
56

A GRAPHICAL PERSPECTIVE ON ROBOT WORKCELL
PROGRAMMING

P. Freedman G. Carayannis A. Malowany

McGill Research Centre for Intelligent Machines
3480 University St. . Montreal . Quebec . Canada H3A 2A7

Abstract

We describe an interactive graphics interface for the pro­
gramming environment of a robotics workcell consisting of
many cooperating elements such robots. sensing systems.
To manage the programming complexity. we have developed
a graphics interface (GI) to help the user interactively fashion
a description of a particular application . The operations of
various workcell elements are displayed as nodes. and their
inter-dependencies are displayed as arcs . GI then translates
the display into a Timed Petri Net representation which is
used to generate a time-optimal sequence of operations for
each workcell element. This sequence is ultimately down­
loaded to the workcell runtime system for execution.

Resume

11 est bien connu que la programmation d 'une cellule robo­
tique est un travail complexe. En commen~ant par les elements ,
par exemple, les robots et les systemes de vision par ordina­
teur , il faut ecrire les programmes de commande specifiques
a chacun afin d'effectuer les taches requises. Face aces
problemes , il est apparu necessaire de concevoir un systeme
de FAO pour la programmation de la cellule. Les resaux de
Petri sont particulierement bien adaptes pour aborder ce genre
de probleme.

Nous avons developpe une interface graphique qui as­
siste interactivement le processus de specification d'une ap­
plication de la cellule . Chaque operation est decrite par (i)
les pre-conditions, (ii) les changements d'etat de la cellule
causes par cette operation, et (iii) la duree d'execution . Les
taches inutiles ou partiellement decrites sont automatique­
ment marquees par le systeme en vue de leur correction . Les
operations sont representees par les nceuds reunis par les arcs
qui repesentent les dependances entre les operations. Par la
suite , tout devient un resau de Petri utilise pour optimiser la
sequence des taches de chaque element afin de maximiser le
rendement.

1. Introduction

The complexity of modern robotic workcells, consisting of
multiple robots, sensing systems, expert systems, etc. makes

programming applications enormously difficult. First, func­
tional redundancy among the 'active' workcell elements com­
plicates the decomposition of the global task into workcell
operations . Second , the tight coupling among workcell oper­
ations due to constraints on precedence and resource sharing
makes it difficult to identify possible concurrency. Eventually,
a sequential program must be written for each element , and
they must then execute concurrently. Graphics can help cope
with this complexity, since a graphical visualization of the
concurrent programs makes evident the distributed nature of
the workcell and the interdependencies of the operations . We
describe current work on such an interactive gra.phics interface
for our robotic workcell programming environment.

In what follows , the term task is used to indicate a unit
of work, such as "move _object". The term operation de­
notes the assignment of a task to an active workcell element ,
such as "move _object using robot R1" . Finally, we will some­
times speak of the activities associated with a task, such as
"move _to_object. grasp _object , etc."

This work is part of a larger effort within the Computer
Vision and Robotics Laboratory, McGill Research Centre for
Intelligent Machines, to develop a sophisticated hierarchical
programming environment for a generic robotic workcell.

2. Background

Even when tasks can be pre-assigned to the 'active' work­
cell elements , a feasible sequence of tasks must still be found.
But this is an NP-complete problem lO , which (informally) im­
plies that there exists no efficient (polynomial time) algorithm
for obtaining a solution . Therefore, problems of this nature
must be solved by searching the space of possible solutions.
When the search space is large, a decision support system
becomes important. But because a workcell is typically con­
figured to repetitively perform a given application . it is im­
portant to determine not just a feasible sequence, but the
time-optimal one.

The sequencing problem is often complicated by what we
call internal non-determinism. This means that at a partic­
ular instant in time, alternative operations associated with
the same workcell element become enabled, each giving rise
to different sequences of workcell events. Thus, although
the outcomes of the operations are fixed, there is still non­
determinism in the real time behavior of the workcell. The

Graphics Interface '88

decision support system must therefore explore the conse­
quences of each alternative in order to determine the 'best'
one associated with the fastest repetitive sequence.

