
78 

Adding Colour to the Workstation Environment 

William Cowan 
Department of Computer Science 

University of Waterloo 
Waterloo, Ontario, N2L 3G 1 

ABSTRACT 

Colour is an increasingly common feature of computer 
workstations. New ideas, algorithms and knowledge are 
needed to harmonize the user's desire for improved aesthetic 
appeal and the programmer's desire for an interface of 
greater functionality. This paper discusses several areas in 
which colour leads to novel functionality, visual search , 
grouping by colour and colour coding. The current obstacles 
to wider use of these effects are scientific : research is needed 
to develop colour specifications that allow their precise 
exploitation. As soon as they are overcome, however, 
conflicts between aesthetic and functional use of colour will 
become important. The solution of that problem will require 
a much better understanding of visual context. Visual context 
is especially important for window systems, the user 
interface of choice on modem workstations, since it is 
desirable that applications should be able to run unaware of 
other applications with which they share the display surface. 
If the window system can create a separate visual context for 
each application many colour problems are solved, but not 
all. Non-local properties of colour may still require 
information sharing among applications . 

RESUME 

La couleur est une caracteristique de plus en plus repandue 
des postes de travail informatiques. L ' usager recherche 
l'esthetique, tandis que le programmeur s'efforce de creer un 
interface toujours plus fonctionnel ; la reconciliation des deux 
necessite de nouvelles idees, algorithmes et connaissances 
dans le domaine. Cet article explore quelques domaines ou la 
couleur parvient a innover la fonctionnalite, la recherche 
visuelle, le groupement par couleur et le codage par couleur. 
L'usage plus repandu de ces effets fait presentement face a 
des obstacles d'ordre scientifique: cela requiert le 
developpement de specifications de coloris permettant leur 
exploitation exacte. Une fois surmontes, le conflit entre 
1 'usage esthetique vs fonctionnel des couleurs prendra de 
l'importance. La resolution de ce probleme exigera une 
comprehension bien plus poussee du contexte visuel. Le 
contexte visuel est particulierement important en ce qui 

concerne les "systemes de fenetres", l'interface-usager de 
choix sur les postes de travail plus recents, puisqu'il est 
avantageux qu 'une application puisse fonctionner 
independamment des autres applications avec lesquelles eJle 
partage la surface d'affichage. Un nombre de problemes 
associes avec la couleur sont resolus si le systeme de 
fenetres peut fournir un contexte visuel distinct pour chaque 
application, mais pas tous. Certaines proprietes non-locales 
des couleurs peuvent encore necessiter un part age 
d'information parmi les applications. 

I. INTRODUCTION 

A. Modern workstation hardware 

One of the most interesting developments currently 
taking place in computing is the trend toward more 
distributed systems. These changes are the culmination of a 
process that began in the mid 1960s, a process that has 
moved computation away from a shared central facility 
towards an environment in which each worker is 
computation ally self-sufficient. Graphics has undergone a 
similar evolution, from centralized plotting and display 
facilities to local display capabilities, at least for soft copy. 
The current state-of-the-art in this process is the engineering 
workstation, which combines local computation with high 
quality soft copy graphics. Workstations span a wide range 
with fuzzy limits, from fully configured personal computers 
to machines that bill themselves as supercomputers. What 
they all have in common is the integration of text and 
graphics on a bit-mapped display, a more or less graphical 
user interface and a display surface organized as windows. 
Most machines of this type have bilevel displays capable of 
only two values, white and black, at each pixel. But 
increasing numbers of workstations are available with colour 
displays. The purpose of this talk is to explore some of the 
problems and opportunities inherent in this new 
development, particularly those that occur in the graphical 
interface. 

Four levels of colour are available in the workstation 
market. The bilevel displays mentioned above have one bit 
of graphics memory per pixel and are capable of two 
colours, usually black and white. Visual textures are 

Graphics Interface '89 



commonly used on these machines to perform colour 
functions and are surprisingly similar. A few grey scale 
machines, having monochrome displays with more than two 
levels of grey, exist, usually with eight bits per pixel for 256 
levels of grey. More common are pseudocolour machines 
which combine memory of this depth with a colour map to 
make available 256 discrete colours from a much larger 
palette. At the top of the range are full colour machines with 
24 bits per pixel, making possible the independent selection 
of 256 levels of each of red, green and blue. These 
capabilities are most applicable to CRT-based, soft copy 
displays. In addition, colour printers are becoming more 
common, so much so that they are likely to be normal 
workstation adjuncts in the near future. 

