
70

Generating Graphical Interfaces from High-Level Descriptions

Gurminder Singht and Mark Green

Department of Computing Science, University of Alberta
Edmonton, Alberta T6G 2HI, Canada

tCurrent Address: Institute of Systems Science
National University of Singapore, Kent Ridge, Singapore 0511.

ISSGS@NUSVM.bitnet

ABSTRACT

The UofA* User Interface Management System (UIMS) gen­
erates graphical user interfaces based on a high-level descrip­
tion of semantic commands supported by the application. A
main part of the UIMS, called Diction, generates the dialogue
control component of interfaces. Diction enables the interface
designer to implement prefix, postfix, and nofix (or order-free)
syntax types in open-ended or close-ended selection modes.
The aim of this paper is to discuss in detail the design and
implementation of Diction.

Keywords: User Interface Design, User Interface Manage­
ment System, Dialogue Design Tools.

1. Introduction

We have developed a UIMS, called the UofA * UIMS,
which uses high-level descriptions of the semantic commands
supported by the application to generate graphical user inter­
faces. The goals of the UIMS are:

to automatically generate the lexical and syntactic design
of graphical user interfaces.

to enable the interface designer to refine the interfaces
produced by the UIMS.

Figure I shows the overall organization of the UIMS, the heart
of which consists of Diction, Chisel, and vu. Diction accepts a
description of the semantic commands and produces the dialo­
gue control component of the user interface. It also produces
output which is used, in conjunction with (display) device
description and optionally with the end user's preferences, by
Chisel to produce the presentation component of the interface.
The presentation component produced by Chisel can be
refined by the designer by using an interactive graphical facil­
ity called vu.

The aim of this paper is to discuss the design and imple­
mentation of Diction. Greater details about the UIMS and
how it is used can be found in [Singh87-Singh89a, Singh89c].
Diction generates dialogue control components capable of
handling prefix, postfix, and nofix (or order-free) syntax types.
It accepts a high-level description of commands supported by
the application and generates "event handlers" to implement
the dialogue control. The command description accepted by

Diction is based on implicit I/O event ordering [Hayes85].

Over the past few years a number of UIMSs have been
built which have proven to be effective in reducing the time
and effort required for creating user interfaces. There are,
however, a number of problems with most existing UIMSs.
These systems require detailed descriptions of the user inter­
face to be constructed. The descriptions cover details of the
presentation component, dialogue control component, and the
interface to the application. The first problem with this
approach is that to be able to use the system the designer must
be familiar with the notation used for describing the interface.
Most notations are complex, and gaining fluency in their use
takes much time and effort. The second problem is that since
the descriptions are quite detailed it takes a long time to pro­
duce them, and the descriptions are usually difficult to modify.
The third problem is that because the approach is expensive in
both time and effort, it discourages experimentation.

Most of these problems have been alleviated in our
UIMS by creating the interface from high-level descriptions.
This approach facilitates a rapid development of the interface
by directly converting the specification into its implementa­
tion. In this approach, the designer does not have to deal with
low level details, instead his main concern is with macro level
features of the interface

2. Generating a Dialogue Control Component

The UofA* UIMS provides the designer with a "semantic
command" metaphor for defining the interface. The basic user
interface definition is therefore in terms of the semantic com­
mands supported by the application. This command descrip­
tion is produced in a simple high-level notation. For a distri­
buted network editor the command description input to the
UIMS is shown in figure 2. This editor is used by the distri­
buted systems research group at the University of Alberta
[Singh89b] to create and edit a network of process templates.
The user can create connections between templates and associ­
ate attributes with them. The big advantage of this type of
description is that it is compact, and therefore easy to produce
and modify. From this description and a description of the
display device, the UIMS automatically generates the presen­
tation and dialogue control components of a graphical user
interface. This interface allows the user to enter commands
through menus and enter command arguments through

Graphics Interface '89

Device
Description

(from

End User's

71

Command

Figure 1. Structure of the UIMS

interaction with graphical interaction techniques. The default
presentation component generated by Chisel can be refined by
the designer by using vu (see figure I). This paper focuses on
how Diction implements dialogue control components of
graphical user interfaces.

Once the designer has provided the input shown in figure
2, a working prototype of the dialogue control component can
be generated by Diction. When linked with the presentation
component, the application interface, and the semantic rou­
tines, it completes the creation of the interface. In the default
dialogue control component generated by Diction, the com­
mands are parsed in the prefix close-ended fashion, i.e. the
command is selected before providing its argument values.
The entry of argument values is unordered. After a command
is executed it is deselected by the system.