Our objective is to start with a user description of the
application which specifies what must be done i.e. the set of
operations, but not the order in which operations occur. The
constraints linking the operations can be characterized as (i)
those associated with the precedence of workcell operations.
and (ii) those associated with the sharing of resources . In
order to map both onto a single condition/event formalism,
we define a set of state variables associated with ' passive'
workcell elements such as shared jigs. A state variable might
be boolean such as 'jig = { free , occupied }' or multi-valued
such as 'boardjn_jig = { new, inspected, repaired , checked}

From the state variables and their values , we then define
conditions which are either true or false ego (jig = free) .
These conditions are used to construct the pre-conditions and
state changes of each operation . (The actual selection of
state variables is left to the user , since this is closely tied
to the application itself; it should be clear that this selection
is not unique. This same philosophy is followed in network
analysis, where the problem solver is free to choose a set of
independent circuits or voltages , or in control systems design,
where the choice of state variables is based on engineering
judgement.)

To map precedence constraints among operations to pre­
conditions , we can define a multi-valued state variable with
a distinct value corresponding to each operation. For ex­
ample, given a repair task and a checking task , the prece­
dence constraint 'repair-task before checking_task' could be
-re-stated as follows . Then a state variable 'boardjn _jig' which
takes on values { repaired, checked }. can be used to define
[boardjn_jig = repaired] as the pre-condition of the check­
ing_task.

The mapping of resource constraints to pre-conditions is
made simple by creating a distinct state variable for each
resource . For example, given a common workarea used by two
robots for different tasks, we could include [shared _workarea
= free) in the pre-conditions of both robot tasks .

Our intended workcell runtime environment3 imposes ex­
tra structure on our programming paradigm. (i) For each
workcell operation , there must be a 1:1 correspondence be­
tween the state variables associated with the pre-conditions
and the state variables associated with the state changes. (ii)
If the same condition is a pre-condition of multiple operations ,
or if the same condition is a state change of multiple opera­
tions . these operations are intended to be mutually exclusive.

Propositional logic seems to provide a natural vocabulary
to describe the workcell state , since the truth value of propo­
sitions such as (jig = free) change as the operations take
place. But propositions are really just conditions, and if we
think of operations as events , then we can draw a correspon­
dence between the theory of condition/event Petri Nets and
propositional logic16 .

Petri Nets are gaining increasing importance as a conve­
nient modelling framework for problems in robotics. For ex­
ample. the 1987 IEEE International Conference on Robotics
and Automation devoted two complete sessions to this sub­
ject. Unfortunately. there has yet to emerge a standard way
of modelling robotic systems, and this makes it difficult to

57

compare research efforts , We decided to begin with the sim­
ple formalism of conditions and events , which makes explicit
the inter-task constraints . And unlike most of the Petri Net
research concerned with 'strategic' factory -wide routing prob­
lems i.e. moving workpieces, tool magazines . and other re­
sources between workcells within a Flexible Manufacturing
System, we have concentrated on the 'tactical' coordination
of operations within a workcell .

SAGE, Sequence Analysis by Graphical Evaluation. is a
logic programming framework for the analysis of repetitive se­
quencing problems within a robotics workceIl8,9 . SAGE takes
as input the Constraints Net of an application problem and
then generates a time-optimal sequence for all of the specified
workcell operations (where this is feasible) . After a prelimi­
nary analysis of the net structure and initial state defined by
the user , the CN is used to explore, via heuristic search , the
problem Task space which makes explicit all possible concur­
rency among workcell operations . Cycles within this space
represent repetitive feasible sequences . from which the time­
optimal one is selected. Finally, an executable program is
constructed for the workcell runtime environment ..

Although graphical aids have long been used for simulat­
ing robotic operations5,11 ,18, only recently have programming
systems emerged which incorporate a graphics interface . In
the next section, we describe a few examples from the robotics
literature.

2.1 Graphics and Robotics - related work

Until recently, most computing environments used for
research made a clear distinction between computing and
graphics, due to the dedicated nature of the available equip­
ment; computer systems and graphics systems existed as
separate devices . As a result, a recent survey6 revealed that
only a limited number of general systems for the analysis and
simulation of Petri Nets support a graphical user interface.
However , the growing popularity of integrated graphics work­
stations on the one hand , and the increasing sophistication of
personal computers on the other hand, are helping to foster
the integration of programming and graphics . For example, a
graphical aid has been developed for programming a robotic
arc-welding system4 . Sketching with a mouse on a graph­
ics display is used to 'program ' the location of the welding
seam, the position and orientation of the welding torch, and
the cross-sectional geometry of the weld joint . An executable
program is then generated automatically and down-loaded to
the welding system for execution.

A sophisticated graphics system is described13 for the
'programming' of a single robot interacting with its surround­
ings. The user creates a simulation program consisting of
statements associated with the robot, its environment, and
the graphical rendering . (Eventually, the robot commands are
separated from the other statements and passed down to the
robot' controller for execution .) The editing and simulation
are entirely menu-driven .

