
34

A System for Conducting Experiments

Concerning

Human Factors in Interactive Graphics

L. R . Bartram, K. S. Booth, W. B . Cowan , J . D . Morrison , and P . P . Tanner

Computer Graphics Laboratory
University of Waterloo

Waterloo , Ontario, Canada N2L 3G1
519/888-4534

Abstract

This paper describes a system for designing , running ,
and analyzing experiments in cognitive psychology .
The software tools for this are divided into two sets,
those that run on a mainframe to support the design
and analysis functions and those that run on a
dedicated multiprocessor workstation to run the
experiments. This division is dictated by a
fundamental dichotomy between the need for a rich
environment for the design phase and the need for
responsiveness in the running phase of the
experiments. The motivation for this work is a desire
to understand the parameters of human real-time
performance in the context of personal computing.
The experiments examine temporal, spatial , and
chromatic aspects of interactive graphics in
workstation environments. The paper provides an
overall framework within which these issues are being
studied and suggests a methodology for conducting the
studies based on the richness vs. responsiveness
dichotomy.

1. Introduction

The world is not taking full advantage of the
computing power it has , and more is coming. In
considering the utility of an interactive graphics system
two general features stand out: the desirability of a
rich set of powerful tools to handle as wide as possible
a range of computational tasks , and the desirability for
an environment that can be molded to the perceptual
and motor characteristics of the individual user. These
issues are particularly interesting in environments in
which a single user is closely coupled to a single
machine (a personal workstation) since this is the
computing environment in which adapting the
computer to the human is most likely , in which the
greatest increase in effective computer power is
possible , and in which the greatest increase in
computer usage is occurring. Additional
computational power can be used to make an
environment more rich and powerful , as has generally
been the case with multi-user systems , or to make it
more responsive and adaptable, as has generally been
the case with real-time systems. But a fundamental
opposition seems to make the two qualities difficult to

improve simultaneously . This duality of interactive
computing leads to the issues dealt with in this paper.

To answer the many questions that present
themselves, it is necessary to perform experiments that
determine how people use computers as tools. Our
own experience doing experiments shows that the very
problems we are trying to investigate plague the
experimental process - we want to use computers to
assist in the design , running , and analysis of
experiments, but we don 't have a set of tools that are
powerful enough and responsive enough to do the job .
We have chosen to divide the problem into two parts,
and to attack each part separately. Our experiments
run on stand-alone workstations based on a
multiprocessor operating system kernel for real-time
control where we can provide the level of
responsiveness we need. The design and analysis of
the experiments is accomplished using a rich set of
tools running in a mainframe Unix environment where
we have a solid base on which to build .

Software for both parts of the experimentation
process has been designed and implemented. It is
being used to conduct cognition and perception
experiments related to our studies of human factors in
interactive graphics. Each set of tools has its own
requirements and its own approach. The two are
related by a common goal , but the philosophy (perhaps
"religion" is more accurate) of each is unique . The
mainframe-based tools support the design, testing , and
analysis of experiments ; their emphasis is on richness
and robustness of function. The workstation-based
tools support the actual running of experiments; their
emphasis is on responsiveness and, equally important
to our needs , reliability of responsiveness .

We are still refining the two sets of tools. Our
experience so far convinces us that this approach to
the problem extends to many other problems for which
computers are, or could be , used . In particular , the
specific lessons that we are learning from building our
experiments are easily generalized to a wide range of

This work is supported by the Natural Sciences and
Engineering Research Council of Canada under Grant
#G1579 .

Graphics Interface '88

personal workstation applications where the need for a
rich and powerful set of tools must be accompanied by
a close coupling between the user and the computer to
achieve the symbiosis of which everyone dreams when
they acquire a personal computer.

The next section sets the stage for the rest of the
paper by laying out the dichotomy that we see between
richness of function and reliability of responsiveness in
computer systems. Section 3 discusses the problems
that are encountered in designing , running, and
analyzing human factors experiments and the very
different requirements of the design phase and the
running phase of an experiment. Section 4 describes a
collection of tools that has been developed to solve
these problems and the different techniques employed
in the two phases . Section 5 summarizes the main
contributions of the research and poses questions for
future study. An example of the use of the tools to
design and run an experiment concerned with the use
of color in interactive graphics applications is
presented as an appendix.

2. The Richness vs. Responsiveness Dichotomy

In terms of price and physical size, personal computers
have remained constant (to an order of magnitude)
throughout their short history . But in terms of any
computational measure (MIPS, RAM capacity, disk
capacity , etc.) they continue to expand at an amazing
rate . What is the purpose of all of this computational
power? Surely the answer must be: "to make the
personal computer more personal". More precisely , to
make it a better complement to its human user.

