follows simply since, as noted in [ya080], 
sorting is linear time transferable to the priority ordering 
problem. Q.E.D. . 

A scene is said to be k-regular if Ute number of view 
intervals is k. In general k = n, however, there exists scenes 
in which k < n. The k priority orderings, which are 
sufficient for all views, and the corresponding k lists can be 
calculated in O(knJogn) time. As well. O(n) display com­
mands are required to render an image. 

4 COMPLEX SCENES 

In this section we examine a more general class of 
scenes in which the placement of base-faces is not so rigidly 
confined. These scenes do not in general admit priority ord­
erings. To remedy this situation, various decomposition 
techniques are introduced. 

4.1 NonoverlappIng scenes 

Consider a scene S = (PX h PXz • ... , PX".) of 
polyhedral cross-sections and let F = (f It I:z, .... I ~) be the 
corresponding lateral-faces. Restrict S so that for any pair 
PX" PXJ of polyhedral cross-sections, [(P,i•• P,J,> = 0. 
Call each polyhedral cross-section of such a scene a column. 

Unlike in a scene composed of prisms, for a fixed 
viewing position (9, «1». the visible base-faces of a scene 
constructed from columns. do not necessarily have equal and 
highest priority. Referring to Fig. 6, it is simple to construct 
a scene of columns in which for any viewing position, there 
exists a base-face. lateral-face pair. of which neither can 
have a higher priority than the other. To remedy this situa­
tion. we will introduce a vertical decomposition of the scene 
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which easily adapts to the existing framework. 

It is of course desirable to render Ute problem 
independent of ell. WiUt Utis in mind. we adopt a strategy 
that computes a view-interval dependent total ordering of Ute 
faces in a scene. Given a viewing position. Ute back-faces 
can Uten be quickly eliminated. 

Suppose each minor base-face of S is triangulated. 
Euler showed Utat a planar graph on n vertices has O(n) 
edges and faces. Consequently. the decomposition of Ute 
minor base-faces yields O(n) Iriangular-Iaces and induces a 
vertical decomposition of S . Redefine F = if 10 120 ...• 1ft) to 
include boUt Ute lateral-faces and triangular-faces of S. As 
well. define '¥(F. r) to be Ute partial ordering of Ute faces 
of F induced by Uteir order of intersection wiUt a ray r. 

Lemma 1. Any priority ordering on Ute elemenis of F' for a 
fixed direction e. is valid on Ute faces of F for every direc­
tion (e. ell). 
Proof. Let r be any ray wiUt direction e in Ute x-y plane. 
Define R to be Ute family of rays for which for each ray 
s ER. s' = r. In order to establish Ute required result, it is 
sufficient to demonstrate Utat for any ray s ER. '¥(F. s) 
and ,¥(F'. r) are consistent Let I1 be any face of F. and s 
any ray of R . Since li is convex. s intersects I1 and r inter­
sects Is' at most once. Then. referring to Fig. 7. since for 
any pair 11. IJ of F. r(ls'. Ij) = 0. '¥(F. s) and '¥(F'. r) 
are consistent Q.E.D. 

In order to process a scene S. a suitable representa­
tion of each column of S is required. From such a represen­
tation. Ute base-faces and lateral-faces must be immediately 
available. As well. Ute representation must support fast 
insertion of Ute triangular-faces. To satisfy Utese conditions. 
a planar graph structure. such as Ute doubly-connected-edge­
list of Muller and Preparata [MuI78). can be used. 

Lemma 2. The set M = (P ... 
1
• P ... 

l 
• •••• P ...... ) of minor base­

faces can be triangulated in O(nJogn) time. 

Proof. Many algoriUtms (see for example [Cha83]) exist for 
triangulating a simple polygon in O(nJogn) time. Each minor 
base-face is a simple polygon. Since Utere are O(n) vertices 
determining the m minor base-faces. the m minor base-faces 
can be triangulated in O(nJogn) time. Q.E.D. 

Let P be a convex polygon. A line I is a line 01 sup­
pori of P if Ute interior of P lies completely to one side of 
I. A pair of vertices v" vJ of P is an anlipodal pair if it 
admits parallel lines of support Call Ute edge e determined 
by an antipodal pair. a shadow-edge. 