But closer to our work is the graphics interface for a
Petri Net-like representation called the C-net used to model
sequencing problems12 . The C-net introduces functions as­
sociated with 'process input/output' and 'process status ' to
more conveniently model applications in process control and

Graphics Interface '88

interface can be used to interactively create and modify the
CN in an easy way.

4. Graphics Details

4.1 Creating a new CN

To obtain an executable program for the runtime environ­
ment of the robotics workcell. the user must first define the
application as a list of operations to be performed with their
inter-dependencies made explicit.

The Graphics Interface (GI) is not menu-driven in the tra­
ditional sense . since a fixed menu of commands is always
displayed (Table 1) . User interaction specific to a particular
item in the menu begins when that item is selected by the
click of the mouse. Highlighting (blinking on/off) is used to
visually confirm the selection of a given menu item .

For example. the selection of 'create_net' prompts the
user for information required to initialize the graphics dis­
play for the creation of a new CN . such as the number of
active elements in the workcell to be used . At this point. op­
erations can be defined via the command 'add _node '. Again,
command-specific interaction prompts the user to identify the
active element. and then provide the pre-conditions . activities .
state_changes. and duration associated with the correspond­
ing workcell operations . Arcs are automatically generated
from the conditions which comprise the pre-conditions and
state_changes . The user is free to add nodes (to define the
operations for each workcell element) in an arbitrary order .
since the optimal sequencing of these operations will be au­
tomatically determined by SAGE.

A limited kind of consistency checking takes place as
nodes are added. to make the user aware of partially-defined
inter-dependencies among the operations, as when a condi­
tion appears in the pre-conditions of one operation but as yet
in none of the state _changes of the other operations defined
thus far.

4,2 The Display

The display is composed of a sub-window for text and
a larger sub-window below for graphics . This graphics sub­
window has three parts : a menu. an information header. and
the CN itself: see Figure 1.

The graphical representation of the CN departs from the
traditional Petri Net notation as follows . Nodes (operations)
are drawn as rectangles, with an interior label in the form of a
list ego [1.2) meaning task # 2 of workcell element # 1. The
workcell element number is perhaps redundant. since all tasks
associated with the same element are automatically placed in
a single column. However, these numbers are useful when
generating or studying a large application. since the header
will scroll off the display.

The importance of the task number is perhaps less obvi­
ous . Since operations can be entered by the user in an arbi­
trary way. the task numbers have no visible meaning. How­
ever, the sequence analysis to be performed requires that each
operation be uniquely identified , so GI sequentially assigns all
task numbers as the operations are entered .

58

factory automation. The C-net is drawn directly on a graphics
monitor using a light pen , by selecting nodes from a menu of
graphic elements and then linking them on a grid . Clearly, the
'programming ' effort here is small : the application problems
involves simple sequencing, and therefore the user description
takes a simple form .

But when the sequencing application also exhibits internal
non-determinism, careful interaction must take place between
the graphics interface and the user to 'extract ' more knowl­
edge about the problem at hand . In the next sections. we shall
describe a simple graph structure called the Constraints Net
which is automatically generated by an interactive graphical
interface .

3. The Constraints Net

The Constraints Net (CN) is a graphical representation
of of an application problem, based on the theory of Timed
Petri Nets15 . Operations (events) are represented by verti­
cal bars called transitions , and the conditions which link the
operations are represented by circles called places . These
conditions are constructed from the state variables and their
possible values as defined by the user. In addition. each tran­
sition has an associated fixed duration which corresponds to
the execution time of the operation .

For example, consider a workcell configured for the repair
of printed circuit boards , with a common jig shared by two
robots to perform the repair . We might chose to define a state
variable called "boardjn _jig" . Conditions can then be created
for specific values of the state variables . For this example, if
a board in the jig can be either "new" or "repaired" , we would
obtain [boardjn _jig = new) and [board-in_jig = repaired) .

Once the state variables and conditions have been defined,
the operations can be specified . Each operation has four asso­
ciated arguments : (i) a list of conditions called pre-conditions
which enable the operation, (ii) a list of generic commands
to be sequentially performed called activities, (iii). a list of
conditions called state changes which are the consequences
of the activities, and (iv) the durations of the activities.

