
62 

A Graphical Data Model For CASE 

Andrew J. McAllister 

School of Computer Science 
University of New Brunswick 
Fredericton, New Brunswick 

E3B5A3 

Paul G. Sorenson 
Jean-Paul Tremblay 

Department of Computational Science 
University of Saskatchewan 
Saskatoon, Saskatchewan 

S7NOWO 

ABSTRACT 

~omputer-aided software engineering (CASE) applications 
mvolve several special data modeling requirements, not the 
least of which is the need to store graphical representations of 
complex descriptive data. This paper describes the EARNG 
data model, which is designed to serve as the basis for storage 
of such data in the context of CASE support tools. The model 
enables integrated storage of graphical and non-graphical data. 
Advanced modeling features such as validity constraint 
conditions on graphical data and explicit identification of 
comP.lex design objects like software engineering diagrams are 
descnbed. The problem of automatically generating layouts for 
CASE diagrams is described, along with some of our initial 
efforts in this area. 

1. INTRODUCTION 

The Deview project at the University of Saskatchewan has 
been involved for a number of years with research in the area 
of computer-aided software engineering (CASE) tools 
[SORE86] . Such tools automate many of the software 
development tasks that have traditionally been performed by 
hand. This is meant to increase both the productivity of 
software development personnel and the quality of the 
resultant software. Results of the Deview project include a 
problem statement language called SPSL that is supported by 
its associated analyzer tool called SPSA [SORE81]. More 
recently, the Deview project has been investigating the 
problems associated with providing support for a broad class of 
CASE tools . The primary effort in this area is related to the 
design of a metasystem called Metaview [SORE88]. A 
metasystem is a system used to develop CASE tools in an 
analogous manner as compiler writing systems are used to 
develop compilers. 

The approach taken for supporting the development of CASE 
tools is to provide a set of generic CASE tool components. 
The basic components include the following : 

1. A database for storing software system definitions. 

2. A user interface to allow software developers to enter 
software system definitions into the database. 

3. An analysis function that examines the stored software 
system definitions to determine their validity. 

The generic components to be provided with Metaview are 
designed so that their functionality can be customized to 
support a particular development methodology by providing a 
formal definition of that methodology. The task of a CASE 
tool developer is greatly simplified. 

In this paper we describe a logical data model called the 
EARNG model (Entity Aggregate Relationship Attribute 
model with Graphical extensions) that forms the basis for the 
design of Metaview's generic database component. An 
important aspect of this database model is its ability to store 
the graphical data needed to provide a diagrarnmatical 
interface for CASE tools. Our discussion focuses on the 
graphical nature of software definitions and on those aspects of 
the EARA/G data model that address specifically the storage of 
graphical data. 

We begin by describing a simple CASE tool supporting data 
flow diagrams [GANE79] to serve as an illustrative example. 
We then briefly discuss problems associated with storing non
graphical representations of software definitions and outline 
the basic EARA model. Following this is a list of requirements 
for storing graphical representations of design data. These 
requirements are used as the basis for a brief evaluation of 
existing graphical databases, followed by a presentation of the 
modeling capabilities provided by the full EARA/G data 
model. The problems associated with the automatic layout of a 
large class of CASE diagrams are presented. Some of our 
initial research efforts on Mondrian, a system for the automatic 
layout of data flow diagrams, are described. Finally, 
conclusions and directions for future work are discussed. 

2. AN EXAMPLE TYPE OF SOFTWARE 
ENGINEERING DIAGRAM 

The example method introduced in this section is based on the 
data flow diagrams of the structured systems analysis 
methodology [GANE79; DeMA 78] and thus we refer to it as 
the "data flow method". A data flow diagram presents a 
software system as a collection of processes. Each process is 

Graphics Interface '88 



named and represents a transformation of data performed by 
the system. Entities that are external to a system (people, other 
systems, etc.) and interact with that system are represented as 
named interfaces 

Two broad classes of data are used in the data flow method. 
Data that flow between different parts of a system are 
represented as named data flows. There is also the concept of 
stored data, which are each associated with (stored in) a single 
data store. A data store may exist in one of several forms such 
as a filing cabinet or a computer file. Processes may update 
and read stored data. 

Figure 1 shows an simple example of a system specified using 
a data flow diagram. The system is one that maintains 
information on the holdings of a library (books, periodicals, 
etc.) and allows patrons to query that information. Librarian 
and library patron are interfaces. Three processes and one data 
store are also included in the system specification. The 
"Database Access" process updates the stored data (called 
"Holdings Info") in response to an update request and reads the 
"Holdings Info" in response to a query. 

a 
Library 
Patron 9 

Update 
R uest 

2 
Update 
Access 

Holdings 
Info 

Holdings 
Info 

Parsed 3 

RePIYL.1 In_fO _______ Parsed __ Q_Uery __ R_eq_U_es_t ---.!'-_J 

Figure 1: The Library System 

Q 
Update Request 

I 

3 
Database 
Access 

i 
Parsed Request 

I 
._--------------------------------------------------------------------------_. 

