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Abstract 

We discuss the design and implementation of a multi
processor window system architecture. The implementation is 
based on the X Window System (X) and runs under Harmony, 
a multiprocessor, multitasking, real-time operating system. A 
number of bottlenecks has been identified that limit the use of 
parallelism in the implementation. Some of these can be elim
inated by changes to the implementation, but many are inherent 
in the definition of the X protocol. The principal contribution of 
this paper is an analysis of a multiprocessor workstation archi
tecture that has evolved from our experience with X and other 
graphics support systems in the multiprocessor Harmony envi
ronment. The new design is intended to permit full realization of 
multiprocessor graphics support in a windowing environment by 
explicitly separating the screen management functions from the 
graphics rendering functions of a window system. 

Resume 

Nous discuterons dans cet article du developpement d'un 
systeme de fenetrage multiprocesseur. Le systeme utilise 
l'environnement X window fonctionnent sur le systeme 
d'exploitation Harmony et supporte l'ensemble du protocole X. 
Un certain nombre de problemes limitant le parallelisme du 
systeme furent identifies. Certain d'entre eux peuvent etre 
elimines par de simples modifications. D'autres sont inherent ii 
la definition du protocole X. La contribution principale de cet 
article consiste en une analyse de I' architecture des stations de 
travail mUltiprocesseur qui est basee sur notre experience avec le 
protocole X et les systemes graphiques dans un environnement 
multiprocesseur comme Harmony. Le nouveau systeme 
permettera le developpement de systemes graphiques 
multiprocesseur dans un environnement de fenetrage grace a la 
division des taches entre les foncions de gestion des fenetres et 
les fonctions de rendu. 

Keywords: Multiprocessor, Parallelism, Synchronization, Win
dow, X Window System. 
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Introduction 

There are two bottlenecks in network-oriented, server-based 
window systems. The first is caused by the heavy traffic of low
level graphics primitives across the network. The trend towards 
sending higher-level abstractions is a step towards alleviating 
this bottleneck. The second bottleneck is caused by the lack of 
parallelism in the support software that manages the window 
system. 

We describe the implementation, analysis and design for a 
multiprocessor-based window server that addresses the second 
limitation, which is inherent in a network-oriented server. Both 
the implementation and the design identify problems in resource 
sharing, resource locking, and distribution of functions across 
multiple processors [3]. We discuss these problems and identify 
characteristics of frame buffer architecture that are necessary to 
support multiprocessing in a workstation with a network
oriented window system. 

The next section reviews the basic components of window 
systems and introduces the problems that we address in our 
implementation and design. Subsequent sections present a more 
detailed discussion of the Harmony implementation of the X 
Window System (X) and the new multiprocessor design (the 
Harmony operating system and X are described below). We 
conclude with a set of observations and recommendations for 
multiprocessor workstation systems. 

Window Systems 

A window system is a collection of software that controls a 
computer's graphical display and provides a base upon which 
application programs can be written. This is analogous to the 
role of an operating system, because both systems present an 
extended virtual machine to applications while at the same time 
protecting and controlling access to the hardware. The window 
system provides applications with independent virtual display 
surfaces called windows. 

Computer systems that support the concurrent execution of 
multiple applications by a single user are essential. Performing 
multiple activities simultaneously is natural for people and can 
enhance productivity if supported adequately in the user inter
face. Studies have shown that conscious thought deals with 
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concepts stored in "short-term" memory [1] and that the capacity 
of short-term memory is limited [13]. Maintaining the state of an 
application visually relieves the burden placed on short-term 
memory by turning the display screen into a "visual cache." This 
becomes especially important when the user is managing several 
applications which are executing concurrently because the visual 
cache eases the cognitive burden of switching context, allowing 
the user to focus on his problems. The trend towards concur
rency therefore provides the raison d'etre for window systems, 
which allow the sharing among multiple concurrently executing 
applications of a computer display and other devices that interact 
with the user. The window system allows the applications to 
display output independently of each other, and allows the user 
to rapidly switch his focus from one application to another. 

