
62

Design Experience with a Multiprocessor Window System Architecture

1. V. Kelleyl
K. S. Booth

Computer Graphics Laboratory
University of Waterloo

Waterloo, Ontario, Canada N2L 3Gl

M. Wein

Laboratory for Intelligent Systems
National Research Council of Canada

Ottawa, Ontario, Canada KIA OR6

Abstract

We discuss the design and implementation of a multi
processor window system architecture. The implementation is
based on the X Window System (X) and runs under Harmony,
a multiprocessor, multitasking, real-time operating system. A
number of bottlenecks has been identified that limit the use of
parallelism in the implementation. Some of these can be elim
inated by changes to the implementation, but many are inherent
in the definition of the X protocol. The principal contribution of
this paper is an analysis of a multiprocessor workstation archi
tecture that has evolved from our experience with X and other
graphics support systems in the multiprocessor Harmony envi
ronment. The new design is intended to permit full realization of
multiprocessor graphics support in a windowing environment by
explicitly separating the screen management functions from the
graphics rendering functions of a window system.

Resume

Nous discuterons dans cet article du developpement d'un
systeme de fenetrage multiprocesseur. Le systeme utilise
l'environnement X window fonctionnent sur le systeme
d'exploitation Harmony et supporte l'ensemble du protocole X.
Un certain nombre de problemes limitant le parallelisme du
systeme furent identifies. Certain d'entre eux peuvent etre
elimines par de simples modifications. D'autres sont inherent ii
la definition du protocole X. La contribution principale de cet
article consiste en une analyse de I' architecture des stations de
travail mUltiprocesseur qui est basee sur notre experience avec le
protocole X et les systemes graphiques dans un environnement
multiprocesseur comme Harmony. Le nouveau systeme
permettera le developpement de systemes graphiques
multiprocesseur dans un environnement de fenetrage grace a la
division des taches entre les foncions de gestion des fenetres et
les fonctions de rendu.

Keywords: Multiprocessor, Parallelism, Synchronization, Win
dow, X Window System.

1 Present address: Laboratory for Intelligent Systems. National Research
Council of Canada. Ottawa. Ontario, Canada KIA OR6.

Introduction

There are two bottlenecks in network-oriented, server-based
window systems. The first is caused by the heavy traffic of low
level graphics primitives across the network. The trend towards
sending higher-level abstractions is a step towards alleviating
this bottleneck. The second bottleneck is caused by the lack of
parallelism in the support software that manages the window
system.

We describe the implementation, analysis and design for a
multiprocessor-based window server that addresses the second
limitation, which is inherent in a network-oriented server. Both
the implementation and the design identify problems in resource
sharing, resource locking, and distribution of functions across
multiple processors [3]. We discuss these problems and identify
characteristics of frame buffer architecture that are necessary to
support multiprocessing in a workstation with a network
oriented window system.

The next section reviews the basic components of window
systems and introduces the problems that we address in our
implementation and design. Subsequent sections present a more
detailed discussion of the Harmony implementation of the X
Window System (X) and the new multiprocessor design (the
Harmony operating system and X are described below). We
conclude with a set of observations and recommendations for
multiprocessor workstation systems.

Window Systems

A window system is a collection of software that controls a
computer's graphical display and provides a base upon which
application programs can be written. This is analogous to the
role of an operating system, because both systems present an
extended virtual machine to applications while at the same time
protecting and controlling access to the hardware. The window
system provides applications with independent virtual display
surfaces called windows.

Computer systems that support the concurrent execution of
multiple applications by a single user are essential. Performing
multiple activities simultaneously is natural for people and can
enhance productivity if supported adequately in the user inter
face. Studies have shown that conscious thought deals with

Graphics Interface '89

concepts stored in "short-term" memory [1] and that the capacity
of short-term memory is limited [13]. Maintaining the state of an
application visually relieves the burden placed on short-term
memory by turning the display screen into a "visual cache." This
becomes especially important when the user is managing several
applications which are executing concurrently because the visual
cache eases the cognitive burden of switching context, allowing
the user to focus on his problems. The trend towards concur
rency therefore provides the raison d'etre for window systems,
which allow the sharing among multiple concurrently executing
applications of a computer display and other devices that interact
with the user. The window system allows the applications to
display output independently of each other, and allows the user
to rapidly switch his focus from one application to another.