A capability important in workstations is the ability to 
run more than one application program at a time, usually in a 
separate window. This feature creates one of the most 
challenging problems in using colour, since the interaction 
between information displayed by different applications must 
be controlled. The window system has the responsibility for 
managing a visual environment in which each application can 
run independently of the other applications. Thus, much of 
the discussion to follow considers functional properties that 
any window management software should provide. 
Implementation details are left as an exercise. 

B. Why do users want colour? 

It is interesting to watch as users experiment with 
workstations that have colour. Usually, they begin by 
creating an uncontrolled riot of colour, working hard to 
obtain as much colour as possible in applications and in the 
window software. Why? The obvious interpretation is that 
colour enriches the visual environment provided by the 
workstation. In addition, the ability to create personal colour 
schemes allows the user to express his or her individuality in 
and through the display. These motivations are essentially 
identical to the ones that impel people to paint their living 
rooms or to hang pictures on the walls of their offices. Later 
on users seem to notice the deficiencies in their colour 
choices and then divide into two groups. Those willing to 
spend the time tune their colour choices to obtain a more 
aesthetic display personality. Other users reduce their colour 
usage until colour plays only a functional role. 

In contrast, application creators seem to focus on using 
colour to provide additional information to the user, or to 
enhance existing information. When user control of colour 
schemes is made available, it is often done, as in X [1], 
through a level of indirection, like foreground, background, 
highlight, which assumes implicitly that the user wants 
colour to reinforce functional categories in the displayed 
information. 

This divergence of interest appears to demonstrate an 
opposition between function and aesthetics. For example, if 
the user is allowed to colour window borders red how will 
the application's use of red as a waming colour possibly 
work? In this view the conflict lies between programmers 

79 

and users and rejecting aesthetic colour for the benefit of 
functional colour is anti-user. I will suggest that the conflict 
can be resolved, based on a better understanding of 
functional colour. First, however, we must see that there are 
additional complications when a variety of applications share 
the display surface. 

C. The user is a resource shared by applications 

The key concept when several applications share a 
workstation is synchronization. Some system resources, like 
printers, can be used by only a single application at a time; 
otherwise output from several applications is inappropriately 
mixed together. System software spools the output, thereby 
serializing access to the device. The display cannot be treated 
like a printer since it is essential that several applications 
have access to it at the same time. The solution is to break 
the display into a large set of resources, one for each pixel. 
Sets of pixels are then parcelled out by window system 
software and made available for the output of applications. 
Since the system interjects itself into the graphics pipeline by 
managing the clipping region, applications are able to write 
to the screen independently of one another. The next two 
paragraphs describe several other synchronization problems. 
In each of them extra hardware tums out to be a possible 
solution. Such is not the case for pixels, since an important 
feature of a window system is centralization of diverse 
information in a single location. 

The colour map is a more complicated resource to 
manage since it must be used simultaneously by all 
applications. A dynamic strategy similar to the pixel strategy 
is possible. The colour map is broken into a large set of 
small resources that are handed out each time an application 
needs another colour. Unfortunately, this strategy does not 
fail gracefully when the resource is exhausted. Thus, a static 
strategy is often better. The system decides in advance on a 
reasonable compromise among the demands it is likely to 
receive and sets up the colour map accordingly. It then 
presents an application with the colour closest to the one 
requested. The compromise allows all applications to share 
the colour map. Note that it is always possible to improve 
the performance of static strategies by providing extra 
hardware, additional colour maps in this case. 

There is a final reason for synchronization, atomic 
access. If, for example, an application sets a write mask then 
writes through it, no other application may change the mask 
before the write is complete. Synchronization, provided by 
the system, serializes access to provide the atomic access 
needed. Here, as for the colour maps, extra hardware 
provides significant assistance. 

