
43

SQUISH: A GRAPHICAL SHELL FOR UNlXt

Tyson R. Henry
Scott E. Hudson

Department of Computer Science,
University of Arizona,
Tucson, Arizona 85721

ABSTRACT

Because of its power and flexibility, the UNIX operat­
ing system has become an almost standard tool for computer
science. research. However, the UNIX user interface has
been criticized as being cryptic, hard to leam, and hanl to
use, particularly for novice users This paper presents a graph­
ical shell interface for UNIX that preserves the power and
flexibility of UNIX, while improving its ease of use.

KEYWORDS: Graphical User Interface, UIMS, Direct
Manipulation, Declarative Programming

1. Introduction

Because of its power and flexibility, the UNIX operat­
ing system has become an almost standard tool for computer
science research. However, the UNIX user interface has
been criticized as being cryptic, hanl to leam, and hard to use
[7], particularly for novice users (a study of the UNIX user
interface can be found in [2]). This paper presents a graphi­
cal shell interface for UNIX that improves its ease of use,
while preserving its power and flexibility.

The Squish system (a Simple Quick User Interface
SHell) is a graphical shell for UNIX. UNIX commands ' are
represented by graphical interfaces instead of cryptic names.
These interfaces graphically present all the options and
required arguments to the command. They allow command
instantiation to be performed in a direct manipulation
[5,10,11] manner. The Squish system also allows com­
mands to be composed into more poweJ;ful commands by
forming pipelines (a pipeline is a series of commands in
which the output of one command is used as the input of
another).

There are hundreds of UNIX commands. Creating
graphical user interfaces for all UNIX commands would be
very difficult. By providing a simple but flexible method for
specifying user interfaces, the Squish system provides access
to arbitrary subsets of UNIX commands--preferably the most
common and most difficult commands. Graphical interfaces
for commands are specified in the Squish specification
language.

tUNIX is • tndemark of AT &T Bell Laboratories. This work was supported by the
National Science Foundation \DIder grant 00-8702784.

In the Squish framework, commands--presented in plain
English--are displayed in a menu. Each command has a
corresponding Squish interface. In a typical Squish inter­
face, most, if not all, options and arguments are also clearly
presented in plain English. Options are selected by using a
pointing device to directly manipulating simulated buttons
and other graphical interaction objects. pushing simulated
buttons. Consequently, the user need not recall all the dif­
ferent command names and all of their options.

This represents an improvement for both the novice and
t~e expert users. The novice does not need to learn the cryp­
nc command names and the equally cryptic option names of
the most commonly used commands. The expert, on the
other hand, can use the Squish framework for seldornly used
commands--the ones he or she never seems to remember.

Clearly an expert user would become frustrated by the
restriction of using only a subset of commands and as the
novice becomes more familiar with UNIX, they will also find
the subset restrictive. Unlike some graphical shells (for
example [6]), the Squish system alleviates this problem by
allowing access to the complete set of UNIX commands.
While graphical interface to new commands can always be
added, Squish provides a textual interface in addition to the
graphical one. The UNIX command created from the graphi­
c~ interf~ce is displayed in an editable window. This pro­
VIdes a bndge between the two interfaces allowing the expert
user to quickly check the validity of the command while
allowing the novice to learn the textual command.

In order to provide an interface specification language
powerful enough to describe any UNIX command, yet easy
enough to be practical, new UIMS techniques have been
developed. In particular, the system makes extensive use of
derived data. The graphical presentation of the interface is
~ontrolled by a set of equations that state how graphical
unages can be derived from the internal data values or state
of various interaction objects. While the Squish specification
language has been developed to enable a graphical shell for
UNIX, the concepts developed here can clearly be applied to
a more gelleral UIMS.

2. The Squish User Interface

Typical shell commands in a UNIX system consist of a
series of individual commands. These commands are con­
nected by pipes so that the output from one command
becomes the input for the next command. Such a sequence
of commands is called a pipeline. The primary purpose of
the Squish system is to create p\pelines. Rather than use tex-

Graphics Interface '88

DJ lE] DJ
DJ [jjJ ICiI
<none> -me -ms

Figure 1. Simple Button Interface

tual syntax for pipelines, the Squish system uses graphical
syntax. Components of a pipeline are placed in windows
from left to right. Each such window implements the inter­
face to the options and arguments of a single command or
tool.