The functional components of most window systems can be
divided into four categories that are briefly summarized below,
but are described in more detail elsewhere [8,9,10]. The com
ponents of a window system are organized in a hierarchical
structure, each building upon the functions provided by the
lower levels. From lowest to highest are the hardware, the
window agent, the dialogue manager, and the window manager.
Most window systems allow applications to access any of these
levels, in some cases even to the extent of permitting direct ac
cess to the hardware.

Server-based and Kernel-based Systems

Before describing the components, we will examine the two
overall approaches that have been used to build window sys
tems, the server-based approach and the kernel-based ap
proach [12]. In a server-based system, one or more of the soft
ware components are placed in a user-level server task. Appli
cations access window system functions by sending requests to
the server using the interprocess communication facilities pro
vided by the operating system. An increasingly important ad
vantage of server-based systems is that they are easily extended
in a distributed computing environment to allow a client and
server to execute across a network, so that an application run
ning on a supercomputer can easily display output on an inex
pensive ·workstation.

In kernel-based systems the innermost components are
embedded in the kernel of the operating system. Applications
perform window system functions using libraries built on top of
the kernel primitives. In theory all the components of the win
dow system can be placed in the kemel, but this approach is
rarely used because user-level code is much easier to build,
modify, and maintain than kemel code.

The primary functional difference between the two ap
proaches is the manner in which synchronization of access to the
display hardware2 is achieved. Kernel-based systems usually
require that locking primitives be invoked to access the frame
buffer. If the locking primitives are invoked for individual
graphics operations, such as drawing a simple line, the cost of
the locking operations may dominate the cost of rendering an
image. But the altemative, invoking locking primitives around
groups of requests, is error-prone and presents an additional,

:!often a/rame buffer, but other types of display hardware can be used.

63

unwanted concern in higher-level graphics routines. With
server-based systems, applications have no direct access to the
frame buffer. The server is responsible for synchronizing
application requests, normally by processing them in serial
order. In effect, this gives the client a lock on the frame buffer
for the duration of the request.

Window System Components

The window agent is responsible for managing the hard
ware. The window agent multiplexes devices between appli
cations and may provide them with a device independent inter
face. Display multiplexing is accomplished by providing win
dows to applications. The window agent is responsible for map
ping the windows onto the physical display. The window agent
provides an imaging model for rendering into windows. The
model may vary from low-level pixel manipulation to high-level,
device independent structured graphics. In the past, the model
chosen was determined primarily by the facilities of the under
lying hardware. The current trend, however, is to provide high
level abstractions that can be used with most existing hardware.

The dialogue manager synthesizes the low-level I/O prim
itives provided by the window agent into interaction techniques,
providing a "dialogue" between the user and the application. For
example, it might interpret a mouse button press as a request to
bring up a menu, which it would do, then wait for a selection to
be made from the menu by another mouse button press. The
dialogue manager would then pass on the selection event to the
application, which would never see the primitive mouse events.

The window manager is responsible for managing the mul
tiple simultaneous user-application dialogues that may be taking
place. Communication between the user and window manager is
through a "meta-dialogue," so named because it is used to ma
nipulate other user-application dialogues. While the window
agent provides the mechanism for sharing devices, the window
manager sets the sharing policy.