Diction also generates textual help messages which
explain the syntax and argument requirements of the com­
mands. When the user selects a command, its corresponding
help message is displayed by the UIMS, unless the help facil­
ity has been disabled by the user.

There are a number of features of the dialogue control
component that can be controlled by the designer by making
minor modifications to the command description. Diction
enables the designer to implement commands in prefix,
postfix, and nofix syntaxes. Commands can also be selected in
open-ended or close-ended modes. Diction provides consider­
able flexibility in handling the command arguments. For
example, to make the Add_FirsCTemplate command work in
open-ended mode and to assume currently selected values
(CS Vs) for the icon_name, process_name, and the script_file
arguments, the designer modifies the command as follows:

Add_FirsC Template(icon_name:ICONS {CSV}, place:
WIND, process_name:PROCESS_NAME {CSV},
scripcfile:Fll..E_NAME (CSV))

To execute this Add_FirsCTemplate command, the user only
needs to provide the value for the place argument; other argu­
ments assume the current values of their respective interaction
techniques. Once selected, the Add_First_ Template command
can be used to add an arbitrary number of templates in the
work area.

Diction cuts down tremendously on the time required for
developing interfaces. In one of the experiments in which we
developed an interface for a three dimensional skeleton editing
system, the use of the UIMS resulted in a speed-up by a factor
of 28 over the University of Alberta UIMS
[Green85, Singh86]. The difference in time and effort would
have been even greater if comparisons were made with a con­
ventional programming language.

3. Design Goals of Diction

The chief design goal of Diction was that it should be
able to handle a variety of syntaxes. Diction enables the inter­
face designer to implement prefix, postfix, and nofix types of
dialogues. For a command of the form

command (argl, arg2)

the prefix syntax means that the command must be selected
before the arguments are selected. The arguments could be
selected in an arbitrary sequence. In the case of a postfix com­
mand, arguments must be selected before the command is
selected. The nofix syntax means following the prefix, postfix,
or any arbitrary sequence for selecting the arguments and the
command.

Diction also enables the designer to implement indivi­
dual commands in the interface in open-ended or close-ended
fashion. Open-ended commands accept an arbitrary number
of complete arguments. For example, an interface could sup­
port an Add-Object command which, once selected, allows
multiple objects to be added, one after the other, until another
command is selected. A typical input sequence for the above
command would be

command
argl arg2
argl arg2
argl arg2

command 1
args

Graphics Interface '89

r

72

/* The specification may start with a global declaration of syntax and selection types to be applied to all commands. The declaration
at the command level overrides the global declaration of syntax and selection types. If the global declaration is omitted , as in
this-case, the default syntax and selection types (PREFIX CLOSE_ENDED) are assumed. An example of this declaration is:

SYNTAX = NOFIX
SELECTION = OPEN_ENDED

Declaration of global arguments follows. ICONS is an enumerated type argument, having six enumerations.
The APPLICATION_NAME, PROCESS_NAME, FRAME_NAME, and ROUTINE_NAME arguments are of character type.
The WIND argument is of type pick (2d).·/

ICONS : (executive inpipeline pipeline terminal assimilator manager);
APPLICATION_NAME: char;
PROCESS_NAME : char;
FRAME_NAME: char;
ROUTINE_NAME : char;
FILE_NAME : char;
WIND : pick;

/*Commands are declared as follows. The command name is optionally followed by its syntax and/or selection type which is followed
by a variable-length list of command arguments. For each argument, its name followed by type (or range/enumerations) arc specified.
Argument type can be one of globals or it can be a standard type. Argument type may be followed by the default value in the case of
local arguments, or it may be followed by CSV (Currently Selected Value) in the case of global arguments.