. This secti~n uses examples to introduce the concepts
behInd the SquIsh system. These examples illustrate how the
interface to a single command can be constructed. The next
section presents the composition of individual commands
into pipelines.

An individual Squish interface consists of a series of
interaction objects in a window. These objects are currently
declared with a simple textual specification language. Future
versions of the system will use a graphical specification tech­
?ique. Figure 1 ~hows three views of a very simple Squish
Interface. It conSIsts of two mutually exclusive buttons and a
text item. Figure 2 shows the textual specification for this
interface.

In the Sq~ish ~ystem, all interaction objects are typed.
A system supplied lIbrary defines the set of interaction object
types. O?ject types definitions can be added to the library
(see . sect~on 4 fo: a detailed description). This sample
specIficatlon contaInS three objects -- two objects of type
button ~d one object. of type textbox. The implementation
of an object t~ proVIdes the basic behavior of an object It
defines the .basIc appearance of the object and the way it
responds to Input events. However, most of the details of the
appe~ce ~d behavior of the object can be customized by
defimng attributes of the object.

~n at~bute is simply a value attached to the object.
CertaIn attnbutes have specific predefined meanings and are
used by the object type to implement the behavior of the
ob~ect. For ex.ample, the attributes x and y (attached to each
object shown In Figure 2) control the placement of the object
on the sc~een. Others attributes, such as options.macro_str,
~ay be I~trcx:tuc.ed by the user as needed. Attributes may
eIther be intrinsiC or derived. An intrinsic attribute simply
stores a value and is declared with an initial value such as:

x:= 10;

A derived attribute, on the other hand, is computed in terms
of ?th~r attribu.te values using a defining expression or
derivatIOn rule (Introduced with a "=" instead of a ":="). For
example, the mS_button.y attribute in Figure 2 is defined in
terms of the me_button.y and me button.h attributes
(representing the y position and the height of the me button
object, respectively). This is done using the derivatio';-rule:

y = me_button.y + me_button.h + 5;.
This rule states that whenever either of the attributes
involved change, the value of mS_button.y will also change,

44

button me_button
x := 10;
y := 10 ;

result = if (highlighted) then "-me" else '''';
action := { ms_button. highlighted := O; };

end me_button ;

button ms_button
x = me_button.x;
y = me_button.y + me_button.h + 5;
result = if (highlighted) then "-ms" else .";
action := (me_bullon.highlighted := 0;);

end mS_button;

textbox options
x = mS_button.x ;
y = mS_button.y + mS_button.h + 5;
macro_str = strcat(me_button.result, ms_button.result) ;
string = if macro_str = - then "<none>" else macro_str;

end options;

Figure 2. Specification for Simple Button Example

and the graphical image presented to the user will be updated
accordingly. This automatic update of the graphical image is
the key to the power and flexibility of the Squish system.

Each object type provides a set of predefined attributes
that have special meaning for the type. All types contain the
following attributes:

x x position of the object.
y y position of the object.
h height of the object.
w width of the object.
visible controls whether object appears on screen

or is invisible.
enabled controls whether object accepts or ignores

input events.
highlighted controls appearance of the object in a type

specific way.
result provides the result string for the object

(see section 3).

In addition, other predefined attributes may be associ­
ated with particular object types. For example the action
attribute is predefined for the button type. This attribute pro­
vides a sequence of statements to be executed when the but­
ton is pressed. In addition, the button type provides an addi­
tional series of attributes that control the button's image
when it is in the four different states indicated by the enabled
and highlighted attributes. Note that these attributes all have
appropriate default values and normally are not explicitly
specified by the interface designer.