It is important to notice that the user's perceptual 
systems are a shared resource, just like the workstation 
hardware, and that synchronization issues apply to them 
equally. Here are a few examples. (1) The human visual 
system parses a scene into a set of objects and extracts 
information from each object in tum. Information must 
remain consistent within each object during the time that 

Graphics. Interface '89 



information may be extracted from it. (2) The visual system 
is capable of associating meaning with displayed colours. 
Applications can agree on a static strategy for sharing a 
common colour/meaning association or colours can be 
dynamically allocated to applications by the system software. 
(3) The state of adaptation of the user's visual system is an 
important factor affecting what colour is perceived. It is 
controlled partly by the contents of the application window, 
partly by the remainder of the visual environment. An 
application can manipulate the display so as to create the 
adaptive state appropriate to an item of information. Clearly 
this adaptive manipulation and the ensuing display of 
information must be an atomic operation. 

We choose to call such issues "synchronization of 
content" in contrast with synchronization of hardware 
devices. In window systems synchronization is generally 
used to describe the process by which the system controls 
access to the media, pixels, colour maps, and so on, used by 
applications for communication with the user. By contrast 
the form of synchronization at issue here relates to the 
content of information displayed in the windows. Ideally an 
application should be able to display output without regard 
for the contents of windows owned by other applications. 
Then it would be the responsibility of the system software to 
manage the visual interactions among all the windows so that 
the intent of each application was satisfied. Unfortunately , 
since the perception of colour is based on global properties 
of the stimulus, all pixels in the display interac t. Thus, given 
currently available synchronization techniques it is possible 
to synchronize content only if applications communicate the 
information they wish displayed to the system software and 
allow it to take things from there. Insufficient understanding 
of perceptual information processing is currently an 
insurmountable obstacle to this objective. 

D. A few important facts about colour 

A better understanding of the effect of colour on 
multi-window display surfaces is possible in the context of a 
few basic facts about colour. These facts are based on the 
opponent channels model of colour vision [2] . The model 
includes two stages of processing. The first consists of the 
three cone types, red, green and blue. Each absorbs photons 
with a characteristic responsivity, creating the trivariate 
colour signal. In the second stage these three signals are 
combined into three opponent channels. One is achromatic, 
responsive to most wavelengths of light because it is excited 
by all three cone channels [3] . The other two channels are 
chromatic, red/green, which is excited by red cones and 
inhibited by green cones, and yellow/blue which is excited 
by red and green cones and inhibited by blue cones. 

Achromatic versus chromatic channels 

The achromatic channel has several characteristics that 
distinguish it qualitatively from the chromatic channels. Its 
responsivity is related linearly to the cone responsivities. It 
responds better to stimuli that vary quickly, both temporally 

80 

and spatially. Thus, it responds to edges while the chromatic 
channels respond to areas. The achromatic channel extracts 
contrast from stimuli while the chromatic channels present 
absolute perceptions [4]. 

The perception of colour is not localized 

Spatial and chromatic information are multiplexed on 
the same processing units when the opponent signals are 
created. Thus, the colour perceived at a given location 
depends on cone signals distributed throughout the stimulus. 
Because the spatial characteristics of achromatic and 
chromatic channels differ, the dependence of perceived 
colour on distributed input also varies. In general achromatic 
perception depends on more local variation than does 
chromatic perception. 

Colour naming is surprisingly regular 

Experiments with unique hues [2] show that colour 
naming is very consistent, both within and across observers, 
when the right naming protocol and visual conditions are 
established. The regularity of colour naming using ten or 
eleven colour names can be used as the basis for a natural 
categorization of colour [5]. 

Blue has extreme chromatic behaviour 

Signals from blue cones seem to participate in a 
mechanism that has extreme chromatic behaviour. The 
spatial resolution of the blue part of the stimulus is limited by 
chromatic aberration; blue cones are sparse in the retina; and 
the yellow/blue channel has very limited spatial resolution. 
Taken together these indicate that distinctions mediated 
solely by blue cones, such as yellow-white and blue-black, 
are very poorly localized in space. 

E. Summary 

The last few sections illustrated several issues that crop 
up when colour is introduced into the work station 
environment. The next few consider those issues in more 
detail, first those that occur within a single application, then 
those that involve the interaction of several applications, and 
finally those that are the special concern of the window 
system. 

11. WITHIN AN APPLICATION 

Within a single application, colour problems are similar 
to those that have existed in colour graphics for many years. 
Therefore the issues are relatively well-defined. It is 
surprising, however, to notice how few of these problems 
have clear cut solutions. Consequently, much of the 
discussion describes problems without giving more than 
hints at solutions. 