2.1 
Request 
Scanner 

Scanned 
Request 

2.2 
Request 
Parser 

Figure 2: Child Diagram For "Update_Access" 

63 

Data flow diagrams are combined in a hierarchical fashion to 
form complete system descriptions. Figure 1 represents a high 
level view of the library system. Each process in a given 
diagram can be expanded into more detail in a separate 
diagram. For example, Figure 2 represents an expansion of the 
"Update Access" process (the parent process) from Figure 1. 
We say that Figure 2 is a child of Update Access, and is at a 
lower level in the process hierarchy than Figure 1. Note how 
entities such as Librarian and Database Access with which 
Update Access interacts in Figure 1 are inherited by Figure 2. 

3. DESIGN DAT ABASES 

Databases for applications such as CASE can be referred to 
generally as design databases. In this section we describe the 
characteristics of such databases and point out why traditional 
commercial databases are inadequate for supporting CASE 
environments. 

A data model for a CASE tool database must be designed to 
support several special characteristics of the data that make up 
software system definitions. These characteristics include the 
following: 

• A large number of manual methods for defining software 
involve the use of pictorial (diagrammatical) 
representations for various aspects of software systems 
[MART85]. Thus it is not surprising that many CASE 
tools support graphical representations of software 
[HAMI83; REIS84; PROT85; WASS87]. 

• Software system definitions constitute complex 
descriptions that must be understood by humans. CASE 
tool databases must be organized so that complex 
definitions can be partitioned to allow developers to focus 
attention on one small part of the definition at a time 
[WILE87]. 

• Software systems are typically made up of components that 
can exist in several versions [p ARN76]. A CASE tool 
database must allow the component definitions to exist in 
multiple versions and also provide a scheme to help the 
user manage these versions [TICH82; LOCK83; KAIS83] . 

• One of the most important aids that CASE tools provide for 
software developers is automatic analysis of the validity 
software definitions. A CASE database must allow the 
definition of constraint specifications that define what 
constitutes a "valid" software definition. 

• CASE tool developers and users are often not expert 
database users. Ease of learning and use is important for 
the database model. 

These characteristics of software definitions also apply to VLSI 
CAD definitions. CAD databases must support graphical data 
[ULFS82; GREE83], modular data [BAT084; AFSA85], 
versions of VLSI components [BAT085; KATZ86] , constraint 
specifications [CAMM84], and non-expert users [AFSA85]. 

Traditional commercial database modeling approaches, such as 
the relational approach, employ a somewhat "flat" structure. 
That is, all data items of a similar nature (say, an employee 
record) are stored in a single, homogeneous structure (for 

Graphics Interface '88 



example, a relation). This is unsuitable for modeling the 
modular nature of design objects. A single complex design 
object (a data flow diagram) is made up of several other 
heterogeneous objects. If we define relations for the objects 
that make up data flow diagrams (one relation for processes, 

,another for interfaces, etc.) then there is no single database 
' structure representing a data flow diagram. Further, all of the 
processes from all of the data flow diagrams for a given 
software system are stored in a single relation. A more 
suitable data model for a CASE tool employing data flow 
diagrams should allow each data flow diagram to be stored as 
an single "object" in a database. 

A related drawback associated with using traditional databases 
for design applications has to do with the semantic 
expressiveness of the data models. The structure of a database 
(for instance, relational tables) can tend to obscure the fact that 
the database represents information about objects being 
designed and relationships between those objects. 

4. THE EARA DATA MODEL 

Before describing the complete EARA/G data model, we 
introduce the EARA model, a non-graphical subset of 
EARA/G. The EARA model [McAL87] is based in part on the 
Entity Relationship (ER) model [CHEN76]. The ER model 
provides a more direct mapping between database structures 
and data being modeled than do the relational and network 
models. Information about each real-world object is 
represented as an identifiable entity in the design database, and 
relationships between objects are represented as explicit 
relationships in the database. The values associated with 
entities and relationships are stored as attributes in the 
database. 

We use the data flow diagram as an example to illustrate how a 
CASE tool definer can define the types of entities and 
relationships that make up a particular kind of software 
definition. From the description of Section 2 we note the 
following types of entities: 

ENTITY TYPES: process, interface, data_store, 
data_flow , stored_data 

Four types of relationships can be modeled for data flow 
diagrams. First, each data_store stores one or more 
stored_data entities. Since the "stores" relationship type has 
two participant types, it is referred to as a binary relationship. 
We list the type(s) of entities that can participate and the roles 
of each participant as follows: 

RELATIONSHIP TYPE: stores 
ROLES: (store_name, data) 
PARTICIPANTS: (data_store, stored_data) 

We also know that a process can update stored data or read 
stored data, which can be represented by the following 
relationship types: 

RELATIONSHIP TYPE: updates 
ROLES : (p_name, data) 
PARTICIPANTS: (process, stored_data) 

64 

RELATIONSHIP TYPE: reads 
ROLES: (p_name, data) 
PARTICIPANTS: (process, stored_data) 

Finally, we must define a relationship to represent the passage 
of data flows between processes and interfaces. Three roles are 
involved: a source (either a process or an interface) from 
which the flow originates, a destination (either a process or an 
interface) that receives the flow, and a data item (a data flow 
entity) that is passed from the source to the destination. -Thus 
we define a ternary relationship called sends with three 
allowable combinations of participants: 

RELATIONSHIP TYPE: sends 
ROLES: (source, data, destination) 
PARTICIPANTS: (interface, data_flow, process) 

(process, data_flow, process) 
(process, data_flow, interface) 

Note that the participant combinations do not allow an 
interface to send to another interface. 