Lemma 3. When computing a priority ordering of F' for a 
fixed direction e. it suffices to replace each polygon by an 
appropriate shadow-edge. 

Proof. Referring to Fig. 8. consider Ute parallel lines of sup­
port of a polygon Is' of F' in Ute direction e. and let e 
denote Ute corresponding shadow-edge determined by Ute 
antipodal pair VJ' Vi. Since Is' is convex. e lies within is'. 
and. as remarked by Guibas and Yao [Gui80). Is' and e 
sweep Ute same area when translated in Ute direction e. 
Furthermore. for any pair of faces 11. IJ of F. 
rifs'. I j) = 0. and so el and eJ. Ute shadow-edges of I1 
and IJ wiUt respect to e. do not intersect However. el and 
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ej may overlap. Fortunately. this is not a problem since 
each face of F is either a triangle or a quadrilateral. and so 
in constant time Ute ordering of Is' and I j wiUt respect to e 
can be computed. Finally. since no edge and shadow-edge of 
F' intersect (overlap is handled as above). it suffices to 
replace each polygon of F' by its shadow-edge for Ute direc­
tion e. Q.E.D. 

Lemma 4. The polygons of F' have O(n) shadow-edges. 
each valid through some range of e. which can be computed 
in O(n) time. 

Prool. It can be shown [Pre8S] Utat, for a convex polygon 
P on n vertices. Ute O(n) antipodal pairs of of P can be 
computed in O(n) time. In addition, each antipodal pair 
defines a family of parallel lines of support through a clock­
wise angular-interval (l = [Oh oz) and its reflection 
(lr = [01+1t. Ol+1t]. Note Utat I (l I = I a,. I < 1t. The result 
then follows simply since each antipodal pair defines a 
shadow-edge. and also since the polygons of F' are deter­
mined by a total of O(n) vertices. Q.E.D. 

For a scene S. there are then O(n) edges and 
shadow-edges. Associated with each edge e are two nono­
verlapping intervals of lengUt 1t. reflecting the distinct sides 
of e. The visibility of each side of e will be associated with 
the corresponding interval. Likewise. the two angular­
intervals (l and (lr of a shadow-edge e. define the visibility 
of the two sides of e. Let E = (eh el • .... eft) be the edges 
and shadow-edges of F'. A view-interval Cl) = [Ph pz). is 
redefined so that I Cl) I is maximized with the condition that if 
ej is visible for any angle e E (1). then el is visible for all 
angles e E (1). The visibility of each edge el E E is defined 
wiUt respect to two equal but opposite intervals. As a result, 
each view-interval Cl) = [Ph pz) has a mirror image 
(1)r = [PI+1t. Pl+1t). Since e E Cl) if and only if 9+1t E (1) .. 

reversing tile priority ordering determined for Cl) yields a 
valid priority ordering for (1)r' Therefore. rather than consid­
ering the complete interval [0. 21t]. it is sufficient to deter­
mine priority orderings over the interval [0. 1t). Without loss 
of generality. S can be rotated so that a view-interval 
Cl) = [Ph pz) can be expressed as Cl) = [0. p). Clearly. the 
interval [0. 1t] is properly divided into O(n) view-intervals. 
each of which contains O(n) edges. 

Theorem 4. For any view-interval Cl) = [0. p] of a scene 
composed from columns. there exists a priority ordering on 
F' which can be optimally calculated in O(nJogn) time. 

Proof. The proof follows directly from lemmas 1-4 and 
theorem 3. Q.E.D. 