The Harmony X Server

The implementation of a window system for the Harmony
multiprocessor, multitasking, real-time operating system [4,5,6]
was motivated by both research interests and practical consid
erations. If multiple tasks are allowed to access the frame buffer
then a mechanism to coordinate access is essential. A window
system normally includes a graphics library, which could be
used to support the development of Harmony applications. The
X Window System [7,15,16] was chosen for several reasons: X
is designed to be easily ported to a variety of hardware and oper
ating system configurations; the source to a sample X implemen
tation and a wide variety of X applications is freely redistrib
utable; many institutions are involved in the on-going develop
ment of X-based tools; and X follows the server-based model,
which is more appropriate for Harmony than the kernel-based
model. It is a portable, network-transparent window system
developed at the Massachusetts Institute of Technology (MIT).
The Harmony X server implements the XlI protocol. Subse
quent discussion pertains to that version of the protocol.

X follows the client-server model (see Figure 1). Funda
mentally, X is a protocol for communication between appli-

Graphics Interface '89

64

Remote Host

X Application Window Manager X Application

Dialogue Mgmt
library

Protocol interface Protocol interface Protocol interface

Local Workstation

X Server

Display

X Application

Dialogue Mgmt
library

Protocol interface

Figure 1. X Window System Model

cations and display servers. The implementation of applications
or servers may be done in any fashion, as long as the communi
cation conforms to the X protocol specification. An X server
performs the functions of the window agent, managing a display
and various input devices, typically a keyboard and mouse.

An X screen is a two dimensional array of pixels (the
frame buffer). Each pixel is an N-bit value, where N is the
number of bit planes in the screen. A pixel value is translated
into a colour value using a colourmap. A colourmap is a set of
entries defining colour values. X provides several classes of
colourmap to match current display technology.

X provides a fairly diverse set of graphics operations that
range from individual pixel manipulations to rendering arcs,
polygons, and fonts. The use of higher-level constructs is
preferred to minimize the load placed on the communication
channel between client and server. Also, the higher-level con
structs offer server implementors the ability to choose the most
efficient mechanism provided by the display hardware for
carrying out a particular request type.

The Harmony X Server is based upon the MIT sample X
server, with perhaps 75 percent of that code being unmodified.
The remaining 25 percent is specific to the Matrox frame buffer

board or the NRC/Dy-4 implementation of Harmony. Minor
problems with the implementation arose from the differences in
the environments provided by UNIX and Harmony.

The performance of the current implementation is in many
respects adequate for traditional workstation use. However, the
implementation will fail to meet the needs of many applications
that place real-time constraints on graphics output and user inter
action. To some extent the performance problems can be solved
by improving the implementation. The manner by which Har
mony applications normally meet real-time constraints is by
distributing the work load across multiple processors. The X
Server could use this technique, but to do so would require a
major redesign of the internal structure of the sample X server to
perform synchronization between components executing as in
dependent tasks on multiple processors. Even this may not be
adequate, however. Fundamental limitations of the X design that
seem to discourage this approach are discussed in the next sec
tion.

Multiprocessor Window System Design

The primary function of a window system is to multiplex a
display amongst several processes. This requires that display
accesses be synchronized. For example, suppose one application

Graphics Interface '89

----- -- --------------------------------------

moves a window so as to obscure a window belonging to an
other application. This second application, an independent pro
cess, may be simultaneously drawing into its window. If these
actions are not synchronized, the second application may end up
drawing into the window of the first application. The method by
which display access is synchronized is of crucial importance in
determining whether the window system will be acceptable on a
multiprocessor system. This paper concentrates on issues related
to output. We do not address the issue of how input should be
handled. That issue is orthogonal to the output mechanism, al
though similar problems arise.

Conventional Systems

Both of the conventional window system models, kemel
based and server-based, have deficiencies that make them un
desirable in a multiprocessor environment. Kernel-based sys
tems synchronize display access by allowing processes to per
form a system call which grants exclusive access to a region of
the display (see Figure 2). The kernel contains a data structure
indicating display ownership that must be accessed sequentially,
thus introducing a bottleneck. If the display locking operation is
invoked around every graphical function, then significant over
head will be introduced. But if locking is performed around
groups of functions, other processes may end up blocked for
extended time periods.This issue becomes especially critical if
real-time response is expected of the window system. Locking
on a multiprocessor must involve some form of interprocessor
communication, which makes the locking operation even more
expensive than on a uniprocessor system.