The entity and relationship types defined in this section 
describe a representation for data flow diagrams. With a 
metasystem such as Metaview, such a definition can be used as 
the basis for generating a CASE tool to support data flow 
diagrams, and is referred to as a tool definition. 

5. REQUIREMENTS FOR REPRESENTING 
DIAGRAMS 

Given that the EARA data model allows us to create a non
graphical representation of a software definition and that we 
wish to present this information using diagrams, several basic 
questions must be answered: 

• What information is required, in addition to the non
graphical information, to represent diagrams? 

• What are the basic components, in general, of software 
definition diagrams? 

• How is a given diagram related to the corresponding non
graphical information stored in the database? 

This section investigates these issues. 

We are aware of a large number of software development 
methods that employ diagrams. The most widely used 
diagrams for software development include data flow diagrams 
[DeMA78; GANE79] , structure charts [YOUR79], HIPO 
diagrams [JONE76], SADT diagrams [ROSS77], Higher Order 
Software control maps [HAMI83] , Nassi-Shneiderman charts 
[NASS73], decision trees [MORE82], state transition diagrams 
(for example [GOMA84]), data structure diagrams [BACH69] 
and entity-relationship diagrams [CHEN76]. An extensive 
survey and comparison of these and other commonly-used 
software development diagrams is provided in [MART85]. 

An analysis of the requirements for representing diagrams for a 
metasystem must take these types of diagrams into account. 
Rather than provide an extensive survey of these diagram 
types, we present a list of diagram characteristics that we feel 
must be supported by the EARA/G model. In each case we 
point out at least one of the diagram types that displays the 

Graphics Interface 'SS 



characteristic to indicate why this characteristic is relevant: 

• Software development methods may employ any number 
of diagram types. For example, the Higher Order Software 
methodology [HAMI83] employs only the control map as a 
single notation to be used through the entire development 
process. On the other hand, a practitioner of structured 
systems analysis and design may use data flow diagrams, 
decision trees, structure charts and entity-relationship 
diagrams during various phases of development. 

• The size of diagrams is typically meant to be limited so 
that diagrams do not become overly complex and difficult 
to interpret. Other practical reasons are sometimes given 
for this such as limiting the size of a diagram to fit on a 
single sheet of paper. Both of these reasons are cited with 
respect to SADT diagrams [ROSS77] and data flow 
diagrams [DeMA78]. The EARA data model includes the 
concept of an aggregate so that the components of a 
software definition can be of limited size. For these 
reasons, we define the EARNG data model so that each 
individual diagram represents the information associated 
with a single aggregate. 

• Just as non-graphical information is composed of entities 
and relationships, diagrams are composed of graphical 
components. Each of these component parts can be 
thought of as representing a single entity or relationship. 
For example, one of the parts of a data flow diagram is a 
process symbol. The existence of a process symbol in the 
diagram can be thought of as corresponding to (and 
representative of) a single entity in a CASE database. 
Similarly, there is a one-to-one correspondence between 
each "sends" relationship in a given database and an arrow 
bearing the name of a "data_flow" entity in the 
corresponding diagram. (Note there is no such 
correspondence between the arrows and "data flow" 
entities since a given entity name may appear on several 
arrows.) We use the term icon to refer to a graphical 
component of a diagram. 

• Some types of entities or relationships may be represented 
differently in different types of diagrams. For example, a 
"process" entity may be associated with a rectangle with 
rounded corners in a data flow diagram during a systems 
analysis phase but may also be associated with a 
rectangular icon representing a software module in a 
structure chart during a later design phase. 

• Some types of icons appear in every diagram of a given 
type regardless of the software system being modeled. For 
example, the dashed line representing the aggregate 
boundary in Figure 2 appears in every data flow diagram 
for a "child" aggregate. Such icon types are not associated 
with the existence of particular entity or relationship types. 

• Some diagram types allow a single entity or relationship to 
be represented by multiple icons in a given diagram. For 
example, a data flow diagram can be drawn with more than 
one interface icon representing a single interface entity. 
Similarly, a given "module" in a structure chart diagram 
may appear several times in that diagram. The rationale 
for the use of multiple copies of a given icon is that when a 
diagram becomes large and complex it becomes difficult to 
draw a large number of "connecting" arcs to a single icon. 

65 

• Although the information presented in a diagram is 
representative of the non-graphical information in a 
database, the non-graphical information does not 
necessarily determine the form of the diagram. For 
example, the existence of a "process" entity in a database 
means that the data flow diagram for that database must 
include a corresponding icon displaying the name of that 
entity. The existence of the non-graphical information (the 
entity) does not, however, determine where that icon must 
appear in the diagram. Thus icons have graphical 
attributes associated with them. These graphical attributes 
convey no information about the software system being 
defined. They are related only to a single diagram that 
provides a particular "view" of the software definition. The 
location coordinates associated with a process icon are 
graphical attributes that have no consequence in terms of 
the eventual implementation of the system. 

• A pictorial representation of software represents abstract 
rather than physical objects. Thus a given type of non
graphical software definition can often be represented by 
several different styles of diagrams. This is evidenced in 
the different styles of data flow diagrams advocated by 
[GANE79] and [DeMA78]. 