The functional components of most window systems can be 
divided into four categories that are briefly summarized below, 
but are described in more detail elsewhere [8,9,10]. The com
ponents of a window system are organized in a hierarchical 
structure, each building upon the functions provided by the 
lower levels. From lowest to highest are the hardware, the 
window agent, the dialogue manager, and the window manager. 
Most window systems allow applications to access any of these 
levels, in some cases even to the extent of permitting direct ac
cess to the hardware. 

Server-based and Kernel-based Systems 

Before describing the components, we will examine the two 
overall approaches that have been used to build window sys
tems, the server-based approach and the kernel-based ap
proach [12]. In a server-based system, one or more of the soft
ware components are placed in a user-level server task. Appli
cations access window system functions by sending requests to 
the server using the interprocess communication facilities pro
vided by the operating system. An increasingly important ad
vantage of server-based systems is that they are easily extended 
in a distributed computing environment to allow a client and 
server to execute across a network, so that an application run
ning on a supercomputer can easily display output on an inex
pensive ·workstation. 

In kernel-based systems the innermost components are 
embedded in the kernel of the operating system. Applications 
perform window system functions using libraries built on top of 
the kernel primitives. In theory all the components of the win
dow system can be placed in the kemel, but this approach is 
rarely used because user-level code is much easier to build, 
modify, and maintain than kemel code. 

The primary functional difference between the two ap
proaches is the manner in which synchronization of access to the 
display hardware2 is achieved. Kernel-based systems usually 
require that locking primitives be invoked to access the frame 
buffer. If the locking primitives are invoked for individual 
graphics operations, such as drawing a simple line, the cost of 
the locking operations may dominate the cost of rendering an 
image. But the altemative, invoking locking primitives around 
groups of requests, is error-prone and presents an additional, 

:!often a/rame buffer, but other types of display hardware can be used. 
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unwanted concern in higher-level graphics routines. With 
server-based systems, applications have no direct access to the 
frame buffer. The server is responsible for synchronizing 
application requests, normally by processing them in serial 
order. In effect, this gives the client a lock on the frame buffer 
for the duration of the request. 

Window System Components 

The window agent is responsible for managing the hard
ware. The window agent multiplexes devices between appli
cations and may provide them with a device independent inter
face. Display multiplexing is accomplished by providing win
dows to applications. The window agent is responsible for map
ping the windows onto the physical display. The window agent 
provides an imaging model for rendering into windows. The 
model may vary from low-level pixel manipulation to high-level, 
device independent structured graphics. In the past, the model 
chosen was determined primarily by the facilities of the under
lying hardware. The current trend, however, is to provide high
level abstractions that can be used with most existing hardware. 

The dialogue manager synthesizes the low-level I/O prim
itives provided by the window agent into interaction techniques, 
providing a "dialogue" between the user and the application. For 
example, it might interpret a mouse button press as a request to 
bring up a menu, which it would do, then wait for a selection to 
be made from the menu by another mouse button press. The 
dialogue manager would then pass on the selection event to the 
application, which would never see the primitive mouse events. 

The window manager is responsible for managing the mul
tiple simultaneous user-application dialogues that may be taking 
place. Communication between the user and window manager is 
through a "meta-dialogue," so named because it is used to ma
nipulate other user-application dialogues. While the window 
agent provides the mechanism for sharing devices, the window 
manager sets the sharing policy. 

The Harmony X Server 

The implementation of a window system for the Harmony 
multiprocessor, multitasking, real-time operating system [4,5,6] 
was motivated by both research interests and practical consid
erations. If multiple tasks are allowed to access the frame buffer 
then a mechanism to coordinate access is essential. A window 
system normally includes a graphics library, which could be 
used to support the development of Harmony applications. The 
X Window System [7,15,16] was chosen for several reasons: X 
is designed to be easily ported to a variety of hardware and oper
ating system configurations; the source to a sample X implemen
tation and a wide variety of X applications is freely redistrib
utable; many institutions are involved in the on-going develop
ment of X-based tools; and X follows the server-based model, 
which is more appropriate for Harmony than the kernel-based 
model. It is a portable, network-transparent window system 
developed at the Massachusetts Institute of Technology (MIT). 
The Harmony X server implements the XlI protocol. Subse
quent discussion pertains to that version of the protocol. 