For example, the Add_FirsC Template command has four arguments: icon_name, place, process_name, and script_file. All arguments arc
of global type.·/

Load (application_name : APPLICATION_NAME)
Add_FirsCTemplate (icon_name : ICONS, place : WIND,
process_name : PROCESS_NAME, script_file : FILE_NAME)

Add_Second_Template (icon_name: ICONS, place: WIND)
Remove_Template (place : WIND)
Make_Contractor (process_name: PROCESS_NAME)
Remove_Contractor (process_name : PROCESS_NAME)
Add_Resource_Manager (process_name: PROCESS_NAME,

place: WIND, scripcfile : FILE_NAME)
Add_Routines (OPEN_ENDED) (process_name : PROCESS_NAME (CSV).
calling.Jrame : FRAME_NAME, reply_frame : FRAME_NAME,
routine_name: ROUTINE_NAME)

Remove_Resource_Manager (place : WIND)
Add_Link (template} : WIND, template2 : WIND,
calling.Jrame: FRAME_NAME, reply_frame : FRAME_NAME)

Remove_Link (template! : WIND, template2 : WIND)
Save (application_name : APPLICATION_NAME)

/*The application_name arg of the Close command is a CSV type arg.·/
Close (application_name : APPLICATION_NAME (CSV))
QuitO

Figure 2. Command Description for the Distributed Network Editor

Diction also enables the interface designer to use default
and initial values for command arguments. The distinction
between the default and initial values is that initial values
apply to global arguments whereas default values apply to
non-global (or command-level) arguments. Globally declared
arguments are set to their initial values when the interface is
first started. The user can change the argument values through
interaction with the interface. The arguments which are not
global can have default values. The value of such an argu­
ment is set to its default value every time the command con­
taining the argument is selected. This argument value can also
be changed by the user. The difference between the use of
default and initial values is that initial values are set just once,
when the interface is initialized, whereas the default values are
set every time the command containing the default arguments
is selected.

The second major design goal of Diction was that it
should facilitate rapid prototyping of interfaces. This means
that it should enable the designer to produce a number of vari­
ants of an interface without much additional effort. In Dic­
tion, the designer can produce interfaces which are different
from each other by changing the global parameters of Diction,
or by changing command-level parameters. The macro as
well as micro level behavior of the interface can easily be con­
trolled by the interface designer.

The third design goal of Diction was that it should be
easy to use. Unlike a number of existing UIMSs (e.g. SYN­
GRAPH [Olsen83], the University of Alberta UIMS
[Green85], ALGAE [Flecchia87], Sassafras [Hi1l86], and
Scott and Yap's UIMS [Scott88]), Diction does not require
detailed specification to produce the dialogue control com­
ponent. It accepts a high-level specification of commands and
converts the specification into program modules which imple-

Graphics Interface '89

ment the dialogue control. Even though the command
description is at a much higher level than in many UIMSs, it
enables the designer to control the interface behavior to a very
low level.

4. Output of Diction

The dialogue control components produced by Diction
consist of program modules called "event handlers". An event
handler is a process (defined by a procedure or module) that is
capable of processing certain types of events. When an event
handler receives one of the events it can process, it executes a
procedure. This procedure can perform some computation,
generate new events, call application procedures, create new
event handlers, or destroy existing event handlers.

The behavior of an event handler is defined by a tem­
plate. A template consists of several sections that define the
parameters to the event handler, its local variables, the events
it can process, and the procedures used to process these
events. When an event handler is created, its template must be
specified, along with values for its parameters. The result of
the creation process is a unique name that is used to reference
the event handler. Several event handlers can be created from
the same template. Each of the event handlers created from a
template can have a different local state.

In the event model a dialogue control component is
described by the set of templates that define the event handlers
it uses. At the start of execution an instance of one of these
templates is created to serve as the main event handler in the
dialogue control component. This event handler will then
create (possibly indirectly) all the other event handlers. Con­
ceptually, all the event handlers in the dialogue control com­
ponent execute concurrently, processing events as they arrive.
Event handlers have been used in a number of UIMS, such as
the University of Alberta UIMS [Green85] and ALGAE [Flec­
chia87] for implementing dialogue control components.

The brief description of the event model presented here
should be sufficient to understand how Diction uses event
handlers to implement dialogue control components. How­
ever, if additional detail is of interest, [Green86] and
[Singh89c] can be consulted.

The complete dialogue control component designed by
Diction consists of a number of event handlers, and each event
handler is responsible for one well defined function. For
example, an event handler may be responsible for parsing a
particular command or for generating help messages. Diction
produces one event handler per command, which is responsi­
ble for handling default values for the command arguments,
parsing the command, notifying the presentation component
when errors occur, and notifying the application when the
command is successfully parsed. In addition to producing
event handlers for commands, Diction produces two event
handlers responsible for house-keeping and producing help
information for commands.