• We believe that once an analyst has been presented with a 
particular diagram, the graphical attributes of the icons in 
that diagram can serve to help identify the components of 
the diagram. For example, once a "process" icon has been 
viewed in the upper left corner of a diagram, the "location" 
attributes for that icon can serve to help the analyst identify 
the icon in subsequent interaction with the diagram. Thus 
graphical attributes associated with icons should be stored 
in the CASE tool database so that diagrams appear the 
same over time. An example of a graphics display system 
that generates graphical attributes without storing them for 
later use is described in [REIS87]. Users of this system 
experience difficulties due to diagrams that are not 
consistent over time. 

• As with non-graphical data, constraints are needed to 
provide automatic validity checking for graphical data. For 
example, data flow diagrams include icons for data stores 
and arrow icons that correspond to "reads" instances. The 
graphical attributes for each "reads" arrow in a diagram are 
constrained by the rule that the arrow must be shown as 
originating from the icon for the data_store that occupies 
the "store_name" role of the "reads" instance. 

6. EXISTING GRAPHICAL DATABASES 

Existing databases that are designed specifically to store 
graphical data (for example [GREE83; ULFS82]) recognize 
the need to store graphical information in an object-oriented 
fashion. This allows information about the components of a 
diagram or picture to be accessed individually as needed. 
These database systems do not, however, address issues such 
as (1) providing both a graphical and a non-graphical 
representation of a given application or (2) stating constraint 
conditions on graphical data. 

Data models for CAD/CAM databases (for example [AFSA85; 
BAT085; CAMM84]) recognize the need to store both 
graphical and non-graphical information about a given 

Graphics Interface '88 



application in a single database, as well as the need for 
constraints on the database state. These models do not, 
however, explicitly differentiate between pictorial information 
that results from physical attributes of objects and information 
that is associated solely with a particular graphical "view" of 
the objects. In addition, much of the work in the area of 
CAD/CAM databases is based on the relational or network 
data models, with the associated drawbacks discussed in 
Section 3. 

7. GRAPHICAL DATA MODEL: EARA/G 

The EARA/G data model is an extension of the EARA model. 
The extensions provide features for defining and storing 
graphical data in a manner that is consistent with the 
requirements discussed in Section 5. 

An EARA database includes three kinds of database objects: 
aggregates, entities and relationships. Each object may have 
associated attribute values. In addition to these objects, an 
EARA/G database includes diagrams and icons, each of which 
can also have attributes. A given CASE tool may support 
several different diagram types, each of which provides a 
graphical representation for some (or all) of the non-graphical 
object types defined for that tool. Each type of diagram 
includes one or more icon types. Each type of icon is 
associated with a type of entity or relationship. This means 
that a particular type of icon is stored as part of a diagram if 
and only if an instance of the associated entity or relationship 
type is also stored in the database. 

For our example CASE tool supporting data flow diagrams, we 
define only a single type of diagram, which we call 
"data_flow_diagram". (This forms part of the tool definition.) 
Each diagram type is defined as a component of a particular 
aggregate type. For our example, "data_flow _diagram" is a 
component of "data_flow_aggregate". The icon types for 
data_flow _diagram are listed below along with the associated 
non-graphical object types : 

Icon Type 

process_icon 
interface icon 
data store icon 
sends arrow 
reads arrow 
updates_arrow 

Associated With 

process 
interface 
data store 
sends 
reads 
updates 

The reader may notice that no icon types are defined for the 
"data_flow" and "stored_data" entity types. The names of 
these entities appear in data flow diagrams in conjunction with 
the arrows. 

Each "data_flow_aggregate" instance includes one and only 
one "data flow diagram" instance. That diagram includes one 
icon for each instance of a non-graphical type that is associated 
with an icon type. For example, the "Library_System" 
aggregate that represents Figure 1 includes twenty-two non
graphical objects (thirteen entities and nine relationships). 
Seven of the entities are "data flow" or "stored data" entities 
which have no associated - icon types. Therefore the 
"data_flow_diagram" instance in the "Library_System" 
aggregate includes fifteen icons. In general, aggregates are 
composed of entities, relationships and diagrams, diagrams are 

66 

composed of icons, and icons are associated with entities and 
relationships. This organization is depicted in Figure 3. 

Aggregate 

Entity and 
Relationship Instances Diagram Instances 

Diagram Type "y" 

Icons 
o 0 

b 
o 
I o 

Figure 3: Components Of An EARAIG Aggregate 

Diagrams and icons have the intrinsic icon "type". Unlike 
aggregates and entities, however, diagrams and icons are not 
assigned names. Since only one diagram of a given type exists 
in any aggregate, diagram instances can be identified based on 
an aggregate name and a diagram type. Identification of 
individual icons is achieved through their association with an 
entity or relationship. In addition, icons have an intrinsic 
"copy" attribute that makes it possible for a diagram to include 
multiple icons for a single entity or relationship. Each icon 
associated with a particular entity or relationship has a 
different "copy" value (such as "1", "2", etc.). 