X follows the client-server model (see Figure 1). Funda
mentally, X is a protocol for communication between appli-
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Figure 1. X Window System Model 

cations and display servers. The implementation of applications 
or servers may be done in any fashion, as long as the communi
cation conforms to the X protocol specification. An X server 
performs the functions of the window agent, managing a display 
and various input devices, typically a keyboard and mouse. 

An X screen is a two dimensional array of pixels (the 
frame buffer). Each pixel is an N-bit value, where N is the 
number of bit planes in the screen. A pixel value is translated 
into a colour value using a colourmap. A colourmap is a set of 
entries defining colour values. X provides several classes of 
colourmap to match current display technology. 

X provides a fairly diverse set of graphics operations that 
range from individual pixel manipulations to rendering arcs, 
polygons, and fonts. The use of higher-level constructs is 
preferred to minimize the load placed on the communication 
channel between client and server. Also, the higher-level con
structs offer server implementors the ability to choose the most 
efficient mechanism provided by the display hardware for 
carrying out a particular request type. 

The Harmony X Server is based upon the MIT sample X 
server, with perhaps 75 percent of that code being unmodified. 
The remaining 25 percent is specific to the Matrox frame buffer 

board or the NRC/Dy-4 implementation of Harmony. Minor 
problems with the implementation arose from the differences in 
the environments provided by UNIX and Harmony. 

The performance of the current implementation is in many 
respects adequate for traditional workstation use. However, the 
implementation will fail to meet the needs of many applications 
that place real-time constraints on graphics output and user inter
action. To some extent the performance problems can be solved 
by improving the implementation. The manner by which Har
mony applications normally meet real-time constraints is by 
distributing the work load across multiple processors. The X 
Server could use this technique, but to do so would require a 
major redesign of the internal structure of the sample X server to 
perform synchronization between components executing as in
dependent tasks on multiple processors. Even this may not be 
adequate, however. Fundamental limitations of the X design that 
seem to discourage this approach are discussed in the next sec
tion. 

Multiprocessor Window System Design 

The primary function of a window system is to multiplex a 
display amongst several processes. This requires that display 
accesses be synchronized. For example, suppose one application 
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moves a window so as to obscure a window belonging to an
other application. This second application, an independent pro
cess, may be simultaneously drawing into its window. If these 
actions are not synchronized, the second application may end up 
drawing into the window of the first application. The method by 
which display access is synchronized is of crucial importance in 
determining whether the window system will be acceptable on a 
multiprocessor system. This paper concentrates on issues related 
to output. We do not address the issue of how input should be 
handled. That issue is orthogonal to the output mechanism, al
though similar problems arise. 

Conventional Systems 

Both of the conventional window system models, kemel
based and server-based, have deficiencies that make them un
desirable in a multiprocessor environment. Kernel-based sys
tems synchronize display access by allowing processes to per
form a system call which grants exclusive access to a region of 
the display (see Figure 2). The kernel contains a data structure 
indicating display ownership that must be accessed sequentially, 
thus introducing a bottleneck. If the display locking operation is 
invoked around every graphical function, then significant over
head will be introduced. But if locking is performed around 
groups of functions, other processes may end up blocked for 
extended time periods.This issue becomes especially critical if 
real-time response is expected of the window system. Locking 
on a multiprocessor must involve some form of interprocessor 
communication, which makes the locking operation even more 
expensive than on a uniprocessor system. 

Server-based systems synchronize display access by grant
ing a single process, the server, ownership of the display (see 
Figure 3). Client-server communication introduces some over
head, but the overhead can be alleviated by choosing a suitable 
protocol. Often, the server will synchronize access by simply 

Kernel 

Display Store 

Figure 2. Kernel-based Window System Model 
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processing requests in serial order. This method fails to utilize 
the full power available on a multiprocessor system. Alterna
tively, the server can distribute requests to worker processes 
running on different processors. This suffers from some of the 
disadvantages of the kernel-based system because the server 
must determine how the requests will interact before dispatching 
them to the workers. In any case, all requests must pass through 
the server for processing, so a bottleneck can result on the ser
ver's processor. 

The bottlenecks inherent in the kernel-based and server
based window systems result from the centralization of infor
mation required to synchronize display output. The solution to 
this problem is to distribute the synchronization information. 