Given a k-regular scene composed of columns. the 
corresponding k priority orderings can be determined in 
O(knJogn) time. Since each non vertical face has a portion 
of a major base-face associated with it, the relative ordering 
of the pair must be considered in the case where neither is a 
back-face. Suppose this is the case. their relative ordering 
will then be arbitrary since otherwise a ray in the direction 
(e. ell) must intersect both. with the result that one must be a 
back-face. Finally. O(n) display commands are needed to 
render an image. 
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4.2 General scenes 

We now consider the most general class of scenes. 
Let S = (PX h PX 2, ... , PX".) be a scene of polyhedral 
cross-sections. The placement of the polyhedral cross­
sections is restricted so that given any pair PX" PXj , if 
[(P,: ' P ~) '" 0 and %b

l 
< %bj , then %'1 S %bj' Yao [Yao80] 

showed that for such a class, it is possible to construct 
scenes in which for any viewing position there exists a set of 
lateral-faces that determine a cycle. In order to avoid such a 
situation, we introduce a horizontal decomposition of the 
scene. 

First consider the cases in which ell = -; and ell = f· 
If the top base-faces are sorted and renamed so that 
%, S %, S ... S %" then assigning each face of a 
'2 ". 

polyhedral cross-section PXI the priority j, induces a priority 

ordering on the faces for ell = ~. A similar result holds fur 

-1t 
eII=T' 

Consider partitioning space into 1 + 1 horizontal slabs 
with a series of 1 z-planes % = %, < % = %1 < ... < % = zj. 
Suppose a scene S is decomposed by such a partitioning into 
1 + I subscenes so that within each subscene 
[(P,:, PI~) = 0 for any pair PXj , PXj of polyhedral cross-

sections. Any ray r in a fixed direction (9, ell) either passes 
through a single slab (ell = 0) or traverses the slabs in a fixed 
order. In the case where ell < 0, r passes through the slabs 
bottom-up intersecting the z-planes in the order 
% = %h % = %2, ... , % = %,. The ordering is simply reversed if 
ell > O. It therefore suffices to process and display the sub­
scenes independently. For each sub scene the priority order­
ings are computed as in section 4.1. 

Determining where to cut a scene is a major con­
sideration since it could adversely effect the complexity of 
the scene. Minimizing the complexity of the scene, i.e., 
minimizing the number of lateral-faces cut by U,e z-planes, 
is a difficult problem. Instead, we concentrate on minimizing 
the number of cuts. A scene S is said to be I-cUltable if 1 is 
the minimum number of z-planes required to decompose S 
so that within each subscene, no two x-y projections of supe­
rior base-faces intersect We now present an algorithm that 
decomposes a scene S as required. The algorithm determines 
at most 2t z-planes and so minimizes within a constant fac­
tor. 

The problem of deciding where to cut a scene is basi­
cally one of determining two-dimensional intersections. 
Given two polyhedral cross-sections PX, and PXj such that 
[(P,: ' P ~ ) '" 0 and %b

l 
< %b

j
, the scene must be cut with 

some z-plane % = %e, %'1 S %e S %bj' Suppose the scene is cut 

with a series of z-planes % = %, , % = %, , ... , % = %, • , 2 m 

Clearly, such a decomposition always appropriately cuts the 
scene, and so 1 S m. It is easy to realize scenes in which m 
cuts are necessary simply by stacking polyhedral cross­
sections one on top of another. Consider the x-y projection 
of a scene. In the worst case as many as 0(n2) intersections 
will exist between the x-y projections of the superior base­
faces, and so any algorithm that computes all the intersec­
tions will require O(~) time in the worst case. Since at 
most O(n) cuts are required to decompose a scene, it would 
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be advantageous to eliminate the excess from consideration. 
Consi~er a. pol)'hedral cross-section PXI and let 
11 = U I [(P,j , P,j ) '" 0 and %b

j 
< %b

j
}. Also, let 

mini = min(%b
j
), i Ell ' Clearly, cutting the scene with the 

z-plane z = %e, %'j S %e S mini, eliminates the intersections 
above, and in part due to, PXI • 

The key to the quickness of our algorithm will lie in 
its ability to locate the intersections between polyhedral 
cross-sections in close proximity. The algorithm uses a 
divide-and-conquer scheme. During the divide phase, the 
scene is decomposed with a set of at most 2t z-planes. This 
is followed by the conquer phase which then selects 0(1) of 
the z-planes. At the heart of the algorithm is intersection 
testing. By decomposing the superior base-faces as 
described in section 4.2, we are able to make use of the 
intersection detection algorithm of Shamos and Hoey 
[Sha76]. Given a set of n triangles and quadrilaterals, their 
algorithm can detect whether any pair of objects intersect in 
O(nJogn) time. Using this algorithm, a O-cuttable scene 
could be quickly detected. 