We consider a computing environment to be rich
when there are many actions available to a user at any
one moment. Unix , for example, is richer than
MS-DOS. A full window environment, such as
provided by the X Window System or NeWS, is richer
than either. An environment lacking in richness will
be called poor. Rich environments tend to be very
powerful , but also very demanding of the user. Thus,
the more experience a user gains , the more richness he
desires in his environment. Put another way, the more
personal a computer becomes , the richer its user will
want it to be.

Rich systems tend to have several characteristics
in common .

• Multi-layered: each new feature extends existing
features and uses the earlier features as a
building block.

• Large: the simultaneous presence of many
features and the building block approach imply a
lack of economy in resource utilization.

• Cluttered: a collection of background tasks
provides system support programs that frequently
run in parallel with user-invoked programs .

All of these characteristics tend to make rich
environments slower and less predictable than poor
ones . By contrast, responsive environments are those
in which the interface between the human and the
computer is tailored to human perception and

35

cognition . Three characteristics are typically
mentioned as being important.

• Time: the environment must offer interaction at a
rate suitable to human ability to manage the
information density provided by the system.

• Space: the environment must provide
information over a large enough region of space
and with a high enough density to be optimally
manageable by the human visual system.

• Color: the environment must provide the right
color at the right place and the right time.

Non-visual characteristics, auditory and tactile,
are also important, as is the coordination of the
various modalities. Appropriate temporal, spatial , and
chromatic relationships between incoming and
outgoing information are essential features of a
responsive system. Because predictability and
precision are at the heart of responsive systems, such
systems tend to be small, with few features and few
things happening at one time.

Our definition of responsiveness differs markedly
from traditional definitions , which are often concerned
exclusively with response time, most usually defined in
absolute terms rather than in human terms. Thus , an
operating system like RT-ll measures responsiveness
in terms that are important for real-time events such as
data collection from satellites or process control
monitoring, but has little direct support for the type of
programs that run on a personal computer.

The contradiction between the requirements of
richness and responsiveness creates something like a
cycle of reincarnation. Systems increase in richness to
the point where their responsiveness becomes
unsatisfactory. At that point , improvements in
responsiveness are undertaken , even at the cost of
decreasing richness, to the point where richness can
again begin to increase. Precisely this phenomena was
observed in the design of graphics display processors ,
the precursors of today's personal computers [8].

We are interested in defining the levels of
performance at which the temporal , spatial, and
chromatic properties of computational environments
are satisfactory for human users . Our primary
research interest is in studying responsiveness . To
accomplish this we are conducting specific
experiments, with the help of cognitive psychologists ,
to determine the parameters of real-time human
performance. Our work has included investigations in
the spatial domain [3], the chromatic domain [9,11],
and interaction techniques for specifying curves [4].
We have in fact been forced to face the question of the
trade-offs between richness and responsibility head-on
in our design of the support system for our
experiments. The dilemma we encountered can be
seen in the following two descriptions of our efforts .

The part of the system in which the design of an
experiment occurs needs richness: graphical design
tools for manipulating multi-task models of
experiments, high-level real-time multi-task debugging,
real-time simulation tools, on-line monitoring of

Graphics Interface '88

experimentation, proofs that timing constraints can be
met, and so on. The experiment designers need these
elaborate tools to ensure that the design meets the
most exacting standards of experimental methodology ;
the designer can forego the luxury of perfect
responsiveness (although reluctantly) .

An almost disjoint part of the system, which
runs only when the experiments are being conducted ,
is required to have a high enough level of
responsiveness such that no artifacts are perceptible to
the subject. In contrast to the designer's tools , the
subject's view of a psychology experiment is very
impoverished; the choice of possible interactions is
deliberately limited by the experimenter. Here the
trade-off is made the other way. Richness is readily
sacrificed for responsiveness .

We have found that there is an advantage in
splitting richness and responsivity apart into different
aspects of our system where they can be dealt with in
isolation . A pleasant benefit of this decision is the
recursive feedback loop it provides . The system is
used for interactively designing experiments ; the
results of the experiments help us to set standards for
responsiveness in interactive systems; the knowledge
gained can be applied to the design phase of the
system to improve its responsiveness as a rich set of
tools.

3. The Experiment Designer's Desiderata

When considering experiment specification, we can
look at two more or less separate views . The view that
the experimental subject sees is simpler to describe , so
we will treat it first, leaving until later the view that
the experiment designer sees .