Server-based systems synchronize display access by grant
ing a single process, the server, ownership of the display (see
Figure 3). Client-server communication introduces some over
head, but the overhead can be alleviated by choosing a suitable
protocol. Often, the server will synchronize access by simply

Kernel

Display Store

Figure 2. Kernel-based Window System Model

65

processing requests in serial order. This method fails to utilize
the full power available on a multiprocessor system. Alterna
tively, the server can distribute requests to worker processes
running on different processors. This suffers from some of the
disadvantages of the kernel-based system because the server
must determine how the requests will interact before dispatching
them to the workers. In any case, all requests must pass through
the server for processing, so a bottleneck can result on the ser
ver's processor.

The bottlenecks inherent in the kernel-based and server
based window systems result from the centralization of infor
mation required to synchronize display output. The solution to
this problem is to distribute the synchronization information.

A New Multiprocessor Window System Model

The hardware and window agent components of a new
multiprocessor window system model are shown in Figure 4.
The window agent is broken into two distinct components, the
display manager and the renderers. This partitioning of fun
ction is based upon the logical independence of window manip
ulation from rendering.

The display manager is responsible for distributing synch
ronization information to renderers so that renderers share the
display without conflict. The display manager accepts requests
to create, delete, translate, stack, and alter the size of windows.
The source of these requests is left unspecified, but might be a
window manager, the renderers, or the applications. The synch
ronization information distributed by the display manager takes
the form of access grants to the display and revocations of those
grants. An access grant corresponds to the notion of a window
exposure found in most window systems. The display manager
grants exclusive ownership of a portion of the display to a ren
derer when a region of the renderer's window is visible on the

Application Application

...... - Rendering

Display Store

Figure 3. Server-based Window System Model

Graphics Interface '89

Application

Rendering
Requests

Window
Mainpulation

Requests

Window Agent

Display Store

Application

Rendering
Requests

Figure 4. Multiprocessor Window System Model

display. If the window is destroyed or obscured by another win
dow, some or all of the access to the display may be revoked.
The display manager never touches the contents of the display.
The contents are only manipulated by renderers.

Renderers are processes (or teams of processes) which have
created a window and are manipulating its contents. Renderers
may be servers performing the manipulations on behalf of client
processes. Because a window may not be fully visible, a ren
derer is responsible for maintaining the contents of the off
screen regions of the window. A renderer is responsible for
clipping its output to regions of the display it has been allocated
by the display manager.

It is important that renderers respond to requests from the
display manager quickly, as otherwise a visually confusing
image may be presented to the user. Therefore, renderers should
keep their atomic actions as small as possible. One option avail
able to a renderer would be to hand rendering requests to worker
processes, so the renderer can continue to listen for requests
from the display manager. If a request is received to revoke ac
cess to an area a worker is rendering into, the renderer could de
stroy the worker process and relinquish access. Subsequently,
however, the renderer must recover from the incomplete oper
ation performed by the destroyed worker.

Synchronization through the Display Manager

The display manager must maintain a data structure indi
cating the current organization of windows in the display. In

66

general, a window need not be rectangular, but rectangular win
dows lead to the simplest implementation. If rectangular win
dows are assumed, the data structures and algorithms described
by Pike [14] can be used. The data structures used by renderers
may vary a great deal from one type of renderer to the next. The
requirement that a renderer restrict its output to regions of the
frame buffer to which it has access means that renderers must
retain a list of clipping regions. The remaining data structures
depend primarily on the method the renderer uses to perform
image retention, if it implements retention. A text renderer might
simply retain an array of characters. Other renderers would re
quire more elaborate mechanisms.

The display manager is responsible for synchronizing all
window manipulation functions, including window creation,
deletion, translation (changing the location of a window), scal
ing (changing the size of a window), and stacking (changing the
priority of a window with respect to other windows). The two
principal effects of any window manipulation are that some
visible regions of windows become obscured and some ob
scured regions become visible. Window manipulation is thus
performed in two stages.