Theorem S. For any scene S that is t-cuttable, a set of at 
most 2t z-planes that properly decompose S, can be com­
puted in O(nlognlogm) time. 

Proof For each polyhedral cross-section PXj , let tj and bj 

denote %b
j 

and %'1 respectively, and let DI denote the set of 

components of the decomposition of P't' Sort the tj' sand 

bl ' s separately, and rename the polyhedral cross-sections so 
that t, S t2 S ... S t".. Merge the sorted sequences of tt's 
and bj ' s using the convention that if tj = bj , then in the ord­
ering tj comes before bj • Call the resultant sequence Q 
and append to it, as its bottommost symbol, the dummy 
symbol to. Now each intersection can be characterized as 
follows: suppose j < i, then tl S bj and r(Dh Dj) '" 0. To 
complete the divide phase, consider the triple 
GI = (Qj, Bit TI). QI is tile subsequence of Q above tl _1t 
up \0 and including tl . B j and Tit which denote the bottom 
and top search boundaries within Gj , are respectively set 
equal to the first and last symbols of QI. Note that by the 
definition of a scene, each GI initially defines a slab within 
which there are no intersections. 

At each level of the conquer phase adjacent pairs of 
Gj • s are merged, and any intersection between the pair is 
detected. If any intersection is detected, then a cut splitting 
the pair is introduced and any intersections straddling the cut 
are eliminated. Let r denote the number of GI ' s at the 

current level of the conquer phase, thus initially r = m. At 

each level, for all odd j, 1 S j S r, let i = j + 1 . If i + 1 S r 
. 2 

then GI and G j +1 are merged into Gj , otherwise GI is simply 
renamed Gj • After each level, r is updated as follows: if r 
. dd r+l th' r 
150 r = -2-' 0 erwlSe r = 2' 

It at each level the intersections between the merged 
pairs are detected and eliminated, then clearly the resulting 
set of cuts will appropriately decompose S. Once an inter­
section has been detected, and a cut made, it would be 
senseless to search for intersections straddling the cut To 
prevent this from happening, when GI and GI +I are merged, 
only intersections between BI and TI+l will be considered. 

Graphics Interface 'SS 



Note that frorii- B, 10 the topmost symbol of QIo and from 
the bottommost symbol of Q'+I to T,+1t there are no intersec­
tions. Suppose G, and G

'
+1 are about to be merged. then any 

intersection between the pair can be characterized as follows: 
if j < k then 'I e Q,. IJ ~ Bit bl; e Q,+1t bl; ~ T

'
+1t and 

[(DJ. DI;) "" 0. Let V, = {j I IJ e S,} and let 
W, = {j I bJ e S,}. then detecting an intersection involves 
determining for any pair DJ. DI;. j e V, and Je e W,+1t 
whether [(DJ. DI;) "" 0. For this purpose. we use the algo­
rithm of Shamos and Hoey. If an intersection is detected. 
then cutting at IJ. the topmost symbol of Qi. eliminates all 
intersections between G, and G,+1• What remains is to 
merge G, and G

'
+1 into GJ• There are two cases to consider 

depending on whether or not an intersection is detected. In 
both cases QJ is determined by concatenating Q, and Q'+I. 
Referring to Fig. 9. if an intersection is detected then 
TJ = T, and BJ = B'+I. Note that if BI; < TI; then QI; has not 
been cut. Referring to Fig. 10. consider the case in which an 
intersection is not detected. If B, < T, then TJ = T'+1t other­
wise TI = T,• On the other hand. if B'+I < T'+I then 
BJ = Bit otherwise DJ = B'+I. 