The next aspect of diagram definition involves specifying a 
geometric representation for the icons. In other words, an 
EARAlG tool definition must define how each type of icon is 
to appear in a diagram and how the appearance of an icon is 
related to the data stored in an EARA/G database. Some 
aspects of an icon's appearance are determined by the type of 
the icon and by the associated non-graphical data. For 
example, in defining our example CASE tool we can make the 
decision that all data store icons are to be displayed as four line 
segments with a width of seven units and a height of four units, 
as follows: 

11 

(We assume that the size units are relative; scaling can be used 
to display the icons with any desired size.) In addition, the 
name of the associated data_store entity is to appear as part of 

the icon. The only aspect of the appearance of data store icons 
not determined by the data discussed so far is the location of 
the icons in a diagram. We assume that the location of each 
data store in a diagram is supplied by either the software 
system developer, through an interactive interface, or some 
automatic diagram layout algorithm at the time the diagram is 

Graphics Interface '88 



created, as will be discussed in Section 8. To enable the 
location of each data store icon to be stored in the CASE tool 
database, we define two graphical attributes for the 
"data_store_icon" type. These attributes have values of type 
"real" and are named "x" and "y" respectively. Every 
"data_store_icon" instance stored in a database is assigned one 
real number for "x" and another for "y". We use these numbers 
to represent the coordinates in two dimensions of the lower left 
hand corner of each icon. 

In general, it is the task of the CASE tool definer to define 
sufficient graphical attributes for each icon type to enable icons 
to be displayed based on the stored data. 

The mapping between stored data and geometric representation 
of icons is specified in procedural form. An EARAIG tool 
definition includes a geometric procedure for each icon type. 
Procedures are specified using some graphics programming 
language. The input parameters for such a procedure are the 
data values (both graphical and non-graphical) defined for the 
icon type. The result of the procedure is not a display of the 
icon on some graphical output device. Rather, geometric 
procedures return values of a special "picture" data type. 

Consider the example geometric procedure shown in Figure 4. 
This procedure is written using a variant of the Ada 
programming language defined in [McAL87] and can be used 
to create a geometric representation of a "data store icon" 
instance based on the values associated with that ic~n. -

PROCEDURE create_data _store_image 
(x,y: graphic_in real; 
name: database_in identifier; 
image: out picture) is 

-- This procedure creates a picture image of a 
-- data_store_icon. 

BEGIN 
image := line (x, y, 0, 4) 

END; 

+ line(x, y+4, 7, 0) 
+ line(X+ 7, y, -7, 0) 
+ line(x+O.5, y, 0, 4) 
+ stringimage(x+ 1, y+3, name); 

Figure 4: An Example Geometric Procedure 

The designation graphic _in used in Figure 4 indicates that the 
specified values ("x" and "y" in this case) are to be found as 
attributes of the icon in the database. Similarly, database_in 
parameters refer to either (a) attributes of the associated entity 
or relationship, or (b) participants of the associated 
relationship. The "name" parameter in Figure 4 is an attribute 
of the associated entity. 

The output parameter ("image") is defined to be of the data 
type picture, for which a definition is proposed in [McAL87]. 
This graphical data type is similar to that defined in 
[MALL82]. A "picture" value is modeled as a partial function 
that maps a subset of the points in a two-dimensional plane to 
the set of integers. The integer value associated with each 
point can be interpreted as a colour value. Thus each picture 
value has two parts; a set of points and a colour for each point. 
Note that this definition does not imply that such values must 

67 

be stored pixel by pixel. More efficient storage schemes 
involve explicit representation of common groups of points 
like line segments and arcs. 

Our proposed graphical language allows picture values to be 
created using function calls that return "primitive" picture 
values like points, lines, arcs and text. The value created by 
the procedure in Figure 4 is a union (denoted by the "+" 
symbol) of four line segments plus text. A graphics 
programming language that employs the picture data type can 
include any number of such functions. 

Our primary reason for the use of a "set of points" 
representation of pictures is the need to define constraint 
conditions involving picture values. Suppose we wish to 
specify a constraint that prohibits two icons from overlapping 
in a diagram. If we must state the conditions to be tested in 
terms of the graphical attributes (coordinates, etc.) of the icons, 
the conditions can easily become extremely complicated. If, 
on the other hand, both icons are represented as a set of points 
then the condition is much easier to state. The reason for this 
is that the concept of a set and operations on sets (union, 
intersection, complement, etc.) are well defined. In this case 
we can test for non-overlapping icons by ensuring that the 
intersection of the two pictures results in a null set of points. A 
math-based notation for stating such graphical constraint 
specifications is defined in [McAL87], The following example 
constraint specifies that no two data store icons are permitted 
to overlap: 

CONSTRAINT no_data_store_overlap IS 
-- No two data store icons may intersect. 

OBJECTS 
dsl := (data_store_icon); 
ds2 := (data_store_icon: * /= dsl); 

SATISFY 
(dsl.image & ds2.image) = nullpict; 

END; 

The first line in the OBJECTS clause directs the CASE tool to 
search for instances of type "data_store_icon", referring to 
each in turn as "dsl". For each "dsl" found, the second line 
directs a further iterative search to find (again) all instances of 
"data_store_icon", referring to each in turn as "ds2" but 
accepting only those that are not the same instance as the 
current "dsl". For each pair of icons found, the condition 
specified by the SATISFY clause is checked, ensuring that the 
intersection (&) of the two pictures is null. 