A New Multiprocessor Window System Model 

The hardware and window agent components of a new 
multiprocessor window system model are shown in Figure 4. 
The window agent is broken into two distinct components, the 
display manager and the renderers. This partitioning of fun
ction is based upon the logical independence of window manip
ulation from rendering. 

The display manager is responsible for distributing synch
ronization information to renderers so that renderers share the 
display without conflict. The display manager accepts requests 
to create, delete, translate, stack, and alter the size of windows. 
The source of these requests is left unspecified, but might be a 
window manager, the renderers, or the applications. The synch
ronization information distributed by the display manager takes 
the form of access grants to the display and revocations of those 
grants. An access grant corresponds to the notion of a window 
exposure found in most window systems. The display manager 
grants exclusive ownership of a portion of the display to a ren
derer when a region of the renderer's window is visible on the 

Application Application 

...... - Rendering 

Display Store 

Figure 3. Server-based Window System Model 
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Figure 4. Multiprocessor Window System Model 

display. If the window is destroyed or obscured by another win
dow, some or all of the access to the display may be revoked. 
The display manager never touches the contents of the display. 
The contents are only manipulated by renderers. 

Renderers are processes (or teams of processes) which have 
created a window and are manipulating its contents. Renderers 
may be servers performing the manipulations on behalf of client 
processes. Because a window may not be fully visible, a ren
derer is responsible for maintaining the contents of the off
screen regions of the window. A renderer is responsible for 
clipping its output to regions of the display it has been allocated 
by the display manager. 

It is important that renderers respond to requests from the 
display manager quickly, as otherwise a visually confusing 
image may be presented to the user. Therefore, renderers should 
keep their atomic actions as small as possible. One option avail
able to a renderer would be to hand rendering requests to worker 
processes, so the renderer can continue to listen for requests 
from the display manager. If a request is received to revoke ac
cess to an area a worker is rendering into, the renderer could de
stroy the worker process and relinquish access. Subsequently, 
however, the renderer must recover from the incomplete oper
ation performed by the destroyed worker. 

Synchronization through the Display Manager 

The display manager must maintain a data structure indi
cating the current organization of windows in the display. In 
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general, a window need not be rectangular, but rectangular win
dows lead to the simplest implementation. If rectangular win
dows are assumed, the data structures and algorithms described 
by Pike [14] can be used. The data structures used by renderers 
may vary a great deal from one type of renderer to the next. The 
requirement that a renderer restrict its output to regions of the 
frame buffer to which it has access means that renderers must 
retain a list of clipping regions. The remaining data structures 
depend primarily on the method the renderer uses to perform 
image retention, if it implements retention. A text renderer might 
simply retain an array of characters. Other renderers would re
quire more elaborate mechanisms. 

The display manager is responsible for synchronizing all 
window manipulation functions, including window creation, 
deletion, translation (changing the location of a window), scal
ing (changing the size of a window), and stacking (changing the 
priority of a window with respect to other windows). The two 
principal effects of any window manipulation are that some 
visible regions of windows become obscured and some ob
scured regions become visible. Window manipulation is thus 
performed in two stages. 

In the first stage, the display manager revokes access to 
regions of the display that will be obscured by the manipulation. 
The display manager cannot arbitrarily revoke access, but in
stead must request that a renderer relinquish its access to the 
display. Those renderers whose access has been revoked must 
take whatever action is necessary to preserve the contents of 
their window and acknowledge the request. All the renderers 
that must process such requests may do so in parallel. 

The second set of requests to be sent by the display manager 
grants display access to renderers whose windows are exposed. 
A simple implementation might wait until all the requests revok
ing access have been acknowledged before sending the ftrst re
quest granting access. However, the display manager can grant 
access to a region as soon as the manager has exclusive owner
ship of that region. That is, granting access to a region can pro
ceed when the previous owners of the region have given up that 
ownership by acknowledging the request revoking access. 
Thus, each grant request can be viewed as being blocked on a 
set of revoke requests, and can proceed when all the revoke re
quests have been acknowledged. A renderer which is granted 
access to a region of the display should immediately render some 
image into that region. This image should be the best possible 
based upon the image retention performed by the renderer. If no 
image is available, a background should be rendered to erase the 
region's previous contents. 