The system as seen by the experimental subject
has two logical components: screens and input devices .
Screens present images, which have temporal , spatial,
and chromatic properties created by the experimental
designer. Ideally a workstation will neither add nor
subtract perceivable information from the images it
presents . This criterion places rather stringent
performance requirements on the screens and screen
drivers, which are inherently digital devices presenting
analog information . The next three examples discuss
representative parameter limits for different aspects of
screen design.

In the temporal domain , the visual system can
detect modulation up to 70 Hz under optimal
circumstances. Thus, a refresh rate of at least 70 Hz is
needed to present artifact-free stationary stimuli.
Some commercial displays are beginning to meet this
specification (the Macintosh uses a refresh rate of 67
Hz) . For temporally modulated or moving stimuli , a
refresh rate twice 70 Hz is needed [5]. Open questions
remain: "to what extent can temporal antialiasing
mask otherwise visible artifacts?" and "why don 't
people complain when watching motion on broadcast
television or at the movies?"

Spatially there exist two limits: a normal acuity
limit at about 1 minute of visual angle and a ventier

36

acuity limit at about 6 seconds of visual angle. Screen
size should cover at least 30° to 60° for any viewing
experiments and pixels should be small enough to
produce line widths and position uncertainties below
what is visible , so that aliasing artifacts do not change
the image appearance. To put this in terms of current
displays, a 1000x 1000 screen with pixel size adjusted
to the normal acuity limit subtends 16° of visual angle,
a little below the minimum viewing angle. But a
1000x 1000 screen with pixel size adjusted to the
vernier acuity limit subtends only 1.6° of visual angle ,
more than a factor of ten below the minimum
acceptable viewing angle [12) .

Techniques such as antialiasing lower the screen
resolution needed to faithfully reproduce a given
image, but work to date testing these techniques in a
rigorously controlled visual environment [3] has only
scratched the surface. There remain difficult
experimental questions , such as "for what purposes is
the color of an antialiased letter 'the same' as the color
of a equal-sized letter presented non-antialiased on a
higher resolution display?" that must be examined.

In the chromatic domain , the size of visible
artifacts depends on the rate of variation of color on
the screen . When color is varying rapidly (near the
limit of spatial acuity) artifacts over 10% can be
invisible. But when color is varying very slowly ,
artifacts of as little as 0.1 % are near the threshold of
visibility . Measurements done by Kelly [7] provide a
rough framework in which the trade-offs can be
evaluated , but these need to be extended. Methods
for calculating other trade-offs between color
quantization and dynamic range appear in the
literature [5]. There has been, to our knowledge, no
attempt to take advantage of this trade-off in screen
design, either in hardware or software .

On the input side , spatial factors seem to be
better-understood. Using natural non-linearity in
mouse motion to remove hand tremor and to speed up
large movements , for example, has adequate
engineering solutions, although there is not a
satisfactory motor theory to explain why these methods
work. Timing is more difficult. Many informal
reports make it clear that there is a value of lag
between the input and the screen update at which the
user switches from an " adjusting the screen" metaphor
to an "adjusting something that adjusts the screen"
metaphor, with a large drop in performance.
Experimental data providing sound values for this
parameter are not available. However , it is possible to
put an upper limit on performance: there is no need to
update internal values faster than the refresh rate of
the screen (although temporal antialiasing may create
a logical refresh rate that is above the physical refresh
rate).

To see what tools the experiment designer needs
to create a software configuration that meets the
constraints , consider the logical structure of an
experiment implemented on a workstation. The
software complement of the experiment is a collection
of tasks that can be combined in different ways to

Graphics Interface '88

produce a variety of experiments or interactions . The
designer should present an experiment specification,
which is a program in an interpreted experiment control
language. Software on the workstation should
interpret the specification , dynamically configuring and
reconfiguring tasks to produce the experiment. The
metaphor used by the experimental designer is that of
a collection of servants that , when given the
appropriate orders, carry out the many atomic tasks
that comprise the experiment. Thus the experimental
designer requires three types of functionality :
specification creation aids , experiment monitoring
aids , and specification debugging aids .

Specification Creation Aids

Our model of an experimental session is that the
configuration at any given moment depends on
session-dependent information that remains constant
throughout the session and on trial dependent
information that varies from trial to trial within a
session . We expect the experimental designer to
create session and trial prototypes , then to specify sets
of values for variable parameters in the prototypes
allowing a specification file containing appropriate
combinations of the values . The designer must be able
to arrange the atomic tasks so that all the components
of the experimental session obey whatever timing
constraints he wishes to impose. We envision a
graphical interface where the geometric arrangement
of the tasks on the screen indicates the dependence
and communication relations that define the
experiment and which , upon completion of the
interactive session , will be translated into an
experiment specification file .