8. CASE DIAGRAM LAYOUT 

C. Martin [MART88] has stated that" second generation 
CASE tools will provide large time savings by automatically 
drawing the [CASE] diagrams from the the underlying data ... 
for example, a medium-sized entity-relationship diagram with 
25 entities and 35 relationships may take three hours to draw 
with interactive diagramming software .. . [these] could be 
entered quickly in a data-entry process and generated 
automatically in only 5 minutes." 

In this section we outline some of the preliminary 
investigations we have undertaken in this area and attempt to 
characterize the CASE diagram layout problem more 
generally. A system, MONDRIAN [PROT84], has been 

Graphics Interface '88 



developed as part of the Deview Project to generate 
automatically data flow diagram layouts from the system flow 
and system structure information contained in an SPSA 
requirements database. It represents a reasonable attempt at 
solving the layout problem for one particular CASE diagram 
type. 

The development of MONDRIAN proceeded as follows . First, 
an investigation of several design automation techniques used 
in the automatic generation of circuit board layouts was 
completed. Next, an adjacency list structure was formulated to 
store the relevant entities (e.g., processes, data stores and 
interfaces) and relationships (Le., data flows). Mter some 
investigation of various placement strategies, an adaption of 
the pair linking design automation algorithm of [HANA 72] 
was selected (an overview of this algorithm is given later in 
this subsection). A regular grid structure was then devised that 
worked well with the placement strategy, keeping in mind the 
white space needed for readability and labeling of arcs. The 
predetermined end-point routing algorithm was then devised. 
The ordering strategy used in this algorithm was an adaption of 
Akers' algorithm [AKER72]. A major constraint on the 
routing strategy was to disallow arcs that were unnecessarily 
long, multiple bending, or intersecting. Once appropriate 
routes were found, the problem of text placement on data flow 
arcs was handled. After this was completed, the data flow 
diagram was printed on a graphics plotter. The placement and 
routing strategies are now outlined in more detail. 

Placement Strategy 

The placement algorithm begins by choosing, as a nucleus, the 
pair of nodes having the largest common weight signal set, 
where a signal set is a set of points (entities represented by 
icons) that are to be connected by one wire (relationships 
represented by data flow arcs). The next and all remaining 
nodes are selected in order on the basis of pair connectivity. 
The unplaced node that has the highest weighted pair 
connectivity with a placed node is selected and positioned as 
close as possible to the placed node. The connectivity is 
weighted, based on the type of icon participating in the 
connection. Process icons are given the highest weighting 
because they normally are not replicated in a data flow diagram 
and therefore should be placed early. Data stores are then 
weighted next highest so that they can be placed before 
interfaces, which are traditionally placed last and at the 
periphery of the diagram. 

Routing Strategy 

There are two major activities in the routing strategy: 
determining the order in which the arcs are considered for 
routing and performing the actual routing for each arc. A 
general description of the predetermined-endpoint algorithm is 

as follows: 

1. Order arcs based on number of intersections to a given arc. 
2. Repeat thru step 5 for each arc in the order determined in 

step 1: 
3. Find all possible paths for an arc. 
4. Rank paths. 
5. Assign the highest ranked path to the predetermined 

subgrid. 

68 

The general algorithm for ordering arcs is as follows: 

1. Repeat thru step 4 for each arc: 
2. Initialize the order list for current arc. 
3. Determine boundary of rectangle for current arc. 
4. Count the number of points lying in the boundary. 
5. Sort order list structures in ascending order by point count. 

The order list is a structure that records the location of two 
"entity" nodes and the "relationship" arc that links these two 
nodes. Figure 5 shows a set of nodes and the rectangles 
subscribed by each node pair. The point count for node pair 
<A, A'> is 5 because five points lie within the boundary of the 
rectangle subscribed by <A, A' >. The point counts of the other 
pairs are shown in the figure. The routing strategy would select 
the routes as shown in heavy lines in Fig. 5. It should be easy 
to see how this is accomplished, without intersections or more 
than one bend, providing the arcs are drawn in the order 
<C,C' >, <B,B'>, <D,D'>, <A,A'>. 

A 

Point 

B Count Ordering 

A: 5 4th 
C 

B: 1 2nd 
D 

C : 0 1st 

B' 0 : 2 3rd 

b) 

0' 
C' 

A' 
a) 

Figure 5. Order of arcs a) example points b) point counts 

Another major research effort undertaken in this area was that 
of Batini, et al [BATI86]. Their work was more formal and less 
heuristic-based than the approach used in MONDRIAN. 
Beginning with a conceptual graph of the data flow diagram, 
they 1) extracted a planar representation using Hopgroft and 
Tarjan's planarity algorithm, 2) derived an orthogonal 
representation of the graph using network flow algorithm 
techniques, and 3) from this representation, produced a 
compact grid structure representation using integer 
programming techniques. Their approach appears to handle a 
wider class of layouts but takes significantly longer than the 
more heuristic, predefined grid structure approach of 
MONDRIAN. (Note that we have not established that this is 
indeed the case, either empirically or analytically.) 