Note that although each problem or capability is 
well-defined within a single application or window, it has a 
substantial system-wide component. Every example defines 

Graphics Interface '89 



a capability that almost every application needs. Thus 
providing facilities on an application by application basis is 
extremely wasteful. Furthermore, many of the examples, 
including colour harmony and all the functional capabilities, 
produce significant interference when used in an 
environment where more than one application is visually 
present at the same time. 

A. The aesthetic use of colour 
This area of colour use has been little explored. It can 

be broken down into two categories. The first is the creation 
of screen designs that are aesthetically satisfying. The 
second is the preservation of aesthetically appealing features 
of images. The latter has been more popular in graphics 
research, largely because it seems more easily quantifiable. 
Nevertheless tools that help the users of colour displays to 
solve the problems inherent in finding an appealing set of 
colours are very much in demand. 

1. Colour harmony 
A user who decides to colour the elements of an 

application must choose many colours. Finding a 
harmonious set of colours is very difficult since it is 
equivalent to searching a space of high dimension, a task 
humans do not perform well. Existing colour selection 
techniques force him or her to make each choice 
independently of the others, which increases the difficulty. 

Colour choice can be implemented in two ways. A 
colour choice facility can be integrated with the application. 
Alternatively it can be implemented as system software with 
colours communicated to the application when its execution 
begins. The first alternative makes choosing a set of colours 
easier since the feedback cycle is short. But it makes 
system-wide coordination of colour difficult to implement. 
The second alternative, while it makes colour coordination 
easier, and while it enforces consistency in colour choice 
technique, has a feedback cycle--<:hoose colour set, start 
application, inspect colour combination, terminate 
execution-that is often so long as to be unendurable. (A 
third option is common in practice, of course. The 
application programmer codes colours into the application 
and the users live with his or her taste, like it or not.) 

Design books with colour schemes that can be 
implemented as algorithms do exist (e.g. (6)). Colour 
selection techniques are well understood [7] . Putting the two 
together with better communication between system and 
application would make possible colour choice techniques 
that generate colour schemes on the basis of a small number 
of user choices. Once in place such tools would provide the 
basis for the experimentation needed to understand colour 
harmony better. 

2. Windows spanning several display surfaces 
Some workstations make it possible to have windows 

that span more than one display surface. Windows that do so 
offer the human visual system conditions for optimal 
discrimination of colour mismatches-large field, 

81 

simultaneous presentation, small separation-and attention is 
focussed on the area in which the mismatch may occur. (In 
fact, the field of view is large enough that inhomogeneities in 
the visual field may be significant. Thus, if the CRTs have 
different phosphor sets a visual match may be impossible, 
regardless of calibration.) At the same time the CRT is 
judged on the weakest aspect of its performance, its colour 
balance. Techniques exist for calibrating CRTs and other 
display surfaces. [8] They can form the basis for tools to 
solve this problem. But the measurements require costly 
apparatus and skilled operators. Thus it is worth asking 
whether a restrictive policy of removing the display spanning 
capability might in fact be better. 

3. Colour transfer between media 
Applications that create colour images need to be able 

to print them satisfactorily. This problem is hard. Existing 
methods for colour printing [9, 10] require extensive 
measurement and some hand tuning on an image by image 
basis. Progress on automated colour printing is blocked on a 
shortage of scientific data showing what features of an image 
are important to its appearance. 

B. The functional use of colour 
Colour can be used to increase or reinforce the 

functional capability of an application. Current uses are 
based on a small set of properties of colour. They are all 
based on the non-locality of colour. (Non-locality means not 
that colour has no precise spatial location, because it has, but 
that the effects of colour are felt outside its precise spatial 
location .) Interestingly, this non-locality means that anyone 
of these effects presents problems when used in a window 
system. These problems arise because the effects are 
predictable to the application only when the operations are 
confined to the area it controls. 

1. Physical and conceptual properties of objects 
Colour is a potent source of information about the 

physical properties of objects. In choosing food, for 
example, it is often the main differentiating factor between 
ripe and unripe. This power can be transferred to conceptual 
properties. When we associate the colour red , for example, 
with stop we are using it to indicate a conceptual property of 
the red object. Note that this effect is strongly context 
dependent: red means ripe for apples but yellow means ripe 
for bananas; green means edible for broccoli but green 
means inedible for meat. Similarly, conceptual properties can 
also be made context dependent. Red on a stop sign has a 
different meaning than red on a no stopping sign; the context 
is determined by the shape of the red area and its relationship 
to other visual objects. The ability to relate a colour to a 
conceptual property is the basis of colour coding. 