The structure of event handlers produced by Diction is
shown in figure 3. The keywords in figure 3 are printed in
bold. An event handler declaration is divided into four sec­
tions. The first section declares the name of the event handler.
In the event handlers produced by Diction, the event handler
name is the same as the name of the command parsed by the
event handler; only the case is inverted.

73

eventhandler sample is
token

var
type variable_name = initial_value;

event event_name (
statements

event evencname (
statements

end sample;

Figure 3. Structure of an Event Handler

The second section lists the input tokens that the event
handler can process. For each token name, this section also
declares an event name. This information is used to map
tokens into events for the event handler. In the event handlers
produced by Diction, command arguments are represented by
input tokens, and the event name for a token name is produced
by prefixing it with IN_.

The third section of an event handler declaration contains
the declarations of the event handler's local variables. Each
instance of the event handler has its own set of local variables,
there is no sharing of storage between instances. A variable
declaration consists of a type, a variable name, and an optional
initial value. In the event handlers produced by Diction, this
part of event handlers is rarely used.

The fourth section consists of event declarations. An
event declaration starts with the keyword "event" followed by
the name of the event. The body of the event declaration con­
sists of a number of C statements. These statements are exe­
cuted when an instance of the event handler receives this
event. The statements can reference the instance's local vari­
ables and the global variables in the program. The rest of this
section explains how event handlers are used to implement the
dialogue control.

. When the user interacts with the presentation component,
input tokens are produced. These tokens are added at the end
of a token queue reserved for the dialogue control component.
The run-time control removes these tokens from the front of
the queue, one at a time, and processes them. Processing a
token involves sending the event corresponding to the token to
the event handlers (see figure 4). An event handler receives
only those events which it can process.

When the application is first started, the run-time control
instantiates two event handlers. The first event handler is
called the HOUSE_KEEPER. It remains active throughout
the interactive session, and its main responsibilities include
initializing interaction techniques, instantiating event handlers

Graphics Interface '89

74

Queue for Input Tokens
for Dialogue Control Component

User I I I I !)

Figure 4. Run-Time Control

for commands, and maintaining data-structures used by the
dialogue control component. The second event handler, called
HELPER, generates help messages for commands selected by
the user.

When the user selects a command, an input token identi­
fying the command is generated . by th.e prese~tation com­
ponent. The run-time control converts this token Into an event
and sends the event to the HOUSE_KEEPER and the
HELPER. The HELPER generates a number of output tokens
for the presentation component which produce help messa~es
for the selected command. The HOUSE_KEEPER, on receiv­
ing the event, instantiates the event handler for the c.ommand
selected by the user. On instantiation, an !NIT event IS sen.t to
the newly created event handler automatically by the run-time
system. The new event han?ler, with ~ome help from the
HOUSE_KEEPER, is responsible for parsing the command.

When the user interacts with the presentation component
to provide argument values, tokens are converted into events
and sent to the HOUSE_KEEPER. The HOUSE_KEEPER
updates the status and values of the command arguments tied
to the event received. After doing so it generates a CHECK
token which is sent to the active command event handler. The
command event handlers treat the CHECK token as a signal
for a change in argument status and values. So on receiving
this token the event handlers check whether the argument
values they need are available or not. When the required argu­
ment values become available a token is generated for the
application. On receiving this token the application executes
the selected command.

For example, consider the Add_First_Template co~­

mand shown in figure 2. The event handler produced by DIC­
tion for this command is shown in figure 5. In the event
handlers produced by Diction, argument names provided ?y
the designer are replaced by the argument names prefi~ed with
the command name they belong to. This is necessary In order
to create unique argument names.

When the user selects the Add_FirsCTemplate com­
mand, its event handler shown in figure 5 is instantiated by the
HOUSE KEEPER, and an INIT event is sent to the
Add_FU;t_Template instance automatically. On receiving

this event, the Add_FirsCTemplate event handler sets the
status of icon_name, place, process_name, and scripcfile
arguments to UNDEF. When the user provides any of the
argument values, corresponding events (IN_ICONS,
!N_ WIND, IN_PROCESS_NAME or IN]ILE_NAME) are
sent to the HOUSE_KEEPER by the run-time control. For
each of the events, the HOUSE_KEEPER updates the status
and value of the corresponding argument, and generates a
CHECK token. The CHECK token triggers the
Add_FirsC Template event handler to determine whether the
command can be executed or not. When all the arguments are
defined, the Add_FirsCTemplate event handler generates a
token for the application. After doing so it informs the
presentation component to deselect the command, and it com­
mits suicide.