When an operation consists of just one activity. we call
it a simple operation: otherwise , we call it complex . Com­
plex operations are useful when several related steps are en­
abled together and then follow one after the other. For ex­
ample . a typical robot 'grasping ' task involves at least these
steps : approach, grasp. depart . However. it is convenient
from the user's perspective to think of these steps as en­
abled by the same pre-conditions: thereafter, the steps are
executed sequentially. Of course, distinct state changes can
be associated with each activity. For example, if the object
to be grasped was located in a part of the workcell shared by
other robots. then the 'approach object' activity might cause
the state change [shared _workarea = occupied). while the the
'depart ' activity might cause the state change [jig = free) ,

This kind of modelling has proved to be adequate for
our workcell sequencing problems since. as in most real-time
applications. the execution times of events such as robot mo­
tions can be predicted quite accurately (apart from failure).
Note that we are restricting our attention to deterministic
operations .

In the next sections, we will describe how a graphical user

Graphics Interface '88

Conditions which link operations can be thought of as
arcs, with state _changes as sources and pre-conditions as
sinks , But to avoid unnecessary visual complexity, arcs are
displayed as triangular 'stub' icons entering or leaving the
nodes,

When a condition is first added to the CN as a pre­
condition or state_change, the arc stub is displayed as a
diamond icon until the other end of the arc is defined; at
that time, both stubs becomes triangles , Similarly, when a
condition associated with a pre-condition or state _change is
deleted, the arc stub at the other end is re-drawn as a dia­
mond. In this way, the application programmer can always
see at a glance which, if any, conditions are incompletely de­
fined. A sample robot operation consisting of two activities
(Step!> S teP2) is shown in Figure 2 along with its representa­
tion as a node. The conjunction of the conditions C ond1 and
C ond2 enable both activities . The execution of StePl (du­
ration 5 time units) makes the condition Cond3 true, while
S teP2 (duration 7 time units) makes both C ond4 and C ond5
true. The condition C ondl is shown as a diamond since it has
not yet been defined as the state change of some other oper­
ation ; all the other conditions are already completely defined
(in terms of other operations not shown in the figure) , and
are therefore shown as triangles. Note that the conditions {
Condi } all appear as separate arc stubs , although the logical
groupings into pre-conditions and sets of state_changes are
internally maintained by GI.

In Figure 3, we present a CN adapted from from research
in our laboratory about the inspection and repair of hybrid in­
tegrated circuits and printed circuit boards7 . There are three
active elements : robot R1. robot R2, and a conveyor belt
fixtured with two jigs.

Robot Ri is responsible for moving 'new' boards from the
input-tray to a repair _jig, and then 'repaired ' boards from the
repair _jig to a checking _jig mounted on the conveyor . Robot
R2 carries out the (pre-defined) repair using a dedicated re­
pair tool. and the checking of the repair us ing a different
sensor-based tool. The conveyor is responsible for moving
the 'checked ' boards out of the workcell ; the unloading at the
output-tray automatically puts the second jig, mounted on
the other half of the conveyor, in the proper position for the
checking operation. We assume that there is always a new
board available in the input-tray, and that there is always
room for another board in the output-tray.

Rather than associating synchronization with the boards
which are cycling through the workcell , we define three multi­
valued state variables in terms of the resident jigs (passive
elements) as follows : boardjn_repaiLjig = { null, new, re­
paired }; boardjn _checking_jig = { null, repaired, checked };
boardjn_unloading_jig = { null , checked }. The 'null' value
simply indicates that the corresponding jig is 'free' and in its
default position .

The CN corresponding to the example as displayed by GI
is shown in Figure 3. The corresponding CN in traditional
Petri Net notation is shown in Figure 4.

In addition to selecting items from the command menu ,
the mouse can also be used to display information associated
with the nodes and arcs . With a click of a button over the
appropriate part of the display (edge of a node or arc stub),
the relevant information is printed in the text sub-window, In

59

the case of an arc stub, the stub selected by the mouse and all
the stubs associated with the same condition are highlighted
(displayed as filled polygons) . This makes it easy to see the
connections between related operations . The highlighting is
terminated by clicking a different mouse button .

Once the CN is drawn , the programmer completes the
description of the given workcell appl ication by s pecifying the
initial state of the workcell . Here, error checking is used to
ensure that the initial conditions satisfy the pre-conditions
of at least one operation . More complete error / consistency
checking is described in the next section .