2 . Connectivity and grouping 
Colour is an important factor in showing that two 

fragments are actually part of the same object. In a similar 
way the visual system is also able to assemble fragments of 

Graphics Interface '89 



the same colour into a single visual group [11] . This ability 
is presumably based on the necessity of seeing different 
shapes as parts of a single occluded object. Colour is not the 
only visual property capable of grouping. Texture and 
motion, for example, also perform this function, but colour 
is particularly useful because grouping can be combined with 
colour coding. For example, seeing the highways or cities 
on a road map is usually assisted by grouping. 

3. Visual search 
Colour is very important as a cue in visual search. It is 

possible to search a large part of the visual field in parallel 
for objects of a given colour [12]. This effect can be used in 
two ways. First, it can provide a fast channel for time-critical 
communication, as occurs in the display of avionic 
information. Secondly, it can provide selective access to 
subsets of displayed information. This feature is important 
when the displayed information is very dense, as in maps 
and circuit layouts. 

4. Commonalities 
These examples of the functional use of colour have a 

great deal in common. It is easy to show that they work by 
designing displays that use them or by finding examples of 
effective displays that contain them. But there are few tools 
to help us. Research in avionics [13], for example, showed 
that the CIELUV uniform colour space provides a good 
basis for selecting colours for some tasks. If it is reasonable 
to assume that this result is generally applicable, we still face 
a significant calibration effort to choose colours based on it. 
Is there a simple technique that provides a good 
approximation with little calibration? Boynton's naming 
research[5] was based on the OSA colour system. Once 
again achieving exact colours depends on having an exact 
calibration available. But reality is even more complicated. 
Boynton did his research in an extremely simplified visual 
environment. How will the results change in the visually 
richer environment of the workstation CRT? 

These and similar question, which exist for all the 
effects mentioned, indicate that a good prototyping 
environment [14] is most important if colour is to be well 
exploited. It requires software tools for aesthetic colour and 
an experimental methodology that makes it possible to derive 
engineering guidelines without the overhead of formal 
experimentation. Unfortunately the results generated in 
engineering experimentation are usually insufficient in 
generality to be used directly by other researchers. Thus, a 
further wrinkle on the needed methodology is sufficient 
commonality under differing experimental environments 
such that pooling of results will yield the generality that no 
single experiment can. 

C. Functional and Aesthetic 
When this topic is discussed the phrase is usually 

"functional versus aesthetic". The opposition is assumed to 
arise because purely aesthetic use of colour introduced by the 
user interferes with functional use of colour introduced by 

82 

the programmer. For example, if the programmer chooses 
red as the selection colour, intending the user to find selected 
items quickly using parallel search, then any aesthetic use of 
red is assumed to interfere with the search. But does it? 
Clearly there are extreme colour usages in which it does. 
Choosing red for the background makes the selection 
completely invisible. There are also some usages in which it 
does not. Choosing a red title bar is unlikely to interfere. 
Between such obvious examples it is difficult to give 
guidelines. A better understanding of the psychological 
processes that underlie the various phenomena is badly 
needed. 

In thinking about the problem, context should not be 
overlooked. A new visual context resets most colour effects. 
Aesthetic use of a colour in one context should not impede 
functional use of the colour in another context. But it is not 
possible to give a prescription for context and it is even 
unclear that visual context is a unitary phenomenon [15]. In 
general terms, context is created by visual distinctness. 
Thus, increasing visual context is gained at the cost of 
interface inconsistency. In particular, user control over 
colours within applications is likely to create context 
differences and inconsistency simultaneously. Intervention 
by the window system, described below, is likely to be a 
more attractive idea. A better understanding of the factors 
that create visual context and of the effect of context on the 
variety of colour functionality is important if the polarity 
between context and consistency is to be well used. 