A more careful examination of Figure 2 reveals how
derived data is used to implement most of the interface' s
functionality. Note that options.string is defined indirectly
in terms of the result attribute of the two buttons. These
attributes are in turn derived from the highlighted attribute.
Finally, the value of highlighted is controlled by the object
type implementation on the basis of user actions. This
allows the interface to respond automatically to the three
possible states of the interface as shown in Figure 1. The
derivation rules given have established a direct connection
between user actions and the graphical appearance and

Graphics Interface '88

45

ID Input File: ./data

ID Output File: ./resul is

[jJ Compression OFF

o Input File: ./data

III mm GU
diredories.c

I!I dispatch. c ~
dispatch.h ~
dispatch.o
example .sq
example2.sq
example3.sq
figl.sq
fig3.sq

-

ID Output File: ./resul ts -I
101 Compression ON

Figure 3. Example of Dynamic Presentation

behavior of various objects. Since the expressions used for
derivation rules are programmable, it is possible to create
quite arbitrary connections between user actions and the
resulting graphical feedback. For example, in this program
the string "<none>" is displayed when neither button is
selected. A similar derivation rule might be attached to the
enabled or visible attribute of another object to provide more
sophisticated context dependent feedback. Rules allow lexi­
cal, syntactic, and semantic feedback to be handled in a sin­
gle framework.

It is also important to note that Squish specifications are
primarily declarative in nature. A set of equations are
declared to hold true. The system is responsible for
reevaluating attributes and updating graphics automatically
to respond to any and all changes. This makes specifications
much easier to write than a typical imperative specification.
For example, Figure 3 shows two views of the interface
whose specification is given in Figure 4.

The above example introduces a more complicated
object type, a file-picker. This type allows the user to select
a file by pointing at its name. An object of this type has two
different appearances, open or closed. In the open state, it
displays alternatives files from the currently selected direc­
tory, and allows the user to navigate through the hierarchical
file system. In the closed state the object only displays the
pathname of the selected file.

Because a declarative specification is used, it is easy to
make the presentation of this interface adapt automatically.
In this example, each object is positioned in terms of the
objects above it. The below and left_of operators are simple
shorthand for the obvious expressions involving y and h or x
and w attributes. This specification arranges for all other
objects to change their position ' automatically whenever
either of the file-picker objects changes size (i.e., changes
from closed to open) -- no explicit graphical update com-

mands are needed. In addition, no case analysis is needed to
handle all of the possible configuration of the system. This is
particularly important since the number of configurations
grows exponentially . with the number of objects. If all the
possible configurations had to be explicitly considered, it
would be very difficult to build and maintain interfaces that
modified their layout in a flexible, dynamic manner. With a
declarative specification in the above form, al! configurations

file...,picker in_filename
x := 10;
y := 10;
prompt := "Input File :";

end filename;

file...,picker ouUilename
x = in_filename.x;
y = below in_filename by 5;
prompt := "Output File :";

end filename;

button cmp_btn
x = ouCfilename.x;
y = below ouUilename by 5;

end compress;

textbox compress_lab
x = left_of cmp_btn by 5;
y = cmp_btn.y;
string = if cmp_btn.highlighted

end compress_lab;

then "Compression ON"
else "Compression OFF";

Figure 4. Specification for Figure 3

Graphics Interface '88

button A
result = if (highlighted) then "Button A" else "";

endA;

textbox A_label
string := "Button A";

end A_label;

button B ... end B;

textbox B_label ... end B_label;

button C ... end C;

textbox C_label .. . end C_label;

box all_buttons
x := 20 ;
y := 20;
rows := 3;
cols:= 2;
children A, A_label, B, B_label, C, C_label;

end alLbuttons;

Figure 5. An Example Grouping Object

can be handled automatically.

In addition to shorthand notations such as the above,
below, righCof, and left_of operators, the Squish system
allows other shortcuts for common operations. The most
important is the existence of objects types for managing the
placement of other objects. For example, the type box
arranges for any group of objects to be laid out in a rectangu­
lar array. Figure 5, shows a specification using a box object.
The way this object type works is to supply derivation rules
for the x and y attributes of the objects declared to be its
children. These derivation rules are established so as to
place the objects in rows and columns Since this placement
is done with derivation rules instead of constant values, it is
dynamic rather than static. That is, whenever a child object
changes size all sibling objects adjust their position automati­
cally to maintain the row and column structure. Using this
same mechanism, a number of different object types can be
created for composing objects in a hierarchical manner.
Since arbitrary derivation rules may be used, the relation­
ships between sibling objects can be quite complex.