An examination of these two attempts at data flow diagram 
layout can be of some help in formulating a general 
characterization of the CASE diagram layout problem. The 
following aspects appear to apply more generally: 

Graphics Interface '88 



1. Each entity is represented as a node on a diagram by the 
name of the entity and usually, but not necessarily, an 
icon. 

2. Each relationship is represented on a diagram by an arc 
(either directed or undirected) between two entities. 

3. The number of crossings between connections should be 
minimized. 

4. External symbols (such as interfaces in DFDs and leaf 
modules in Structure Charts) should be placed on the 
external boundary of the diagram. 

5. The global number of bends in arcs should be 
minimized. 

6. The global length of arcs should be minimized. 

7. The area of the smallest rectangle covering the diagram 
should be minimized. 

8. Sufficient space (at least one grid cell) should be left 
between entity nodes to allow for display of arcs and 
labels associated with those arcs. 

The above characteristics are general enough to cover a 
number of CASE diagrams, including those mentioned at the 
beginning of Section 5. 

9. SUMMARY AND CONCLUSION 

This paper provides an informal description of the EARA/G 
data model, a graphical model designed to serve as the basis 
for a generic CASE tool database. A formal definition of this 
model is provided in [McAL87]. The EARAIG model 
provides advanced support for modeling (a) complex aggregate 
design objects, (b) integrated graphical and non-graphical 
representations of software definitions and (c) validity 
constraint conditions on both graphical and non-graphical data. 

Efforts are continuing in the design of a generic CASE tool 
database based on the EARA/G model. Important issues for 
the immediate future include the definition of how such a 
database should function in its interaction with other 
components of Metaview. In addition, design of physical 
structures for storing the EARAIG database objects is required. 
With regard to the layout problem, we need to develop a 
parameterized layout algorithm that can be interactively 
tailored to the specific needs of CASE diagram types. In the 
longer term, experimentation with models such as EARA/G for 
supporting various CASE development methodologies is 
needed to determine the ultimate effectiveness of the proposed 
modeling concepts. 

REFERENCES 
1. [AFSA85] Afsarmanesh, H., McLeod, D., Knapp, D. and Parker, A. 

"An Extensible Object-Oriented Approach to Databases for 
VLSI/CAD" , Proc. 11th Very Large Database Conference, 
Stockholm, Sweden, August 1985, pp. 13-24. 

2. [AKER72] Akers, S.B. "Routing", Design Automation in Digital 
Systems, Vol. I, Theory and Techniques, Prentice-Hall, Englewood 
Cliffs, NJ., 1972. 

3. [BACH69] Bachman, C.W. "Data structure diagrams", Database, 
Vol. I, No. 2, 1969, pp. 4-10. 

69 

4. [BATI86] Batini, C., Nardelli, E. and Tamassia, R. "A Layout 
Algorithm for Data Flow Diagrams", IEEE Trans. on Software 
Engineering, April 1986, pp. 538-546. 

5. [BAT084] Batory, D.S. and Buchmann, A.P. "Molecular Objects, 
Abstract Data Types and Data Models: A Framework", Proceedings 
Conference on Very Large Databases, Singapore, August 1984, pp. 
172-184. 

6. [BAT085] Batory, D.S. and Kim, W. "Modeling Concepts for 
VLSI CAD Objects", ACM Transactions on Database Systems, Vol. 
10, No. 3, September 1985, pp. 18-32. 

7. [CAMM84] Carnrnarata, S1. and Melkanoff, M.A. "An Interactive 
Data Dictionary Facility for CAD/CAM Data Bases", Proceedings of 
the First International Workshop on Expert Database Systems, Ed. 
Kerschley, L., Kiawah Island, South Carolina, Oct. 24-27, 1984, 
pp.360-377. 

8. [CHEN76] Chen, P. "The Entity-Relationship Model: Toward a 
Unified View of Data", ACM Transactions on Database Systems, 
Vol. I, No. I, March 1976, pp. 9-36. 

9. [DeMA78] DeMarco, T. Structured Analysis and System 
Specification, Yourdon Press, New York, 1978. 

10. [GANE79] Gane, C. and Sarson, T. Structured Systems Analysis: 
Tools and Techniques, Prentice-Hall, Englewood-Cliffs, 1979. 

11. [GOMA84] Gomaa, H. "A Software Design Method for Real-Time 
systems", Communications of the ACM, VO\. 27, No. 9, September 
1984, pp. 938-949. 

12. [GREE83] Green, M., Burnell, M., Vrenjak, H. and Vrenjak, M. 
"Experience With A Graphical Data Base System", Proceedings 
Graphics Interface' 83, Edmonton, Alberta, May 1983, pp. 257-270. 

13. [HAMI83] Hamilton, M. and Zeldin, S. "The Functional Life Cycle 
and its Automation: USE.IT", The Journal of Systems and Software, 
Vo!. 3, 1983, pp. 25-62. 

14. [HANA72] Hanan, M. and Kurtzberg, J.M., "Placement 
Techniques", Design Automation of Digital Systems. Vol. I, Theory 
and Techniques, Prentice-Hall, Englewood Cliffs, NJ., 1972. 

15. [JONE76] Jones, M. "HIPO for developing Specifications", 
Datamation, March 1976, pp. 112-125. 