Let us consider the complexity of the algorithm. In 
the divide phase the running time is dominated by the sort-

ing. and so O(mlogm) time is required. Since at each level 

of the conquer phase l; J merges occur. there are O(logm) 

levels. At each level the intersection detection computations 
dominate the running time. Since the sum of the number of 
components of the D, ' s is O(n). and since each component is 
considered at most twice. once for each of " and bit the 
total time time spent detecting intersections at each level is 
O(nlogn). Therefore. the running time of the algorithm is 
O(nlognlogm). -

What remains to be shown is that at most 2t cuts are 
made. Referring to Fig. 11. suppose that while merging G, 
and G,+1t an intersection is detected. Let j and Je. j < Je. 
denote the intersection pair. then IJ e Q, and bl; e Q'+I. 
Also. let C denote the topmost symbol of Q, . Clearly. the 
line segment 1 = (IJ. bl;) must be cut Choosing c achieves 
this and ensures all intersections straddling c are eliminated. 
it does not however guarantee minimality. Let d denote the 
number of cuts made. It is possible that an intersection will 
be detected between G, and what is below G,• and between 
G

'
+1 and what is above G,+1• Still referring to Fig. 11. let 16 

and I, denote the line segments that would need to be cut 
Clearly. 1 and 16• and, I and I, may overlap. however. 16 and 
I, will not Thus. if we consider the sequence of d cuts in 
bottom-to-top order. then of the corresponding d segments. 

every second segment is nonoQverlapping. Hence at least 

: r ~ 1 cuts are required and so at most 2t cuts have been 

'made. Q.E.D. 

Cutting 8 polyhedral cross-section PX is simple since 
each of the resultant objects has the same structure as PX. In 
order to determine which polyhedral cross-sections are cut, 
sort the cuts and denote the resulting list by 
C = (Ch C2 • •••• c,). Next, merge Q and C. ordering " 
before cJ if " = Cl. Now. scan the resultant list, inserting 
PX, into an active list when bi is encountered. and deleting 
it when " is encountered. Further. when c, is encountered. 

241 

output it and the active list. Therefore. the scene can be cut 
in O(ln+tlog/) time. Let us say a scene is k.regular if the 
maximum number of view-intervals in any slab. is k. In 
total. O(lnlogn) time is required to determine the O(kn) 
view-intervals. The corresponding priority orderings can be 
computed in O(lknlogn) time. Finally. O(In) display com­
mands are required to render an image. 

5 DYNAMIC PRIORITY ORDERINGS 

In this section we present a dynamization technique 
that solves the problem of dynamically maintaining a priority 
ordering. Consider a set F of faces (edges). a view-interval 
0). and let FI» = if It 12 • ••.• I,,) denote the faces of co. As 
usual. we assume the view-interval 0) = [Ph P2] has been 
rotated so that 0) = [0. p]. Suppose we add an extra face 
I mu. which left-dominates all other faces. including any that 
will be inserted. As shown in section 3.2. the ileftdom rela­
tion can be represented by a tree T that is rooted by I mu. 

and the postorder traversal of T yields a priority ordering on 
FI». Maintaining a correct priority ordering through a series 
of insertions and deletions will amount to updating T in 
order to reflect the changes in the Uelldom relation. 

5.1 A search technique 

In order to represent a tree T. an appropriate data 
structure is required. For our purposes the leftmost-child. 
right-sibling representation [Ah083] is adequate. Suppose we 
wish to construct T directly rather than consider the con­
struction as a series of insertions. This can be done. in 
O(nlogn) time. using the algorithm proposed in theorem 3. 
provided we store for each face its last child detected. 

When a face is inserted or deleted it is necessary to 
reconfigure T in order to reflect the changes in the ileftcWm 
relation. To do this quickly. T must be systematically 
traversed so that any changes in the ileftdom relation can be 
reported in some orderly manner. Suppose the sub trees of 
T. ordered from left to right, are Tit T 2. • ••• T,. Consider 
the following recursive definition of the left to right prepos­
torder traversal of T: list the root of T. followed by the 
prepostorder listings of Tit T 2 ••••• T" all followed by the 
root of T. Each node of T then is visited twice. once before 
its descendants, and once after. 