Other requirements for experiment creation are
tied closely to attributes of the experimental run-time
environment. For example, the experiment designer
should be able to run a sample trial of the current
configuration. Part of this capability should be
running the trial at a variety of slowed down rates ,
using "canned" inputs, or allowing the designer to
contribute inputs the subject would have to make
during the running experiment. To connect tasks
together for communication purposes we need to have
a good definition of possible message semantics
between the tasks , and the more parsimonious the
semantics the better, because the ideal is to be able to
connect any task to any other task . It must be
possible to insert timing probes and controls into the
atomic tasks with minimal alteration of their structure.

Specification Monitoring Aids

It is not sufficient to monitor an experiment simply by
watching its progress and checking for artifacts or
anomalies. The designer must either employ proof
of-correctness techniques to show that the experiment
specification will produce results within the desired
range of parameter values , or the designer must
monitor each running of the specification to give .a
retrospective range of parameter values for each run .

The first is more desirable, but less likely to be
feasible in actual cases. The second can be included as

37

a "built-in feature" working from requirements given
by the experiment designer to produce automatically a
record of the values of parameters and an alert if they
ever fail to fall in the allowable range of values. At
best this serves as an operational proof of correctness
when the experiment specification is run on a well
selected set of conditions and adjusted not to fail.
When failures do occur , it serves as a back-up,
allowing us to discard the small number of trials or
sessions where the range of parameter values is not
maintained. At worst it functions to indicate only
what trials to discard . But if the discarded proportion
of trials is too high, the experiment must be
abandoned , because the monitoring process gives no
method for altering the specification.

Specification Debugging Aids

Inevitably , there will be many cases where a
configuration created by an experimental designer fails
to produce the trial he desired . He then needs a
debugging tool that allows him to visualize the
operation of the trial at a high level and associate parts
of the specification with corresponding parts of the
trial. Detecting syntactic errors such as when a
message output is connected to an incompatible
message input should be part of the interactive
configuration controller. Semantic errors , in contrast ,
come in so many flavors that a single tool is unlikely
to provide a complete debugging capability. At one
extreme , errors in configuration logic can be
illuminated by showing activity in the atomic tasks and
in their communication channels simultaneously with
the interpreted trial.

At the other extreme, failures to meet timing
constraints require the ability to run the trial
simulating full speed with the trial monitor engaged .
The debugger should then be able to isolate the
synchronization actions associated with the violation of
a particular constraint , and should be able to perform
something like a critical path analysis to isolate the
parts of the communication flow that cause the
constraint violation .

Between these two solvable extremes lies the
type of case which is likely to be most common: where
the experimental designer simply omits one or more
constraints that are necessary for the trials to meet his
requirements . How should the configuring program
be set up to demand enough constraints to completely
disambiguate the specification? How should the
configuring program communicate its default behaviors
to the experimental designer? To what extent can a
debugger suggest plausible constraints to the
experimental designer? All these questions, and many
more like them , lead straight to the heart of difficult
and fundamental problems in human-computer
in teraction .

4. The Waterloo Experiment Manager

The Waterloo Experiment Manager implements many
of the ideas expressed in the Desiderata . It is
composed of two distinct processing systems , the

Graphics Interface '88

experiment design environment and the experiment
control/er. The experiment design environment is the
rich environment for specifying and analyzing
experiments concerning human factors in interactive
graphics. The experiment controller is the responsive
environment in which the experiments can be run
without fear of compromise by the introduction of
perceptible artifacts in the temporal, spatial, or
chromatic domains.

The Experiment Design Environment

The current implementation of the experiment design
environment is a production program capable of
making up experiment specifications given a set of
pre-programmed tasks configured on the experiment
controller. It works at the level of direct manipulation
of an experiment specification file, so its capabilities are
primitive compared to those espoused in the
Desiderata. Nonetheless, it is versatile enough to have
seen daily use for about two years at the National
Research Council of Canada generating specification
files for sequential experiments in a single process
operating system .

The experiment design environment uses
prototypes of the session parameter and trial
parameter parts of the specification file . Values for
parameters in the prototypes can be taken from
archive-style dictionaries or can be introduced
interactively . They can be selected randomly from the
dictionaries , with or without replacement, or can be
used exhaustively to create crossed designs . Trials can
be separated into blocks and randomized within
blocks . At this level of routine experiment
management we are continuing to improve the tool:
adding partially balanced incomplete block designs ,
incomplete designs like Latin squares , constrained
randomization, and so on . These capabilities must be
built into the lower levels of any tool that will create
specifica tion files.