These two phases of synchronization apply to all window 
manipulations, but scaling and translation require an additional 
step. Scaling a window requires that the renderer be informed of 
the window's new dimensions. This step can be taken before the 
revoke requests are dispatched. The interpretation of a change in 
a window's dimensions is left to the renderers. The window 

may be treated as a viewport or as a graphics window.3 If a 
window is treated as a viewport, then a change in the size of the 

3-r1le tenn graphics window is used to refer to the standard graphics 
definition of window to distinguish it from the window system definition. 
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window results in the display of the same region of the world at 
a different scale. If a window is treated as a graphics window, a 
change in the size of a window results in a different region of the 
world being displayed at the same scale. A renderer may choose 
to implement either interpretation. 

Translating a window requires that the renderer be informed 
of the window's new location. One method of accomplishing the 
translation is to revoke access to the display for all visible areas 
of the window to be translated so that the renderer retains the 
window's image, then inform the renderer of the new location, 
and finally grant access to the renderer to regions of the display 
on which the translated window is visible. This method is inef
ficient, however, as it may require copying the image twice and 
storing the image temporarily. A better method is to revoke ac
cess only to regions of the window to be translated that will be 
obscured after the translation. The translation message sent by 
the display manager to the renderers can then imply the granting 
of access to the display at the translated position for all remain
ing visible areas of the window, while simultaneously revoking 
access to the old position. The renderer is thus given the option 
of simply copying the image from one part of the display to 
another. 

Multiple window manipulations may take place simulta
neously. Because the display manager is merely an arbiter of 
display ownership, it may be orchestrating the manipulation of 
one window when another request arrives. Provided that the 
second manipulation does not conflict with the first, some or all 
of the granting and revoking of display access can proceed in 
parallel and independently of the actions required by the first 
manipulation. In some cases when manipulations do intersect, 
certain optimizations may be possible. Consider, for example, 
the situation when window A is translated to a new location. 
Normally, this manipulation would result in the the granting of 
access to the display to the renderer for window B which is un
derlying window A. However, if window C is manipulated to 
occupy the location vacated by window A before window B has 
been granted access to the display, then access can be granted to 
window C instead, bypassing window B entirely. 

Remaining Bottlenecks 

Some limitations remain. The display hardware may be an 
unavoidable bottleneck. It is important that the display support 
concurrent access by multiple processes or processors. The 
Matrox frame buffer boards in use in the prototype implemen
tation support atomic access to any pixel (byte) of the board 
from multiple processors, but not atomic sub-pixel access. As a 
result, it is possible to partition the frame buffer into independent 
regions in X and Y but not into separate bitplanes. Support for 
multiple write masks could alleviate this problem. In fact, the 
fault does not lie solely with the Matrox boards but also with the 
processor boards. The processors could support the atomic 
read-modify-write cycle allowed by the YME bus, but do not If 
the multiprocessor window system model is to be fully ex
ploited, the hardware must be designed with the requirements of 
the model in mind. A more complete discussion of hardware 
problems is provided in [3]. 

The other bottleneck that still remains is the display manager, 
because it must process any attempt to manipulate windows. 
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However, window manipulation tends to occur infrequently 
relative to rendering. This property is especially true of systems 
that provide only user-driven window management. In contrast 
to traditional window systems which grant clients access to the 
display only for a small number of operations at a time, requir
ing clients to perform the same synchronization procedure over 
and over again for their subsequent requests, the model pro
posed here grants clients access to the display until the window 
configuration changes, thereby taking advantage of the static 
nature of the configuration. 

Cursors 

Most window systems provide cursors limited to a few 
colours and to a certain maximum size. There is almost always 
only a single cursor available. So only a single pointing device 
will interact with the user. Although one device is sufficient to 
meet the needs of most traditional applications, more flexibility 
on the part of the window system would lead to a richer envi
ronment. The protocol by which movement of the cursor is 
controlled is important, but because we are describing only the 
output components of the window system we will show only 
how cursor images may be effected. 