16. [KAIS83] Kaiser, G.E. and Habermann, A.N. "An Environment for 
System Version Control", Spring COMPCON 83, (IEEE: New York), 
San Francisco, March 1983, pp. 415-420. 

17. [KA1Z86] Katz, R.H., Chang, E. and Bhateja, R. "Version 
Modeling Concepts For Computer-Aided Design Databases", 
Proceedings ACM SIGMOD '86, May 1986, pp. 379-386. 

18. [LOCK83] Lockemann, P.C. "Analysis of Version and 
Configuration Control in a Software Engineering Environment", 
Entity-Relationship Approach to Software Engineering, Elsevier 
Science Publishers, 1983. pp. 701-713. 

19. [MALL82] Mallgren, W.R. "Formal Specification of Graphic Data 
Types", ACM Transactions on Programming Languages and 
Systems, Vo!. 4, No. 4, October 1982, pp. 687-710. 

20. [MART88] Martin, C. "Second-Generation CASE Tools: A 
Challenge to Vendors", IEEE Software, March 1988, pp. 46-49. 

21. [MART85] Martin, J. and McOure, C. Diagramming techniques 
for Analysts and Programmers, Prentice-Hall, Englewood Cliffs, 
New Jersey, 1985. 

22. [McALS7] McAllister, A.1. "Modeling Concepts For Specification 
Environments", Ph.D. Dissertation, Dept. of Computational Science, 
Univ. of Saskatchewan, 1987. 

23. [MORE82] Moret, B. "Decision Trees and Diagrams", ACM 
Computing Surveys, Vol. 14, No. 4, December, 1982, pp. 593-623. 

24. [NASS73] Nassi, I. and Shneiderman, B. "An Experimental Study 
of Flowcharts as an Aid to Identification of Procedural Faults", ACM 
SIGPLAN Notices. Vo!. 8, No. 8, August 1973, pp.12-26. 

Graphics Interface '88 



25. [PARN76] Pamas, D.L. "On the Design and Development of 
Program Families", IEEE Transactions on Software Engineering, 
VO!. SE-2. No. I, March 1976, pp. 1-8. 

26. [PR0T84] Protsko, L.B., Sorenson, P.G. and Tremblay, lP. 
"Automated Generation of Data Flow Diagrams from a Requirements 
Specification Language", Fifth Int' l Conf. on Information Systems, 
Tucson, Nov. 1984, pp. 157-172. 

27 . [PR0T85] Protsko, L.B., Kurtenbach, G., Sorenson, P.G., and 
Tremblay, J.P. "DEPICT: A Graphical Interface For Systems 
Analysis And Design", Proceedings of the Eighteenth Annual Hawaii 

International Conference on System Sciences, Honolulu, January 
1985, pp. 128-139. 

28. [REIS84] Reiss, S.P. "Graphical Program Development with 
PECAN Program Development Systems", SIGPI.AN Notices, Vol. 
19, No. 5, May 1984, pp. 30-41. 

29. [REIS87] Reiss, S.P. and Pato, J.N. "Displaying Program and Data 
Structures", Proceedings of the Twentieth Hawaii International 
Conference on System Sciences, Vo!. 2, 1987, pp. 391-402. 

30. [ROSS77] Ross, D.T. "Structured Analysis (SA): A Language for 
Communicating Ideas", IEEE Transactions on Software Engineering, 
VO!. SE-3, No. I, January 1977, pp. 16-34. 

31. [SORE81] Sorenson, P.G., Tremblay, J.P. and Friesen, A.W. 
"SPSU SPSA: A Minicomputer Database System for Structured 
Systems Analysis and Design." Proceedings of the Sigsmal/ 
Workshop, Orlando, Florida, 1981, pp. 109-118. 

32. [SORE86] Sorenson, P.G. and Tremblay, J.P. "The DEVIEW 
Project Update", Tech. Report 86-3, Dept. of Computational Science, 
Univ. of Saskatchewan, March 1986. 

33. [SORE88] Sorenson, P.G., Tremblay, J.P. and McAllister, AJ. 
"The Metaview System for Many Specification Environments", IEEE 
Software, March 1988, pp. 30-38. 

34. [TICH82] Tichy, W.F. "A Data Model for Programming Support 
Environments and its Application", in Automated Tools for 
Information Systems Design, Schneider, HJ. and Wasserman, A.I. 
(Eds.), North-Holland, 1982, pp. 31-48. 

35. [ULFS82] Ulfsby, S., Meen, S. and Oian, J. "Tornado: A Data-Base 
Management System for Graphics Applications", IEEE Computer 
Graphics and Applications, May, 1982, pp.71-79. 

36. [WASS87] Wasserman, A.I. and Pircher, P.A. "A Graphical, 
Extensible Integrated Environment for Software Development", ACM 
SIGPI_AN Notices, Vo!. 22, No. I, January 1987, pp. 131-142. 

37. [WILE87] Wile, D.S. and Allard, D.G. "Worlds: an Organizing 
Structure for Object-Bases", ACM SIGPI.AN Notices, Vol. 22, No.! , 
January 1987, pp.16-26. 

38. [YOUR79] Yourdon, E. and Constantine, L. Structured Design: 
Fundamentals of a Discipline of Computer Program and Systems 
Design, Prentice-Hall, Englewood Cliffs, 1979. 

70 

Graphics Interface '88 