3. The Graphical UNIX Shell

The last section illustrated how to specify graphical
interfaces using the Squish specification language. The Squ­
ish system provides a framework for combining these indivi­
dual graphical interfaces, each representing a UNIX com­
mand, into pipelines. Each interface is built from the instan­
tiation of a group of Squish objects. The textual specification
of an interface is kept in a single source file. Following
UNIX convention, these files are called a scripts.

Currently, the user selects commands to be placed in the
pipeline from a menu of commands. Frequently used com­
mands are placed at the highest level of the menu. Future
versions will replace this textual menu with a set of icons
that can be dragged in placed (similar to the Macintosh
Desktop). When a command is added to the pipeline, its

46

Squish interface is displayed. The interfaces for each com­
mand· in the pipeline are laid out on the screen from left to
right in the same order as the commands in the pipeline.

Figure 6 shows the Squish pipeline framework. This
sample pipeline consists of five commands that work
together to format a document. The input file is specified by
the firs~ tool. The file is then piped to the bib bibliography
formattIng tool. The output from bib is then sent to a tool
for performing keyword substitutions, then to a formatting
tool, and finally to a printer selection tool. The user interacts
with the interface for each tool separately choosing the '
correct options and arguments in order to build the complete
pipeline.

Every Squish script contains a special object for speci­
fying its window. The height and width attributes of this
window object control the height and width of the window
for the individual interface. The height and width of the
entire Squish framework is derived from the heights and
widths of all the individual windows.

Each interface window builds a result string (the attri­
bute result from the window) that corresponds to its current
configuration of options and arguments. The result strings
from all the interfaces are combined using a pipe character
(the attribute pipe_char from the window, usually "I" or ";").
This string represents the complete pipeline. In Figure 6, this
string appears after the "Do It" button. Since this string is an
attribute, it can be derived in an arbitrary way from other
attributes using an arbitrary derivation rule. Displaying this
string forms a bridge between the graphical and the textual
representations. It allows the expert user to quickly verify
the command while it provides the novice user a good means
to learn UNIX commands.

The bottom window in Figure 6 is an instantiation of
the UNIX shell. When the "Do It" button is pressed, the
command string is sent to this window as if it had been typed
in by the user. The results from executing the pipe are
displayed in the shell window. Commands can be executed
in the background by selecting the "In Background" button.
The "Control Scrolling" button pipes the output into the
UNIX more utility to prevent the output from scrolling by
before the user can read it.

Using an explicit shell window allows the user to type
in commands at will. This allows very simple commands
(e.g. Is or cd) to be typed directly, and allows error messages
and other feedback to be placed in context. In addition, it
allows the user to use commands not included in the subset
of commands built into Squish. The ability to type com­
mands at will also allows pipelines to contain interactive
commands. For example, a command might include an invo­
cation of an editor to prepare a file--the editor would run
within the shell window.

When the Squish system starts up, it reads the file
.Squishrc in the user's home directory. This file contains a set
of tuples relating Squish scripts to labels. The labels for each
of these scripts will be placed in the first level menu. Other
scripts are found in standard locations specified by a searc'h
path similar to the normal shell search path.

Graphics Interface '88

......
U.
bibap.
i.ono
loarn ...
pape"
persoul

IIIIIIII
Em U»e tfImh

I ._

rn Ccr.paet Bl ank Une.

[] V •• r •• tIl

DJ Coopoct JIoaoo •

El u .. Cap. for ~\ltbon

E:iI U .. Cap. for Id1ton

[] Order a.feroac: ••

47

I Flrorr -u I lpr • • - Plwe

Figure 6. The Overall Squish Framework

4. Squish Internals

The Squish system is written in C making use of Lex
and Yacc for parsing support. It currenily runs on Sun
workstations using the Sun View window package. The sys­
tem consists of approximately 6000 lines of ~ source code
excluding code used to implement object types. Currently,
the object type library for the system contains a small set of
types (evaluators, buttons, text input/output, file picker, etc.).
New types are being added based on experience gained writ­
ing Squish scripts.

The Squish system can be easily extended with new
types. Type definitions use four procedures written in C.
These procedures include: a filter procedure to decide which
input events to accept, an event handler to act upon accepted
input events, an artist procedure to display the object on the
screen, and an initialization procedure. The procedures are
bundled with the name of the type and a list of predefined
attributes with initial values or derivation rules. These items
are placed in a table of. object types for use by the Squish
system.