In the context of this tool , we are considering
how to incorporate syntactic cross-checking between
the prototypes on which the specification program is
based and the input modules of the atomic tasks that
comprise the experiment. Use of this information will
remove the chief source of error in the current version
of the experiment design environment.

The Experiment Controller

The experiment controller runs the experiment defined
by the experiment specification file. All information
presented to the subject by way of the graphics
displays or other output devices and all input from the
subject through the interactive devices are handled by
the controller. Comprised of several M68000 series
processors, the experiment controller is based on the
Harmony multiprocessor multitasking operating system
[6] . The use of a real-time operating system has
contributed to the design of the system in two ways ,
ensuring responsive behavior and providing a
multitasking metaphor on which the building block
approach to experiment design is based [1 ,2] .

38

A real-time, multitasking, multiprocessing
system ensures responsive behavior in several ways.
Time critical operations are performed by high-priority
tasks without fear of the operating system stealing time
for its own use. Processing may be distributed over
several processors to avoid conflict between these
priority tasks. Access to peripheral devices is direct,
requiring little or no operating system intervention that
would slow down the process .

The multitasking approach used in Harmony
(and other related systems) is based on the idea of
building systems using a large number of small tasks
with specific duties . Using inexpensive synchronous
message passing through send-receive-reply primitives
for inter-task communication and rapid task creation
and destruction operations , systems are quickly and
easily configurable and reconfigurable.

The experiment controller tasks fall into two
categories, daemon tasks and generic tasks. Daemons
are the building blocks from which experiments are
constructed . For example , the color matching
experiment described in the appendix requires a
daemon that creates a window on the screen , one that
gets input from the graphics tablet , and one that uses
the locator input to control the color displayed in a
window. These daemons may be connected to a data
logging daemon so that events noted by the color
changing daemon are stored for post-experiment
analysis.

Generic tasks are automatically created for each
experiment. Two examples are the experiment runner ,
which performs the initial processing of the experiment
specification file , and the connection administrator or
patch panel , which supervises the communication
between daemons .

The Experiment Specification File

The experiment specification file controls the
experiment. Passed from the design environment to
the experiment runner , the file is composed of blocks,
each of which contains a series of commands. These
commands refer to the daemons that exist in the
experiment controller. Each daemon is a task for
which compiled code has been down-loaded prior to
the experiment.

The first block in the experiment specification
file is a daemon block. It specifies the daemons that
will be required for the experiment. This is the tool
by which the experiment designer specifies the
configuration of the experiment. If a daemon is
required to exist more that once, for example a filter
that is needed in two communication paths within the
experiment , that daemon may be requested more than
once and multiple instances of it will be created .

Following the daemon block is a session block
and a sequence of trial blocks. The format of these
two types of blocks is the same . Each contains a
sequence of commands to be executed during the
experiment. The session block is performed once at
the start of the session , followed by each of the trial
blocks in turn.

Graphics Interface 'SS

The commands in the session and trial blocks are
in a textual format. For example, the command

Image_poster (cmd = RECTANGLE, scr_name = Sl,

wind_name = Wind_a, ll_x = 150, ll_y = 400,
ur_x = 350, ur_y = 600, color a 1, red = 350,

green = 850, blue = 593)

is forwarded to the daemon Image_poster and tells it
to create a rectangle on screen one (the system may
have several frame buffers controlling several displays)
in a specified window. It also gives the lower left and
upper right coordinates of the rectangle, and the color
look-up-table entry to use.

The experiment runner sends the commands to
the daemons in the form of a reply to their requests.
In this way, the runner remains unblocked, and can
forward commands to several daemons so that they
will be active simultaneously. However, there must be
some technique for synchronization - some way to
hold back operations until an event (temporal, input,
or other) occurs. The synchronization tool is the
Wai t for statement of the experiment specification
file. These are interpreted by the experiment runner
and are the only mechanism by which it can be
blocked. Each of these statements contains a Boolean
expression of daemon names, which causes the
experiment runner to wait until those daemons have
processed their commands and have sent requests for
more work. For example,

Wait for (Clock or Termination)

causes the experiment runner to stop processing the
experiment definition file until either the Clock
daemon (which will not return for more work until a
specified amount of time has elapsed) or the
Termination daemon (which returns only when certain
conditions occur that indicate the end of a trial) sends
a message to the experiment runner.

The case illustrated above, in which there is a
Boolean "or" function in the Wait for statement,
illustrates a potential problem with the daemon
approach. At the end of the trial, one or several
daemons may be waiting for a condition that may not
occur for some time, if ever. Having not finished,
they cannot be forwarded the command for the next
trial. The experiment runner handles this situation by
simply destroying the lost daemons and creating
replacements. Thus the controller provides a
mechanism where any task in the system may be
removed and replaced - either as a reset for the next
trial, or after a timeout condition. This contributes to
the configurability of the system and permits the
addition of timing controls without any change to the
operations that are being timed .