5. Implementation

Diction has been implemented in Lex [Lesk75] and Yacc
[Johnson75] on a V AX IlnSO running UNIxt 4.3 BSD. The
run-time environment is implemented in the C programming
language. The complete sequence of converting a high-level
command description into a user interface is shown in figure
6. The box named "Convert" converts the event handlers into
Cprograms.

6. Comparison with Existing Systems

The majority of existing UIMSs require a detailed
specification of the dialogue control component. The
specification may take the form of modified-BNF
[BleserS2, 0lsenS3, ReisnerSI , ShneidermanS2], tranSitIOn
networks [GreenS5, JacobS3, Newman6S, WassermanS5], and
invented languages [FlecchiaS7, Green85, HillS6]. Some nota­
tions are easier to use than others, but a common feature of all
the specifications is that they explicitly specify what
sequences of I/O events constitute a valid dialogue between
the user and the application, and these specifications are quite
detailed. As a result, producing a specification takes a great
deal of time, and since the specification is quite large it tends
to be error-prone and difficult to modify. Also, because these
specifications are based on explicit event ordering it is very
hard to support modeless interaction; modelessness has to be

Graphics Interface '89

75

I" Event Handler generated by Diction for the Add_FirsCTemplate command from figure 2 . .. ,

eventhandler aDD_fIRST_tEMPLA TE is I" PREFIX CLOSE_ENDED .. ,
token I" token declaration .. ,

CHECK IN_CHECK;

1"0n receiving the INIT event from the run-time component, set the status of arguments to UNDEF. This happens on instantiation of the
event handler ... ,

eventINIT(

)

Add_FirsCTemplate_icon_name.status = UNDEF;
Add_FirsCTemplate...Jllace.status = UNDEF;
Add_FirsC Template...Jlrocess_name.status = UNDEF;
Add_FirscTemplate_scripUile.status = UNDEF;
break;

1"00 receiving the CHEcK token from the HOUSE_KEEPER, first check whether all the argument values are available. If not do nothing.'"

event IN_CHECK (
if (Add_FirsC Template_icon_name.status == DEF &&

Add_FirsCTemplate...Jllace.status== DEF &&
Add_First_ Template...Jlrocess_name.status= DEF &&
Add_First_ Template_scripcfile.status== DEF) (

I"If the values are available, create a list of argument values and generate a token for the application to execute the Add_First_ Template
command. The list of argument values is sent as value of the token.'"'

values = (int '") calloc(4, sizeof(int »;
values[O) = Add_FirsCTemplate_icon_name.value;
values[l) = Add_FirscTemplate"'place.value;
values[2) = Add_FirscTemplate...Process_name.value;
values[3) = Add_First_Template_scripCfile.value;
send_token(APPLICATION, OUTPUT, Add_First_Template, values);

I" As the Add_FirsC Template command is a CLOSE_ENDED command, generate a token for the presentation component to deselect
the command'"'

send_token(PRESENTATION, INITIAL, "cmenu", "-I H);

I"Set the status of the Add_First_Template command to OFF and commit suicide.'"

)
)

cmd_Add_First_Template.status = OFF;
destroy _instance(selUd);

end aDD_fIRST _tEMPLATE;

Figure S. Event Handler for the Add _ First_Template Command

Command ... 1 Diction I _ a....
Description -...,L.. ____ ...JI"'""

event
handlers -..jL.._Co_n_v_ert_...JHL._c_c--,o_m_p_il_e_rJ

• run-time
support library

. user ~ t--­
mterface - . ~

other components

object
code for
dialogue
control

Figure 6. Converting Command Description into a User Interface

t Registered trademark of AT &T in the USA and other countries.

Graphics Interface ' 89

programmed into the interface specification. W~en compared
with these UIMSs, Diction is distinctly supenor. The first
advantage of using Diction is that the input it accepts is in a
simple high level notation. In an informal experiment, a
number of users were asked to create user interfaces for a
variety of applications. All the users found the notation to be
easy to learn and understand. Gaining fluency in the use of
the notation also did not take much effort or time. The second
advantage of Diction is that it significantly shortens the time
required to develop a dialogue control component, and also
reduces the chance of error to a minimum as the designer is
dealing with a compact and higher level of specification. The
third advantage of Diction is that it facilitates rapid­
prototyping of interfaces by using a specification which is
compact and therefore, easy to modify. The final advantage is
that the specification accepted by Diction specifies sets of I/O
events required by commands without mentioning any specific
ordering. As a result, it is easy to support modeless interac­
tion.