The primary job of the procedure implementing a type
is to handle inputs and to redraw the associated interaction
object. When an input event arrives from the host window
system it is first passed to a series of binding objects. These
binding objects each accept a certain class of events and
implement a particular event binding protocol. Events that
are not accepted by one binding object are passed to the next

until the event is consumed. A particular event binding
object will attempt to deliver the input event to one or more
interaction objects on the basis of its event binding protocol.
Currently there are two different event binding protocols in
the system.

The first event binding protocol handles textual input.
Keyboard related events are bound using a currently selected
object paradigm. Under this paradigm, there is a single
currently selected text object that receives all keyboard
events. Routines are available for changing the current
object. This binding protocol implements a click-to-type
style interface for text input objects.

The second protocol is positional. Events bound under
this protocol are sent to objects that are under the cursor.
The positional protocol uses a prioritized list of objects that
is ordered in front to back drawing order. Events are first
sent to the top-most object. If this object rejects the event, it
is passed to the next object, and so forth.

When an attempt is made to bind an event to an object
using the positional binding protocol, several tests are per­
formed to determine if the object should be given the event.
Each object maintains a rectangle indicating its area of
interest and a mask indicating which input event types it
should receive. If the event is within the area and matches
the event mask, it is passed to the object' s filter procedure.
This procedure examines the attributes of the object in order
to implement context dependent rejection of certain events.

Graphics Interface '88

- - I

If the filter procedure does not reject the event, it is passed to
the object's event handler procedure. This procedure acts
upon the event based on the event type and the state of the
object as expressed by its attributes. The event handler also
has the option of consuming or rejecting the event--rejected
events are passed to the next object in the object binding list.

In addition to other actions, a typical event handler
updates the graphical image associated with the object. To
do this, it modifies attributes of the object that control its
.appearance, then flags the object as dirty. The existence of
dirty objects causes the system to redraw the contents of one
or more windows. This is done by calling the artist pro­
cedure associated with each object in the window in a back
to front order. The artist is responsible for drawing the
graphical image of the object based on the values of its attri­
butes. In order to improve the appearance and speed of win­
dow redraw, windows are first drawn in an off-screen bitmap,
then placed on the screen with a single operation. Although
this approach of total redraw after each change is potentially
wasteful, our experience shows that for workstations such as
the Sun, redraw performance is more than adequate for most
interfaces. Since changing one attribute may cause many
others to be reevaluated, this approach also avoids extensive·
analysis to determine the exact screen area modified. How­
ever, it should be noted that this approach would not be
acceptable if the host window package did not support draw­
ing on off-screen bitmaps, or some other form of double
buffering. For example, the X window system as presented
in [9] does not support double buffering of any kind.

S. The Squish Specification Language

Section 2 informally introduced the Squish textual
specification language; this sections presents a more detailed
description. As presented in section 2, a Squish script con­
sists of a series of object declarations. Each object declara­
tion is introduced with a type name followed by an object
name and a series of attribute definitions. Attribute
definitions for intrinsic attributes are of the form:

<attr_name> := <constant_expr>;
Definitions for derived attributes have the form:

<attr_name> = <expr>;
Expressions have a familiar syntax. This syntax includes all
the arithmetic operators found in Pascal plus a conditional
(if-then-else) operator and several shorthand operators such
as below and left_of. Finally, expressions may call arbitrary
C functions. These functions must be installed in a table of
external functions and linked with the Squish system.

Attribute values in Squish come from a fixed set of
types including integer, string, bitmap, and code. The type of
a value may change dynamically. Type checking is per­
formed at runtime using tagged values. Bitmap values
represent a rectangular array of pixels and can be used to
customize the images used for various types. For example,
button objects have four bitmap valued attributes that pro­
vide the graphical image of the object when it is enable and
highlighted, disabled and unhighlighted, etc. By redefining
these attributes, it is possible to change the images presented
and hence the apparent action of the button object. For
instance, a two position toggle switch or a simple push but­
ton could be both be implemented simply by supplying new
bitmap attribute values.