Daemons may be general, in that they are used
in a number of experiments, or specific, being written
for a single experiment then thrown away. Our aim is
to write configurable daemons so that few new
daemons will have to be programmed for any specific
experiment. The method by which a daemon is
informed of its configuration parameters is through the
daemon commands that follow the daemon block.

39

Session parameters will be sent to the daemon at the
beginning of the session , trial parameters will be sent
at the beginning of each trial.

Inter-Task Communication

An experiment is defined not only by the activities
that take place in each trial, as embodied in the trial
daemons, but also by the interaction between those
activities. A trial can be seen as consisting of one or
more information pipelines. Input from the subject
passes through the pipeline undergoing various
transformations to eventually be reflected in the
desired output form(s). These transformations are
effected by the daemons that are the components of
the experiment, implemented as Harmony tasks.

The interaction between the various trial
daemons can be viewed as a system of relationships
between tasks that produce information and tasks that
consume information . A task can be both a consumer
and a producer of information. Every active daemon
is connected to at least one other task in the
experiment. The producer-consumer model of the
system's behavior comes naturally from the need to
provide the designer with a simple conceptual model of
the available environment, one that is configurable and
extensible.

Understanding the behavior of the system in
terms of these communication channels encourages the
building block approach. Daemons can be assembled
into an information pipeline in a variety of ways . This
discourages the traditional tendency (often imposed by
a programmer-designed system) to divide tasks into
input and output "camps", wherein a task is seen as
either interpreting information obtained from an input
device or transforming information destined for an
output device. Input in the producer-consumer model
is received from a producer , whether a device , another
trial daemon, or a system task . It is forwarded to the
specified consumer, without any restrictions being
placed on the source or destination.

We emphasize that the producer-consumer
model describes the experiment system in terms of
organization rather than in terms of the characteristics
of the particular trial daemons. This cleanly separates
the concept of a daemon's functionality - what it does
with the information it receives (i.e., take in a 16-bit
integer and use it to transform an entry in a color
lookup table) - from the concept of its dependencies
within the overall system (whence it receives its input
and to where it directs its output) . This makes the
writing of future tools, whether trial daemons or
system tasks , very simple ; the programmer need only
be concerned about the particular message semantics .

The Patch Panel

A major goal of the project is to provide the designer
flexibility in organizing the tools at his disposal.
Flexibility is supported by a system task, the patch
panel , which is based on the model of the system as a
collection of producer and consumer tasks [1]. With
roots in the switchboard model used in the Adagio
system [l0], the patch panel provides a means of

Graphics Interface '88

dynamically connecting the output channel of a
producer to the input channel of a consumer, much as
a physical patch panel is used in electronics to permit
easy routing of signals from one module to another.
In the Harmony system model, a communication
channel between two tasks can be considered a system
resource , and the patch panel a connection manager
responsible for allocating and administering those
resources.

In keeping with the design of the experiment
controller , the patch panel is created by the
experiment runner and is passed a list of producer
consumer connection requests. Each connection request
is accompanied by certain parameters specifying the
details of that information flow. The patch panel sets
up the connections and retains the information
relevant to each.

While the patch panel reflects the overall
information flow organization of a particular
experiment, it contains no semantics related to
particular tasks, nor to the information passing
between tasks. All syntactic and semantic checking of
messages between producer and consumer is left to the
tasks themselves ; the patch panel only knows about the
routing and buffering details of the communication
channels that carry messages.

Isolating the implementation and administration
of the connections in the patch panel abstraction is
advantageous for several reasons. It facilitates the
specification of information flow ; the designer merely
sets a list of producer-consumer connections and the
parameters of each connection . This again supports
the building block approach , wherein tasks can be
combined in a variety of ways , with these
combinations constrained only by compatibility in the
type of information exchanged between producer and
consumer.

Localizing the responsibility for implementing
connections within the patch panel provides a useful
metaphor of the system for the designer, one that is
both conceptually simple and yet powerful enough to
describe the experiment's organization.

The patch panel enables a many-to-many
mapping between producers and consumers. A task
can receive input from an arbitrary set of producers
and produce output for an arbitrary set of consumers .
This is essential when the designer wants a task to take
its input from more than one device or have more than
one task driven from the same device.

5. Conclusions

We have implemented an architecture for conducting
experiments concerning human factors of interactive
graphics consisting of host-based design tools using a
conventional Unix or Unix-like mainframe and an
embedded microprocessor-based workstation . The
division of labor between the two subsystems is
determined by the requirements for a rich design
environment and a responsive run-time environment.