5. From eN to Workcell Program

Recall that multiple activities can be associated with a
single operation (and therefore a single set of pre-conditions) .
This means that a multi-step operation can be described
as one unit , which greatly simplifies the 'progra mm ing' ef­
fort . However , this complicates the analysis of the inter­
dependencies among operations . Thus , once the CN is cre­
ated by the user , the GI decomposes each 'complex' operation
with multiple activities into a set of 'simple' ones with just one
activity each . Extra conditions are automatica lly synthesized
and added in pairs to the state _changes of each s imple oper­
ation and the pre-conditions of its neighbour in the original
sequence of activities , to ensure that these s imple operations
will be sequentially executed . Using the example in Figure
2. two separate operations would be created for the two ac­
tivities . The pre-conditions as shown would be ass igned to
the new operation for S tePl ' and a new condit ion would be
synthesized to add to the state_changes shown for S tepl '
This same new condition would then become the single pre­
condition of the new operation for SteP2 '

After this decomposition, SAGE performs a two stage
analysis . First , certain graph-theoretic properties are investi­
gated to ensure that the CN is consistent (each pre-condition
re-appears in the list of state changes associated with some
other operation , and vice versa) and deadlock-free . Second,
the CN is used to explore, via heuristic search, the prob­
lem Task space which makes explicit all possible concurrency
among workcell operations . Cycles within this Task Space
represent repetitive feasible sequences, from which the time­
optimal one is selected.

After this analysis, an executable program for the workcell
runtime environment is constructed as follows. Firs t , the pre­
conditions and state_changes of the opera tions in the time­
optimal sequence are combined with information about their
corresponding activities to obtain a set of program 'skeletons' ,
one per active workcell element . Then simple operations cre­
ated by the decomposition of the complex operations in the
original user description are re-assembled within each skele­
ton .

6. Implementation

GI is composed of a collection of programs written in G­
Prolog2 , a superset of C_Prolog14 which provides an interface
to the SunCore graphics package17 runn ing on Sun-3 work­
stations under UNIX 4.3BSD. (SunCore is a particular imple­
mentation of the CORE graphics standard1 developed by the

Graphics Interface '88

ACM.) One program creates and manipulates the display, an­
other associates the display with its textual representation as
a net. a t hird program performs the initialization of the mouse
interaction, and a fourth serves as a common command inter­
preter . A fifth program performs the decomposition of opera­
tions with multiple activities, and a sixth program re-formats
the CN for subsequent analysis by SAGE.

7. Conclusions

The complexity of modern robotic workcells , consisting
of many cooperating elements (eg. robots , sensing systems) ,
makes programming applications enormously difficult. In this
paper , we have described a graphics interface (GI) to help
cope with this complexity by organizing information in two
level s. Information about the conditions associated with the
ope rations (and therefore their interdependencies) is nomi­
nally hidden, to make evident the distribution of tasks among
the active elements . The 'hidden' information associated with
a condition However , a single click of the mouse over a con­
dition highlights both where the condition appears as a pre­
condition and where it appears as as a state change. GI
also serves to guide the definition of the user application by
(i) performing error checking and by (ii) displaying partially
and completely 'defined' conditions using two different icons .
In add ition, the Constraints Net constructed from t he user
description is used to analyze the given application and ob­
tain the time-optimal sequence of workcell operations. We
are now extending our work to deal with applications which
involve real-time sensing and data-driven tasks .

The authors gratefully acknowledge the financial support
of FCAR and NSERC.

References

[lJ "Status Report of the Graphics Standards Planning Committee .
Computer Graphics. Vol. 13. no . 3, August 1979.

I2J B. Brachman . "GProlog User's Manual" . Tech nical Report , De­
partment of Computer Science . University of British Columbia .
October 29. 1985.

[3J G. Carayannis . A. Malowany, "Improving the Programmability of
Robotic Workcells". Proc . CG International '88 Conf .. 1988.

[4J J.DeCu rtins. J . Kremers. "SKETCH: A Simple-to-use Program­
ming System for Visually Guided Robotic Arc Welding" . Proe.
IEEE Int. Conf. on Robotics and Automation " , 1987.

[5J R. Dillman . M. Huck . "A Software System for the Simulation of
Robot Based Manufacturing Systems" . Robotics, Vol. 2, no . 1,
March 1986.

[6J F. Feldbrugge . "Petri Net Tools". Advances in Petri Nets 1985,
G. Rozenberg (ed .).

[7J P. Freedman . G. Carayannis . D. Gauthier . D .. A. Malowany. "A
Session Layer for a Distributed Robotics Environment".
Proc . IEEE COMPINT '85 Conf., 1985.springer-Verlag, 1986.