Let I, be a face of F .. and let L, denote the path in T 
from the root to f,. As described in section 3.2. L, induces a 
partition of the faces in FI». As well. C,. the line representing 
the partition. which we shall call a chain. is either piecewise 
linear and monotone with I?pect to the x-axis. or vertical. 
Referring to Fig. 12. let C, denote the chain which results 
when f, and C, are combined. Clearly. C; is also monotone 
with respect to the x-axis. Suppose we wish to determine 
which face of F", immediately left-dominates some face I 
with tail V,. To solve the problem we modify the prepos­
torder traversal so that at every step it is determined whether 
a particular interval of a face lies directly above V, . Let I 
be any face of F"" and let Ip and I I. 12t ...• 11; respectively 
denote. provided they exist, the parent and children of I . 
Referring to Fig. 13. we now modify the prepostorder traver­
sal of T as follows: when I is first encountered. consider 
the interval of Ip left of V,; during the second encounter. 
consider the interval of I right of V'I;. The two special cases 

must also be examined: if I = I maxt then no interval is 
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considered during the first encounter; if I is a leaf, then all 
of I is considered during Ute second encounter. To sum­
marize, Ute interval(s) of I left of V'i are examined when 

I to 12, ... , li are first encountered, and the remainder of I 
is examined when I is encountered for the second time. 

Lemma 5. The first face discovered during Ute modified 
prepostorder traversal of T Utat lies directly above V" 

immediately left-dominates I. 
Proof. Clearly, all portions of all faces are considered and 
so some solution will be found. Suppose Ute algorithm 
stopped when I, was encountered, however the correct solu­
tion lu was not reported. Referring to Fig. 14, Ute algo­
riUtm will have reported eiUter 1/, Ute parent of I/o or I, 
itself, depending on wheUter it was Ute first or second 
encounter of I,. If fJ was reported, then v, .. lies left of C" 

o Uterwise, v, lies left of C;. Whichever Ute case may be, .. 
denote Ute chain by C. Now, C and C .. do not cross, and, 
each is monotone wiUt respect to the x-axis. Therefore, C" 
lies left of C and so the appropriate interval of I .. will 
already have been considered. We thus have a contradiction. 
Q.E.D. 

5.2 The Insertion problem 

Consider the following problem: given a tree T 
representing the ileftdom relation on a set 
Fm = (f h 12, ... , I .. ) of faces, insert a new face I into Fm 
and update T in order to reflect the changes in Ute ileftdom 
relation. To realize the changes, we must determine Ute face 
Ip that immediately left-dominates I, and the faces 
I to 12, ... , Ii, ordered from left to right, immediately left­
dominated by I . 

As proved in lemma 5, the modified prepostorder 
traversal of T will compute Ip. As well, the traversal exam­
ines the intervals of Ip from left to right, and so the position 
of I amongst the children of Ip can easily be determined. 

All that remains then is to calculate I h 12, ... , h, 
preferably in their natural order. Suppose the sub trees of a 
tree T, ordered from left to right, are T h T 2, ... , T,. Con­
sidcr lhe following recursive definition of the left to right 
preorder Iraversal of T: list the root of T followed by the 
preorder listings of T h T 2, ... , T,. Thus, if the children of a 
node h, ordered from left to right, are h h h 1, ... , h, Uten in: 
the preorder listing of T the nodes h, h to hz, ... , h, appear 
in the given order. Referring to Fig. 15, determining which 
faces are immediately left-dominated by I is equivalent to 
determining which of Ute relevant vertical sections of the 
chains are cut by I. Let I be any face of F .. and let Ip be 
lhe face lhat immediately left-dominates I. Suppose we 
modify lhe preorder traversal of T so tllat when I is 
encountered we determine if the vertical interval of C 
between v, and Ip is cut by I. For the special case in which 
I = I .... , no interval is examined. 

Lemma 6. The faces I h 12, ... , Ii, Utose immediately left­
dominated by I, are discovered in order during the modified 
prepostorder traversal of T. 

Proof. Clearly, all the relevant vertical intervals are con­
sidered, and so I to I z, ... , Ii will be found. We need to 
show then that if x" < Xli' then I1 is found before 1/. Since 
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I does not intersect any faces of F"" and also since each 
chain is monotone with respect to the x-axis, I may inter­
sect a given chain at most once. Referring to Fig. 16, 
x,, < x,/ and so I cuts C, left of C/ with Ute result Utat I, 
will have been considered before fJ. Q.E.D. 