Ill. BETWEEN APPLICATIONS 

A. Synchronizing colour hardware 
Synchronizing the use of hardware by different 

applications is performed routinely by a wide variety of 
techniques. Some novel features appear, however, when we 
consider in detail synchronization of the colour map. The 
solution of choice is a static one, with the system finding a 
setting of the colour map that contains every colour desired 
by every application. Then applications can share the colour 
map without reference to the system. Such a strategy is 
usually successful only with full colour displays. For 
pseudocolour displays a dynamic synchronization strategy is 
required. When an application needs a new colour it requests 
a colour map entry and uses it. Commonly, however, the 
system runs out of entries, at which point this allocation 
strategy breaks down . Running out can be postponed if the 
system ensures that applications using the same colour, like 
black or white, use the same entry. The most efficient use of 
entries involves system monitoring of colours used by 
applications, with the system managing the colour map in 
whatever way maximizes the ability of applications to get the 
colours they need. The important point is that management 
of the colour map is best done when the system knows what 
colours each application needs, a small but important part of 
the content of its windows. We will see below that "running 
out of colours" is an even more severe problem perceptually 

Graphics Interface '89 



since there tend to be many fewer usable colours than are 
commonly found in the colour map. 

B. Synchronizing colour perceptions 
There are a variety of ways in which colour used in one 

application can interfere with another application's use of 
colour. For functional colour the issues are at least 
understandable, if not soluble. For aesthetic colour they are 
much less concrete. 

1. Functional colour 
Some uses of functional colour rely on visual effects 

that explicitly utilize the ability of colour to act non-locally. 
Examples are visual search, creating connectivity and 
creating groupings. It is usually important that visual search 
should not find an object of the same colour but belonging to 
another application, and it is equally important that 
connectivity to or grouping with fragments created by 
different applications .should not occur. The usual 
synchronization strategies exist. A static one allocates a 
particular property to each colour so that every object of the 
given colour is a target of the search, regardless of the 
application that created it. This sort of approach is also 
effective at enforcing consistency of colour use across 
applications. Unfortunately it comes up short because there 
are simply not enough colour categories. Dynamic strategies 
that allocate colours as needed are worse, since they give up 
consistency without decreasing the number of colour 
categories needed. Considering colour as a resource to be 
serialized is likely to be more effective. Thus, for example, 
only the active window might be allowed to use colour with 
all other windows displayed in grey scale. Of course, what 
is really being synchronized is the user's access to 
information mediated by colour. Therefore it may be 
possible to enhance performance by subdividing the user 's 
colour associations. Manipulation of visual context provides 
the mechanism. If it is possible to organize the display so 
that each window acquires its own visual context then the 
search is confined to a single window. Currently rules for 
the creation of visual context are heuristic. Wide borders 
with strong visual texture and drop shadows, for example, 
are thought to be effective. Better research, leading to tools 
for the manipulation of visual context, is badly needed. 

The opposition between context and consistency is 
important. When creating a new visual context we explicitly 
differentiate part of the display using visual texture, colour 
or any other visual cue. Because this differentiation weakens 
colour associations it is possible to build new ones. The new 
associations effectively reuse colour categories which are a 
scarce resource. Differentiation opposes consistency, which 
aims to give the system as a whole, including applications, a 
homogeneous interface to quicken learning and familiarity . 
Providing a visual environment in which applications can 
take advantage of both context and consistency is an 
important role of the graphic elements owned by the window 
system, as we will see in section IV. 

83 

2. Aesthetic 
It is obvious that unsuitable neighbours can destroy the 

appeal of the most carefully constructed colour scheme. Two 
solutions to this problem are possible. The first is to 
coordinate colour choices throughout all applications. Doing 
so on an organized basis is likely to impose undesirable 
uniformity. But it is possible for the system to make small 
colour adjustments that bring the whole into a more desirable 
aesthetic balance. Such adjustment would require aesthetic 
principles embodied in algorithms and would be 
unobjectionable if done well. Similar adjustments of colours 
used functionally would, on the other hand, not be possible. 
The second solution to the problem of unsuitable neighbours 
is to use border elements like the frame of a picture to isolate 
the visual environment within a window. The use of border 
elements to create context also provides a reasonable solution 
for problems of interference between aesthetic colour in one 
window and functional colour in another. 

IV. WITHIN THE SYSTEM 

The window system should provide a set of tools that 
assist users and programmers in organizing displays and 
using colour. While helping to create a display that is 
aesthetically appealing and easy to use they should promote 
consistency in a visual environment in which each 
application is able to maintain a discrete visual context. 