[8J P. Freedma n. A. Malowany. " Sequencing Tasks within a Robotics
Workcell : from Feasibil ity to Optimality" , IEEE Pacific Rim Conf ..
Victori a. B.C .. June 1987 .

[9J P. Freedman . A. Malowany, " The Analysis and Optimization of
Repetition within a Robot Workcell Sequencing Problems", Proc.
IEEE Int . Conf. Robotics and Automation , 1988.

60

[10J M. Garey. D. Johnson , Computers and Intractability : a guide to
theory of NP- completeness. Freeman and Co .. 1979.

[11] F. Kahloun . A. Malowany, "A Robotics Workcell Simulator" .
Proc . IEEE COM PINT Conf.. 1987 .

[12J T . Murata. N. Komoda . K. Matsumoto. K. Haru na . "Petri Net­
Based Controller for Flexible and Maintainable Sequence Control
and its Applications in Factory Automation" . IEEE Trans . on In­
dustrial Electronics . Vol. 30. no . 1. Febru ary 1986 .

[13] A. Naylor. L. Shao. R. Volz . R. Jungclas . P. Bixel. K. 1I0yd .
"PROGRESS : A Graphical Robot Programmin g Sys tem". Proe.
IEEE Int. Conf. on Robotics and Automation". 1987 .

[14J F. Pereira . "C-Prolog User's Manua l" . Dept . Architecture. Uni­
versity of Edinburg. February 1984.

[15J C. Ramchandani. Project MAC Technica l Report TR-120, MIT.
1974 .

[16] W. Reisig . Petri Nets - an introduction . Springer-Verl ag . 1985.

[llJ SunCore Reference Manual. Pa rt No: 800-1257-03. Revision G of
ll . Sun Microsystems . Februa ry 1986.

[18J H. Worn . G. Stark . "Robot Application s Supported by CAD Sim­
ulation" . Robotics and Computer Integrated Manufacturing. Vol.
3. no. 1. 198 7.

Item Desc ri ption

create_net begin a new CN
new _net load a new CN from a file
scroll _up , down scroll display
save _net save current CN and prompt for initial

--------------------~~~~~

add _node
delete_node
ediLnodejnfo

exiLmouse
go _pick
help
halt

state

add new node and info to current CN
delete a node from the current CN
change pre-conditions , etc .

quit the mouse interaction
restart the mouse interaction
print this table of commands
exit from the graphical interface

Table 1: The menu of user commands avai lab le via the mouse .

Text Sub-Window

I Header I I "'ouse Menu I
Constraint s Net
Display

Graphics Sub-Window

Figure 1: The display architecture of the Graphics Interface .

Graphics Interface '88

Item

Pre-conditions
Activities
State_changes
Durations

Figure 2:

Condl Cond2
<> "'V

G
"'V "'V "'V

Cond3 Cond4 CondS

Description

{Cond1 AND Cond2 }

{Step!> SteP2}
{ (Cond3) , (C ond4 , Cond5)}

{5, 7}

A typical operation displayed as a node

61

Place (condition) Description

board.in.checking .jjg :;;;: checked
board.in.repai, .jig :;;;: repaired
board .in.checking.iig = null
board . in .repaiLjig :;;;: null
board . in .checking.j;g = repaired
board.in. repair .jig :::. new
board.in. unk>ading.jig =- checked
board .in. unloading.jig = null

Transition (activity) Description

OPl1 repair
oP12 check .the .repair
oP21 move.board.from.input .tray . to. repair .jig
oP22 move.board.from . repair .jig.to .checking.jig
oPl l move.checking .jic. to .unloading .position
oP]2 unload .board.into .output . tray

Filure 4: The internal representation of the eN corresponding to Figure 3. The
Petri Net notation makes upl icit the conditions and how they link related activities .

The Constraints Net: operati ons= nodes. arcs=conditions MOUSE MENU:
(Click left

AE no.l AE no.2 AE no . .3 button once)

'" V'
'V '"

create_net

$ $ $ new_net

scroll_up

scroll _ down
'" V' '<7 '"

save_ net

V" "<7'" 'V
add node

$ $ $ delete_ node

2',2 edit_node_info

exit_m ouse
v -Vv V'

help

halt

Figure 3 : A sample graphics sub-window of GI showing the mouse menu. header .
and sample eN for an assembly workce ll consisting of three active elements: two
robots . and a conveyor belt fixtured with two jigs . There are a total of six operations
to be performed . Since all of the arc stubs are displayed as diamonds . we conclude
that each associated condition has been completely defined as both a pre-condition
and a state change .

Graphics Interface 'SS