Theorem 6. The priority ordering on the faces of F .. can be 
maintained at a cost of O(n) time per insertion. 

Proof. The cost of updating T is dominated by the time 
required to execute the modified prepostorder and preorder 
traversals on T, each of which requires O(n) time. Since 
determining the resulting priority ordering amounts to com­
puting the postorder traversal of T, the priority ordering can 
be maintained at a cost of O(n) time per insertion. Q.E.D. 

5.3 The deletion problem 

Consider Ute following problem: given a tree T, 
representing the ileftdom relation on a set 
Fm = (f h 11, ... , I .. ) of faces, delete a face I from Fm and 
update T in order to reflect the changes in ileftdom relation. 
Suppose the faces immediately left-dominated by I, ordered 
from left to right, are I h 12, ... , b. To update T requires 
that we determine for each I" 1 S j S t, I pI the face which 

immediately left-dominates I, when I is deleted. 

Note that Ute sub trees rooted by I to 12, ... , b will 
remain intact, and thus need not be considered in the search 
for Ipl , Ip2, ... ,Ipi' Given I/o 1 S i S k , we know, from 

lemma 5, that the modified prepostorder traversal of T can 
be used to determine Ipl" Suppose that in the traversal Ip; 
would be found before lp/ if x" < XII' Then a single traver­

sal is sufficient to compute Ipl, Ip1, ... , Ipi . 

Lemma 7. The faces Ip1,lp1, ... ,Ipi, those immediately 

left-dominated by I hI 10 ... , li, are found in order during 
the modified prepostorder traversal of T. 

Proof. We need to show that lp, is found before lp/ if 

x, < x,, Extend a vertical half line upwards from each of , / 
x, and x,, denoting lhem by Ij and 1/ respectively. Since , / 
each chain is monotone wilh respect to the x-axis, each of Ij 
and 1/ may cross a given chain at most once. Clearly, if 
CP, ~ CPI' then since I, lies left of 1/, lp, will have been 

considered before Ipl' OUterwise, referring to Fig. 17, since 

no pair of chains can cross, and also since I, lies left of 1/, 
CPI lies left of Cp/ and so the same result holds. Q.E.D. 

During the traversal, the intervals of I pi , 1 S j S k, 
are considered in order from left to right, and so the position 
of I, amongst Ute children of Ip;, can be easily determined. 

Theorem 7. The priority ordering on the faces of Fm can be 
maintained at a cost of O(n) time per deletion. 

Proof. The cost of updating T is dominated by the time 
required to execute, at a · cost of O(n) time, the modified 
prepostorder traversal on T. Since determining the resulting 
priority ordering demands only a postorder traversal of T, 
the priority ordering can be maintained at a cost of O(n) 
time per deletion. Q.E.D. 
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6 CONCLUSION AND DISCUSSION 

Several new results pertaining to the priority approach 
to hidden-surface removal have been presented. In particular, 
a tree-based formalism for describing priority orderings has 
been introduced and used to simplify an existing algorithm 
[Ya080]. As well, decomposition techniques have been con­
sidered for a variety of classes of scenes in order to elim­
inate the possibility of cyclic constraints. The resulting algo­
rithm requires O(nlogn) time if t = 1 and O(tnlogn + 
nlognlogm) time if t > 1. Note that with only minor 
modifications, the algorithm presented could be adapted to 
include the degeneration of a minor base-face to an edge or 
a vertex. Finally, O(n) time insertion and deletion algo­
rithms, which rely on the tree-based formalism, have been 
developed to solve the problem of maintaining a priority ord­
ering in a dynamic environment. 

There are several interesting and related research 
problems that remain unsolved. We have considered decom­
posing a scene in order to avoid potential problem areas. A 
better approach would eliminate only actual cyclic con­
straints. Another consideration when decomposing, is minim­
izing the number of faces cut as opposed to simply minimiz­
ing the number of cuts. Lastly, of interest is whether other 
dynamization techniques could be used to obtain sublinear 
algorithms for the insertion and deletion problems. 
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