Cursors would, in most cases, be provided by processes 
dedicated to that purpose. In many cases hardware may provide 
the functionality required for cursors. However, it is likely that 
more cursors than the hardware makes available may eventually 
be required, or cursors with features not provided by the hard
ware may be needed. As a result, a "soft" cursor will be neces
sary. The only mechanism defined by the multiprocessor win
dow system model for the implementation of such a cursor is to 
have a renderer perform that function . This method provides the 
required functionality, because the cursor can be arbitrarily 
shaped and coloured, but at the cost of introducing computa
tional overhead. The overhead arises from the violation of the 
assumption that the window configuration is relatively static, 
because the cursor is realized using a moving window. 

Translating the cursor window requires at least two transac
tions between the display manager and other processes: an initial 
request to the display manager to translate the window and a 
message from the display manager to the cursor renderer indi
cating that the cursor window should be moved. If the cursor 
window intersects other windows, then grant and revoke re
quests will be generated as well. Given the possibility of an 
arbitrarily large cursor and any number of windows, it is not 
possible to place a bound on the time required to move the cur
sor. The point at which the cursor will cease to provide the inter
active response required of it depends upon the system in use. 
Whether the additional functionality provided by a "soft" cursor 
outweighs the cost is a decision that has to be made on a per 
implementation basis. 

Renderer Flexibility 

The benefits of the multiprocessor window system model are 
most evident on a multiprocessor system, but some benefit is 
derived on a uniprocessor system due to the division of the win
dow agent into two components. Even on a uniprocessor, ren
dering protocols and image retention models can be tailored to 
the needs of an application by creating a new renderer type. For 
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example, one renderer might emulate a character display be re
ceiving ASCII text and ANSI escape sequences, while a second 
renderer acts as a PostScript interpreter, and a third acts as a 
PRIGS engine. The abstractions the renderers provide to their 
clients can thus vary from low-level pixel manipulations to high
level device independent graphics. 

Moreover, a further advantage of the multiprocessor window 
system model is that the renderers can be added and removed 
dynamically while the remainder of the window system con
tinues to function. Because they have fixed imaging methods, 
traditional window systems can add new functionality only by 
building on top of existing methods, which introduces extra 
overhead. The multiprocessor window system model allows a 
new renderer to have direct access to the hardware if it desires, 
or it can use the rendering facilities already provided by another 
renderer. Other window systems, notably TheWA [10], also 
have the ability to support multiple rendering protocols. 

Because the scheduling of the processing of rendering re
quests is not specified by the multiprocessor window system 
model, flexible process priority management mechanisms may 
be exploited in operating systems that provide them. An oper
ating system that supports preemptive scheduling, for example, 
makes it possible for one renderer to interrupt another that is 
processing a request. This contrasts with the approach of some 
server-based window systems which define their own sched
uling policy. For example, the sample X server from MIT will 
process a maximum of ten requests from one client before 
checking for requests from other clients. In a NeWS server [12], 
rendering is performed by lightweight processes (tasks) 
scheduled in a non-preemptive fashion . Thus it is impossible for 
one task to interrupt another so a task which never voluntarily 
blocks can prevent all other tasks from running. 

A prototype implementation of a subset of these facilities is 
described elsewhere [3] . 

Conclusions 

Conventional window systems have been designed with uni
processor architectures in mind, resulting in single-threaded 
structures. The X Window System is one example, and its 
implementation under Harmony has made its deficiencies ap
parent. The design of any software system should include 
maximizing the potential parallelism possible [2]. It is much 
more difficult to extract the parallelism from a sequential process 
than it is to perform potentially parallel actions in sequence. 
Hopefully the emergence of multiprocessor systems will in
fluence the design of window systems, such that one will take 
advantage of the parallelism that is becoming possible. 

The multiprocessor window system design presented here is 
a first attempt to remedy the limitations of conventional window 
systems by explicitly identifying those functions that may be 
performed in parallel. Decomposition of the window agent into 
two components, the display manager and the renderers, and 
distribution of synchronization information to the renderers al
lows rendering to different windows to proceed independently 
until the display is accessed. Because display access typically 
represents only a small portion of total rendering time, this po
tential bottleneck will not be felt for a small number of proces-
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sors. Thus the multiprocessor window system model removes a 
significant bottleneck present in kernel-based and server-based 
window systems. 
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