40

The current implementation includes a relatively
complete set of tasks in the experiment controller and
a very general protocol for communicating the
experimental design to the experiment controller. The
distinction between generic and specific tasks in the
experiment controller is an important one. By
requiring each daemon task to accept configuration
parameters , the experiment controller becomes an
extensible tool that needs relatively little modification
when new experiments are designed.

A version of the experiment design environment
is operational. Extension to a much richer set of tools
is in progress. The experiment specification files
currently used are a combination of some generated
automatically from higher-level specifications and
some generated manually . Subsequent versions of the
experiment design environment will provide
significantly more automation at a much higher level
in the design process.

The methodology advocated here applies to more
than just experiments in cognitive psychology . We
believe that the same approach can be applied to the
design and implementation of a wide variety of
interactive graphics systems , including bank teller
machines. transaction processing terminals, and
engineering workstation . These all provide interactive
computing to a user. As we move along the
continuum , the task domain becomes more
complicated , the facilities offered become richer, the
user population for a particular machine becomes
smaller , and the length of interaction with a single user
becomes longer. But the concepts developed in this
paper apply to the whole continuum and the lessons
learned about the experimental designer's task are
relevant to all of the systems.

References

[1] L. R. Bartram , and P. P. Tanner , " Configurable
Multitasking : The Building Block Approach to
Interactive System Design ," Submitted to IEEE
Software, (January 1989) .

[2] K. S. Booth , W . B. Cowan and D. R . Forsey ,
"Multitasking Support in a Graphics
Workstation ," Proc. 1st International Conference
on Computer Workstatiol1s , (November, 1985) pp.
82-89 .

[3] K. S. Booth , M . P. Bryden , W. B. Cowan, M.
F . Morgan and B. L. Plante, "On the
Parameters of Human Visual Performance, An
Investigation of the Benefits of Antialiasing,"
Proceedings of CHl+ GI 1987, (April , 1987) pp .
13-19.

[4] E. G . Bosch , R . H. Bartels , K . S. Booth and P.
Jolicoeur , " Workstation-Based Shape Matching
Experiments ," 2nd IEEE Conference on Computer
Workstations , (March , 1988) pp. 132-14l.

[5] W. B. Cowan , " Discreteness Artifacts in Raster
Display Systems ," C% Llr Vision: Psychophysics
alld Physiology, pp. 145-154, Academic Press:
London , 1983.

Graphics Interface 'SS

[6) W. M. Gentleman, "Using the Harmony
Operating System," Tech. report NRCC-ERB-966
Division of Electrical Engineering, National
Research Council of Canada, December, 1983.

[7) D. H . Kelly , "Visual Responses to Time
Dependent Stimuli 1. Amplitude Sensitivity
Measurements ," Journal of the Optical Society of
America, vol 51, pp. 422-429 , 1961.

[8) T. H. Myer and 1. E . Sutherland, "On the
Design of Display Processors, " Communications
of ACM, volll(6), pp. 410-414, June 1968.

[9) M . W. Schwartz, W. B. Cowan and J. C. Beatty ,
"An Experimental Comparison of RGB, YIQ,
LAB, HSV and Opponent Color Models ," ACM
Transactions on Graphics , vol 6(2) , pp. 123-158,
April 1987.

[10) P. P. Tanner , S. A. MacKay, D. A. Stewart ,
and M. Wein , "A Multitasking Switchboard
Approach to User Interface Management," Proc .
SIGGRAPH'86 (Dallas, Texas, August 18-22 ,
1986) Computer Graphics, vol 20(4) pp. 241-248.

[11) c. Ware and J . C. Beatty , "Using Colour to
Display Structures in Multidimensional Discrete
Data ," Color Research and Application 11 (June ,
1986) pp. S11-S14.

[12) G. Westheimer and S. P. McKee, "Visual
Acuity in the Presence of Retinal Image
Motion ," Journal of the Optical Society of
America , vol 65, pp. 847-850 , 1975.

Appendix

A Color-Matching Experiment

To illustrate the activities of the experiment
controller, we can look at a simplified experiment
specification file and the resulting activities of the
tasks within the experiment controller. The
experiment specification file on the next two pages
controls a color matching experiment [9). In the
experiment, two rectangles are placed on the screen
for each trial, one with a target color , the other with a
manipulable color . The subject is required to use a
graphics tablet to control the color of the manipulable
rectangle until it matches , as well as possible , the
target color.

The daemon block of commands in the file
specifies the seven tasks that must be created for the
experiment. These are standard tasks that can be used
for a variety of experiments investigating the
interactive manipulation of color.