Approaches similar to the one followed by Diction have
been used in MIKE [Olsen86] and UIDE [Foley88,Foley89] .
MIKE accepts a high-level specification of semantic com­
mands supported by the application and generates programs to
implement dialogue control in prefix close-ended fashion . It
parses for command arguments in the specific order in which
they are specified in the command definition. This is the only
style which is supported by MIKE. A number of ambiguities
would have to be resolved if MIKE were to parse for com­
mand arguments in any order, or if it were to implement other
syntax types. Providing these facilities may require a com­
plete overhaul of MIKE's control mechanism.

UIDE provides a high-level conceptual design tool in
which the designer describes the user interface as a
knowledge-base. UIDE can algorithmically transform the
knowledge base into a number of functionality equivalent
interfaces, each of which is slightly different from the original
interface. The transformed interface definition can be input to
a UIMS, called SUIMS (Simple UIMS) which implements the
user interface. SUIMS implements the dialogue control in
prefix close-ended fashion. The command is selected before
its arguments which can be selected in an arbitrary sequence.
The main difference between SUIMS and Diction appears to
be the way in which the dialogue control is implemented.
SUIMS behaves like an interpreter whereas Diction generates
event handlers which implement the dialogue control. Also,
SUIMS's support for syntax is restricted to prefix close-ended
only (other syntax types are planned but not implemented yet
[Foley89]) .

7. Summary and Conclusions

An overview of the UofA * UIMS which generates graph­
ical user interfaces has been presented. An important part of
the UIMS, called Diction, handles the dialogue control com­
ponent of user interfaces. The general goal of Diction is to
enable the interface designer to quickly create and test various
types of dialogues. The approach it follows to achieve this
goal is based on implicit I/O event ordering. This approach
alleviates common problems associated with systems which
are based on explicit I/O event ordering and hence require
detailed interface specifications.

76

Diction generates dialogue control components capable
of handling prefix, postfix, and nofix syntax types. As far as
we know, Diction is the first system to provide support for
these syntax types, and is the first system to demonstrate that
various syntax types can co-exist in the same interface.

The UofA * UIMS has been used by a number of users to
create user interfaces for a variety of applications including a
3-dimensional skeleton editor used by the animation research
group, a distributed network editor used by the distributed sys­
tems research group, a stickman animation system, a fish ani­
mation system, and a paint program. These applications have
exercised a variety of Diction's capabilities, including flexible
syntax and automatic help. Based on this experience a
number of conclusions can be drawn. First, by using a
specification which is based on implicit I/O event ordering,
and by using a simple high level notation for the specification,
Diction eliminates much of the complexity associated with
constructing dialogue control components. Second, Diction
facilitates rapid prototyping of user interfaces by using a
specification which is compact and therefore, easy to modify.
Third, the use of Diction results in substantial savings in time
and effort required for creating user interfaces. As described
earlier, the use of the UofA * UIMS resulted in a speedup by a
factor of 28 over that of the University of Alberta UIMS for
creating the 3-dimensional skeleton editor interface. A major
part of the speed-up resulted because of Diction.

8. Acknowledgments
We would like to thank Chris Shaw of the University of

Alberta for reading and providing useful comments on an ear­
lier version of this paper.

References

Bleser82.
T W Bleser and J D Foley, Towards Specifying and
Evaluating the Human Factors of User-Computer
Interfaces, Con! on Humtln Factors in Computer
Systems, Gaithersburg MD ., Mar. 1982,309-314.

Flecchia87.
M A Flecchia and D R Bergeron, Specifying Complex
Dialogs in ALGAE, Proc. CHI+GI' 87 Humtln Factors
in Computing Systems, Toronto, Ont., Canada, Apr. 5-9,
1987,229-234.

Foley88.
J D Foley, C Gibbs, W C Kim and S Kovacevic, A
Knowledge-Based User Interface Management System,
Proc. CHl'88 Humtln Factors in Computer Systems,
Washington, D.e., May 15-19,1988,67-72.

Foley89.
J D Foley, W C Kim, S Kovacevic and K Murray,
Defining Interfaces at a High Level of Abstractions,
IEEE Software, Jan. 1989,25-32.