Attributes of type code are introduced with braces (" {"
and "} ") . . The code within these braces has a Pascal like syn­
tax, and can include the following types of statments:

48

Assignment using <object>.<attr> := <expr>;
Conditional using if-then-else or if-then
Loop using while or repeat-until loops
Procedure Call to arbitrary C routines

Code valued attributes are typically used with action attri­
butes. The event handling routine for an object type can
request that the system execute a code value by passing the
code to the interpreter.

Although the derivation rules used by the system are
quite expressive, they do have limitations. Most importantly,
they do not allow circular definitions--attributes cannot be
directly or indirectly defined in terms of themselves. In
situations where objects are mutually dependent, such as the
mutually exclusive buttons in Figure 1, action attributes can
be used to implement the required feedback. However, use
of action attributes to implement feedback is the exception
rather than the rule. Squish derivation rules are assumed to
be applicative. In particular, the ordering of any side-effects
occurring in external C routines is not guaranteed and is in
general unpredictable.

Currently, the system uses a very simple attribute
evaluation algorithm. An integer time-stamp is kept with
each attribute that indicates when it was last evaluated.
Whenever an assignment to an attribute is made, the current
time is incremented. When an attribute value is requested, its
time-stamp is checked. If the time-stamp is older than the
current time, the attribute is recursively reevaluated and its
time-stamp is reset to the current time. This algorithm per­
forms considerably more work than necessary since it
reevaluates attributes that could not have changed value.
Unfortunately, the standard optimal algorithm for attribute
evaluation [8] cannot be used in this framework since it can
only handle attributed trees and not the arbitrary graphs
found here. An algorithm capable of handling this class of
problems and only updates the optimal set of attributes is dis­
cussed in [3,4]. This algorithm will be used in later versions
of the system. An alternate efficient algorithm for this type of
attribute evaluation is discussed in [1].

6. Conclusions

This paper has introduced the Squish graphical shell for
UNIX. The system offers advantages for both the expert and
novice user, while preserving the power and flexibility of the
UNIX system. In order to implement the system, new UIMS
techniques have been developed. In particular, the system
makes extensive use of declarative specifications in the form
of data derivation rules. This use of derived data makes
flexible and dynamic presentations easier to construct by
placing most of the burden of graphical update on the system
rather than the interface designer.

References

1. B. Alpern, A. Carle, B. Rosen, P. Sweeney and K.
Zadeck, Incremental Evaluation of Attributed Graphs,
IBM Research Report RC 13205, October 1987.

2. L. De LeQn, W. G. Harris and M. Evens, Is There
Really Trouble With UNIX, Proceedings of CHI '83,
Boston, Dec. 1983, 125-129.

3. S. E. Hudson and R. King, A Generator of Direct
Manipulation Office Systems, ACM Transactions on
Office Information Systems 4 (April 1986), 132-163.

Graphics Interface '88

4. S. E. Hudson, Incremental Attribute Evaluation: An
Algorithm for Lazy Evaluation in Graphs, University
of Arizona Technical Report, Aug. 1987. Tech. Rep.
87-20.

5. E. L. Hutchins, J. D. Hollan and D. A. Norman, Direct
Manipulation Interfaces, in User Centered Systems
De!\ign, D. A. Norman and S. W. Draper (ed.),
Lawrence Erlboum Associates, Hillsdale, New Jersey,
1986,87-124.

6. B. Jovanovic and J. D. Foley, A Simple Interface to
UNIX, George Washington University Tech . Report
GWU-IlST-86-23, 1986.

7. D. A. Norman, The Trouble With UNIX, Datamation,
Nov. 1981, 139-150.

8. T. Reps, T. Teitelbaum and A. Demers, Incremental
Context-Dependent Analysis for Language-Based
Editors, ACM Trans. Prog. Lang. and Systems 5(July
1983), 449-477.

9. R. W. Scheifter and J. Gettys, The X Window System,
ACM Transactions on Graphics 5(April 1986), 79-109.

10. B. Shneiderman, The Future of Interactive Systems
and the Emergence of Direct Manipulation, Behaviour
and Information Technology 1(1982), 237-256.

11. B. Shneiderman, Direct Manipulation: A Step Beyond
Programming Languages, Computer 16(August 1983),
57-69.

49

Graphics Interface '88