In the first stage, the display manager revokes access to
regions of the display that will be obscured by the manipulation.
The display manager cannot arbitrarily revoke access, but in
stead must request that a renderer relinquish its access to the
display. Those renderers whose access has been revoked must
take whatever action is necessary to preserve the contents of
their window and acknowledge the request. All the renderers
that must process such requests may do so in parallel.

The second set of requests to be sent by the display manager
grants display access to renderers whose windows are exposed.
A simple implementation might wait until all the requests revok
ing access have been acknowledged before sending the ftrst re
quest granting access. However, the display manager can grant
access to a region as soon as the manager has exclusive owner
ship of that region. That is, granting access to a region can pro
ceed when the previous owners of the region have given up that
ownership by acknowledging the request revoking access.
Thus, each grant request can be viewed as being blocked on a
set of revoke requests, and can proceed when all the revoke re
quests have been acknowledged. A renderer which is granted
access to a region of the display should immediately render some
image into that region. This image should be the best possible
based upon the image retention performed by the renderer. If no
image is available, a background should be rendered to erase the
region's previous contents.

These two phases of synchronization apply to all window
manipulations, but scaling and translation require an additional
step. Scaling a window requires that the renderer be informed of
the window's new dimensions. This step can be taken before the
revoke requests are dispatched. The interpretation of a change in
a window's dimensions is left to the renderers. The window

may be treated as a viewport or as a graphics window.3 If a
window is treated as a viewport, then a change in the size of the

3-r1le tenn graphics window is used to refer to the standard graphics
definition of window to distinguish it from the window system definition.

Graphics Interface '89

window results in the display of the same region of the world at
a different scale. If a window is treated as a graphics window, a
change in the size of a window results in a different region of the
world being displayed at the same scale. A renderer may choose
to implement either interpretation.

Translating a window requires that the renderer be informed
of the window's new location. One method of accomplishing the
translation is to revoke access to the display for all visible areas
of the window to be translated so that the renderer retains the
window's image, then inform the renderer of the new location,
and finally grant access to the renderer to regions of the display
on which the translated window is visible. This method is inef
ficient, however, as it may require copying the image twice and
storing the image temporarily. A better method is to revoke ac
cess only to regions of the window to be translated that will be
obscured after the translation. The translation message sent by
the display manager to the renderers can then imply the granting
of access to the display at the translated position for all remain
ing visible areas of the window, while simultaneously revoking
access to the old position. The renderer is thus given the option
of simply copying the image from one part of the display to
another.

Multiple window manipulations may take place simulta
neously. Because the display manager is merely an arbiter of
display ownership, it may be orchestrating the manipulation of
one window when another request arrives. Provided that the
second manipulation does not conflict with the first, some or all
of the granting and revoking of display access can proceed in
parallel and independently of the actions required by the first
manipulation. In some cases when manipulations do intersect,
certain optimizations may be possible. Consider, for example,
the situation when window A is translated to a new location.
Normally, this manipulation would result in the the granting of
access to the display to the renderer for window B which is un
derlying window A. However, if window C is manipulated to
occupy the location vacated by window A before window B has
been granted access to the display, then access can be granted to
window C instead, bypassing window B entirely.

Remaining Bottlenecks

Some limitations remain. The display hardware may be an
unavoidable bottleneck. It is important that the display support
concurrent access by multiple processes or processors. The
Matrox frame buffer boards in use in the prototype implemen
tation support atomic access to any pixel (byte) of the board
from multiple processors, but not atomic sub-pixel access. As a
result, it is possible to partition the frame buffer into independent
regions in X and Y but not into separate bitplanes. Support for
multiple write masks could alleviate this problem. In fact, the
fault does not lie solely with the Matrox boards but also with the
processor boards. The processors could support the atomic
read-modify-write cycle allowed by the YME bus, but do not If
the multiprocessor window system model is to be fully ex
ploited, the hardware must be designed with the requirements of
the model in mind. A more complete discussion of hardware
problems is provided in [3].