Green85.
M Green, The University of Alberta User Interface
Management System, Computer Graphics 19, 3 (July
1985),205-213. (Proc. SIGGRAPH'85 Conf., July 22-
26, 1985, San Francisco, California).

Graphics Interface '89

Green86.
M Green, A Survey of Three Dialogue Models, ACM
Transactions on Graphics 5, 3 (July 1986),244-275.

Hayes85.
P J Hayes, P A Szekely and R A Lerner, Design
Alternatives for User Interface Management Systems
Based on Experience with COUSIN, Proc. CHI' 85
Human Factors in Computing Systems, San Francisco,
Apr. 14-18, 1985, 169-175.

Hi1l86.R D Hill, Supporting Concurrency, Communications
and Synchronization in Human-Computer Interaction­

The Sassafras User Interface Management Systems,
ACM Transactions on Graphics 5, 3 (July 1986), 179-
210.

Jacob83.
R J K Jacob, Executable Specifications for a Human­
Computer Interface, Proc. CHI 1983 Human Factors in
Computing Systems, Boston, MA, Dec. 12-15, 1983,
28-34.

Johnson75.
S C Johnson, Yacc: Yet Another Compiler-Compiler,
Technical Report 32, AT &T Bell Labs, Murray Hill,
New Jersey, 1975.

Lesk75.
M E Lesk and E Schmidt, Lex - A Lexical Analyser
Generator, Technical Report 39, AT&T Bell Labs,
Murray Hill, New Jersey, 1975.

Newman68.
W M Newman, A System for Interactive Graphical
Programming, Proc. Spring Joint Computer Con/. ,
1968, 47-54.

01sen83.
D R Olsen and E P Dempsey, SYNGRAPH: A
Graphical User Interface Generator, Computer Graphics
17, 3 (July 1983),43-50. (Proc. SIGGRAPH'83 Conf.,
July 25-29, 1983, Detroit, Michigan).

01sen86.
D R Olsen, MIKE: The Menu Interaction Kontrol
Eiwironment, ACM Transactions on Graphics 5,4 (Oct.
1986),318-344.

Reisner81.
P Reisner, Formal Grammar and Human Factors Design
of an Interactive Graphics System, IEEE Transactions
on Software Engineering SE-7, 2 (Mar. 1981),229-240.

Scott88.
M L Scott and S Yap, A Grammer-Based Approach to
the Automatic Generation of User-Interface Dialogue,
Proc. CHI'88 Human Factors in Computer Systems,
Washington, D.e., May 15-19, 1988,73-78.

Shneiderrnan82.
B Shneiderman, Multiparty Grammars and Related
Features for Defining Interactive Systems, IEEE
Transactions on Systems, Man and Cybernetics SMC-
12,2 (1982), 148-154.

Singh86.
G Singh and M Green, Automatic Generation of
Graphical User Interfaces, Proc. Graphics Interface ' 86
, Vancouver, B.C., May 26-30,1986,71-76.

77

Singh87.
G Singh and M Green, Visual Programming of
Graphical User Interfaces, Proc. 1987 Workshop on
Visual Languages, Linkoping, Sweden, Aug. 19-21,
1987,161-173.

Singh88a.
G Singh and M Green, vu - visual user-interface design
workshop, Graphics Interface '88 - Film Show ,
Edmonton, Alberta, Canada, June 6-10, 1988, video
tape.

Singh88b.
G Singh and M Green, Designing the Interface
Designer's Interface, Proc. ACM SIGGRAPH
Symposium on User Interface Software, Banff, Alberta,
Canada,Oct. 17-19, 1988, 109-116.

Singh89a.
G Singh and M Green, A High Level User Interface
Management System, Proc. CHI' 89 Human Factors in
Computing Systems, Austin, Texas, Apr. 30-May 4,
1989, (in press).

Singh89b.
A Singh, FrameWorks Model of Distributed Computing
in Workstation Environment, Ph.D. Thesis, Univ. of
Alberta, Edmonton, Alberta, Canada, 1989. (expected).

Singh89c.
G Singh, Automating the Lexical and Syntactic Design
of Graphical User Interfaces, Ph.D. Thesis, Dept. of
Computing Science, University of Alberta, Edmonton,
Canada, 1989.

Wasserman85.
A I Wasserman, Extending State Transition Diagrams
for the Specification of Human-Computer Interaction,
IEEE Transactions on Software Engineering SE-Il, 8
(Aug. 1985), 699-713.

Graphics Interface '89