The session block sets up the experiment,
initializing the screen, claiming screen real estate for
the experiment , initializing the clock and the tablet ,
and initializing two color-changing daemons (instances
of the same task) . These two daemons will take input
from the tablet and change the color of the
manipulable color according to the input.

41

Two trial blocks are shown. A full experiment
usually has many trials in a session . In each trial, the
two rectangles are drawn simultaneously . A clock
daemon is set up to report back in 40 seconds, and a
termination condition daemon will report back when a
tablet button is pushed to indicate subject satisfaction
with the color match. This provides a time-out
mechanism to abort a trial if the subject takes too long
to perform a match. The trial will end when the first
of these events occurs.

Figure 1 indicates the flow of the commands
through the experiment runner to the daemons.
Daemons receive commands both during the session
initialization (indicated with solid lines) and during
each trial. Figure 2 shows the flow of information
from information-producing daemons to information
consuming daemons during the actual trial.

An Experiment Specification File: The Daemon and
Session Blocks

f* Specify required daemons for session *f
daemons
{

}

Clock
Color_changerl
Color_changer2
Image_poster
Screen_manager
Tablet
Termination

(dtype=CLOCK);
(dtype=COLOR_CHAllGER);
(dtype=COLOR_CHANGER);
(dtype=IMAGE_POSTER);
(dtype=SCREEN_MANAGER);
(dtype=TABLET);
(dtype=TERMI NATION);;

f* Session initialization instructions *f
session
{

Screen_manager(cmd = I NIT_SCREEN, board_num = 1,
scr_name = Sl);

Screen_manager(cmd = NEW_WIND , scr_name = Sl, ILx = 0 ,
ll_y = 0, ur_x = 1000 , ur_y = 1000,
wind_name = Wind_a);

Wait for Screen_manager ; ;

Clock(cmd = I N IT_CLOCK);
Wait for Clock ;;

Tablet(cmd = IN IT_TABLET , tab_name = Tab_output);
Tablet(cmd = START_TABLET) ;

f* Don't wait for tablet ; START_TABLET is an infinite
* loop

}

*f

Colocchangerl(cmd=CO NNECT , scr_name=Sl , color=2,
input=Tab_output , axis = X, gun = Red) ;

Color_changer2(cmd=CONNECT, scr_name=Sl, color=2 ,
input=Tab_output, axis = Y, gun = Blue);;

Graphics Interface '88

Experiment Specification File: The Trial Blocks

trial
{

/ *
* Draw t wo squares of different colors, and allow the
* user to change the amounts of red and blue in one of
* them Make sure they both have the same amount of green
* so a perfect match is possible .

}

Image_poster(cmd = RECTANGLE , scr_name = Sl,
wind_name = Wind_a, ll_x = 150, ll_y = 400,
ur_x = 350, ur_y = 600, color 1, red = 350,
green = B50 , blue = 593);

Image_poster (cmd = RECTANGLE , scr_name = Sl,
wind_name = Wind_a, ll_x = 650, ll_y = 400,
ur_x = B50 , ur_y = 600 , color = 2, red = 0 ,
green = B50, blue = 0);

/* Use the clock to get a timeout of 40 seconds */

Clock(cmd DELAY , millisec = 40000);
Termination(cmd = AIIY_BUTTO N_ CHA HGE, tab_name=Tab_out) ;

Wait for(Clock or Termination) ..

/* Trial is over ; clear screen */

Screen_manager(cmd = CLEAR_SCREEN, scr_name Sl) ;;

trial
{

}

Image_poster(cmd = RECTA II GLE, scr_name = Sl ,
wind_name = Wind_a , ll_x = 150, ll_y = 400,
ur_x = 350, ur_y = 600, calor 1 , red = 900 ,
green = B50 , blue = 200) ;

Image_poster(cmd = RECTANGLE , scr_name = Sl,
wind_name = Wind_a, ll _x = 650 , ll_y = 400,
ur_x = B50 , ur_y = 600, color 2, red = 0,
green = B50 , blue = 0) ;

Clock(cmd = DELAY , millisec = 40000);
Termination(cmd = AIlY_BUTTQ N_ CHAIl GE , tab_name=Tab_out);

Wait for(Clock or Termination) "

/* Trial is over ; clear screen */

Screen_manager(c md = CLEAR_SCREEIl , scr_name Sl) ;;

42

------.. Session Inhlallzatlon ----l...... Trial communication

~ System (generic) task

CJ Daemon

Figure 1. The flow of daemon commands at initialization .

Inter-task messages

Figure 2. The producer-consumer relationship
among daemons .

Graphics Interface 'SS