The other bottleneck that still remains is the display manager,
because it must process any attempt to manipulate windows.

67

However, window manipulation tends to occur infrequently
relative to rendering. This property is especially true of systems
that provide only user-driven window management. In contrast
to traditional window systems which grant clients access to the
display only for a small number of operations at a time, requir
ing clients to perform the same synchronization procedure over
and over again for their subsequent requests, the model pro
posed here grants clients access to the display until the window
configuration changes, thereby taking advantage of the static
nature of the configuration.

Cursors

Most window systems provide cursors limited to a few
colours and to a certain maximum size. There is almost always
only a single cursor available. So only a single pointing device
will interact with the user. Although one device is sufficient to
meet the needs of most traditional applications, more flexibility
on the part of the window system would lead to a richer envi
ronment. The protocol by which movement of the cursor is
controlled is important, but because we are describing only the
output components of the window system we will show only
how cursor images may be effected.

Cursors would, in most cases, be provided by processes
dedicated to that purpose. In many cases hardware may provide
the functionality required for cursors. However, it is likely that
more cursors than the hardware makes available may eventually
be required, or cursors with features not provided by the hard
ware may be needed. As a result, a "soft" cursor will be neces
sary. The only mechanism defined by the multiprocessor win
dow system model for the implementation of such a cursor is to
have a renderer perform that function . This method provides the
required functionality, because the cursor can be arbitrarily
shaped and coloured, but at the cost of introducing computa
tional overhead. The overhead arises from the violation of the
assumption that the window configuration is relatively static,
because the cursor is realized using a moving window.

Translating the cursor window requires at least two transac
tions between the display manager and other processes: an initial
request to the display manager to translate the window and a
message from the display manager to the cursor renderer indi
cating that the cursor window should be moved. If the cursor
window intersects other windows, then grant and revoke re
quests will be generated as well. Given the possibility of an
arbitrarily large cursor and any number of windows, it is not
possible to place a bound on the time required to move the cur
sor. The point at which the cursor will cease to provide the inter
active response required of it depends upon the system in use.
Whether the additional functionality provided by a "soft" cursor
outweighs the cost is a decision that has to be made on a per
implementation basis.

Renderer Flexibility

The benefits of the multiprocessor window system model are
most evident on a multiprocessor system, but some benefit is
derived on a uniprocessor system due to the division of the win
dow agent into two components. Even on a uniprocessor, ren
dering protocols and image retention models can be tailored to
the needs of an application by creating a new renderer type. For

Graphics Interface' 89

example, one renderer might emulate a character display be re
ceiving ASCII text and ANSI escape sequences, while a second
renderer acts as a PostScript interpreter, and a third acts as a
PRIGS engine. The abstractions the renderers provide to their
clients can thus vary from low-level pixel manipulations to high
level device independent graphics.

Moreover, a further advantage of the multiprocessor window
system model is that the renderers can be added and removed
dynamically while the remainder of the window system con
tinues to function. Because they have fixed imaging methods,
traditional window systems can add new functionality only by
building on top of existing methods, which introduces extra
overhead. The multiprocessor window system model allows a
new renderer to have direct access to the hardware if it desires,
or it can use the rendering facilities already provided by another
renderer. Other window systems, notably TheWA [10], also
have the ability to support multiple rendering protocols.

Because the scheduling of the processing of rendering re
quests is not specified by the multiprocessor window system
model, flexible process priority management mechanisms may
be exploited in operating systems that provide them. An oper
ating system that supports preemptive scheduling, for example,
makes it possible for one renderer to interrupt another that is
processing a request. This contrasts with the approach of some
server-based window systems which define their own sched
uling policy. For example, the sample X server from MIT will
process a maximum of ten requests from one client before
checking for requests from other clients. In a NeWS server [12],
rendering is performed by lightweight processes (tasks)
scheduled in a non-preemptive fashion . Thus it is impossible for
one task to interrupt another so a task which never voluntarily
blocks can prevent all other tasks from running.

A prototype implementation of a subset of these facilities is
described elsewhere [3] .

Conclusions

Conventional window systems have been designed with uni
processor architectures in mind, resulting in single-threaded
structures. The X Window System is one example, and its
implementation under Harmony has made its deficiencies ap
parent. The design of any software system should include
maximizing the potential parallelism possible [2]. It is much
more difficult to extract the parallelism from a sequential process
than it is to perform potentially parallel actions in sequence.
Hopefully the emergence of multiprocessor systems will in
fluence the design of window systems, such that one will take
advantage of the parallelism that is becoming possible.

The multiprocessor window system design presented here is
a first attempt to remedy the limitations of conventional window
systems by explicitly identifying those functions that may be
performed in parallel. Decomposition of the window agent into
two components, the display manager and the renderers, and
distribution of synchronization information to the renderers al
lows rendering to different windows to proceed independently
until the display is accessed. Because display access typically
represents only a small portion of total rendering time, this po
tential bottleneck will not be felt for a small number of proces-

68

sors. Thus the multiprocessor window system model removes a
significant bottleneck present in kernel-based and server-based
window systems.

References

[1] Rudolf Amheim. Visual Thinking. University of
California Press, Berkeley, 1971.

[2] K. S. Booth, W. M. Gentleman, and J. Schaeffer.
Anthropomorphic programming. Technical Report
CS-82-47, University of Waterloo, Waterloo, Ontario,
Canada, May 1982.

[3] Kellogg S. Booth, Barry M. Fowler, and Peter P. Tanner.
Experience with graphics support for a multiprocessor
workstation. In Proceedings of Parallel Processing for
Computer Vision and Display International Conference,
January, 1988.

[4] W. M. Gentleman. Message passing between sequential
processes: The reply primitive and the administrator
concept. Software Practice and Experience,
11(5):435-466, May 1981.

[5] W. M. Gentleman. Using the Harmony operating system.
Technical Report DEE NRCC/ERB-966, National Research
Council of Canada, May 1985.

[6] W. M. Gentleman, M. Wein, S. A. MacKay, D. A.
Stewart, R. K. Parr, and D. Green. Harmony, an
operating system for embedded industrial multiprocessor
applications. In Proceedings of Compint '87, November
1987.

[7] Jim Gettys. Problems implementing window systems in
UNIX. In Summer Conference Proceedings, USENIX
Association, 1986.

[8] James A. Gosling. Partitioning of function in window
systems. In F. R. A. Hopgood et aI., editor, Methodology
of Window Management, pages 101-106.
Springer-Veriag, 1986.

[9] Keith A. Lantz. Multi-process structuring of user interface
software. Computer Graphics, 21(2):124-130, April
1987.

[10] Keith A. Lantz, Joseph I. Pallas, and Michael A. Slocum.
TheWA beyond traditional window systems. Draft of
January 21, 1987.

[11] Keith A. Lantz, Peter P. Tanner, Carl Binding, Andrew
Dwelly, and Kuan-Tsae Huang. Reference models,
window systems, and concurrency. Computer Graphics,
21(2):87-97, April 1987.

[12] Sun Microsystems. NeWS preliminary technical overview.
Sun Microsystems, Inc., Mountain View, California,
October 1986.

Graphics Interface '89

[13] George Miller. The magical number seven, plus or minus
two: Some limits on our capacity for processing
information. In The Psychology o/Communication. Basic
Books, New York, 1967.

[14] Rob Pike. Graphics in overlapping bitmap layers. In
Proceedings 0/ ACMISIGGRAPH '83, published as
Computer Graphics, 17(3):331-356, July 1983.

69

[15] Roben W. Scheifler. X Window System protocol, Version
11 Release 1 edition, 1987.

[16] Roben W. Scheifler and Jim Gettys. The X Window
System. ACM Transactions on Graphics, 5(2):79-109,
April 1986.

Graphics Interface '89