A. System-wide tools 
Applications need tools that allow the user to create 

sets of colours. Using a tool supplied by the system-the 
colour picker in the Macintosh [16] system is an example of 
such a tool-has two advantages. First, the user sees the 
same interface each time he or she chooses colours, ensuring 
the advantages that consistency in the interface makes 
possible. This consistency has no cost in visual context since 
the method of choosing colours creates consistency while the 
colours chosen create the visual environment. Secondly, it 
may be possible for the system to use its role in colour 
selection for enforcing coordination of colours throughout 
the display. 

When colours are chosen for functional reasons colour 
coordination becomes particularly important. There is an 
important interaction between functional and aesthetic colour 
that can only be mediated at the system level. Functional 
colours can be overloaded only if the applications using them 
use aesthetic colour to establish distinct visual contexts. 
Unfortunately, the scientific and design knowledge needed 
to build this capability into a window system is not available, 
but remains a significant challenge for future research. 

The colour naming dictionary in X [1] is an example of 
this capability. It provides a system-wide interface to colour 
by a set of colour names. X also uses indirection to give a 
uniform interface within an application, referring to colours 
by their functional roles, foreground, background, and so 
on, which are understood by both system and application. 

Graphics Interface '89 



B. Visual elements for organizing the display 
Significant portions of the display are owned by the 

window system itself, the desktop, title and scroll bars, 
window borders, and so on. These visual elements, which 
occur throughout the display, are an important aid when 
parsing the visual space into a set of discrete visual contexts. 
At the same time they unify it by their similarity [17]. Thus, 
when well designed, they are able to promote unity and 
diversity at the same time. It is interesting that X [1] allows 
the user to change these elements window by window, but 
users, in my observation, conservatively minimize 
inter-window variation. 

The Macintosh [16] window system, by contrast, 
offers little choice to the user. The window elements are 
given a strong visual identity by their shape and texture This 
consistency is certainly important in making the interface 
design effective. This enforced consistency seems to be 
deeply rooted in the interface definition so that third party 
programmes for changing window colours, such as 
Colorizer [18], colour the elements of all windows 
consistently. 

C. Rendering by the system 
The logical culmination of the ideas presented above is 

a window system that receives very high level requests from 
applications to display one or another item of information, 
chooses rendering parameters, including colour, based on 
interactions with the user and internal design criteria, then 
renders the information to the display surface. Such a system 
is realizable, at least in principle, in systems such as X [1] 
that employ a monolithic server. The ability of most X 
applications to manage colour by indirection, such as 
foreground colour, is a step in this direction, as is the use of 
colour names. Unfortunately these values are not bound 
dynamically so that flexibility of system response to 
changing conditions is inhibited. 

NeWS [19] is another approach to this problem. All 
applications communicate with renderers via Postscript. 
Because this higher level colour interface is interpreted, 
colour can be bound dynamically. It remains to be seen 
whether or not coordination methods can be developed that 
produce as much consistency as the global properties of 
colour demand without incurring the drawbacks of 
display-wide data structures. 

V. CONCLUSIONS 

A. Problems and Opportunities 
The use of colour introduces a large variety of 

challenging new problems into research on workstation use. 
In the short run we need to find limits of colour difference 
that guarantee the efficient operation of capabilities like 
visual search, grouping and connectivity based on colour. It 
is similarly important to understand the operation of visual 
context so as to allow simultaneous use of colour for 
functional and aesthetic purposes. Solving problems like 
these ones requires us to acquire more information on how 

84 

humans use colour for processing information, then to use 
that information when building tools and systems. 

In the longer term problems centre on the interaction 
between the window system and applications that use the 
facilities it provides. The important non-local properties of 
colour force the application to give up control over details of 
colour rendering. Interestingly, issues similar to these colour 
problems occur in other aspects of the display, such as 
differing views of three dimensional objects. We may hope 
that the new concepts needed to handle colour well may offer 
a better substrate for solving those other display problems. 

B. New Technologies on the Way 
The advent of new technologies often creates a host of 

new ideas. We have discussed some problems and 
opportunities that occur as colour and window systems 
become more common in the workstation environment. 
Some of these new ideas concern the solution of problems of 
colour printing. The emergemence of colour printing as an 
important problem would be an interesting case study, since 
it has gone from an exotic curiosity to a problem of central 
interest in only a few years. Undoubtedly the avai lability of 
colour printers of reasonable quality and cost was important 
in this change. We now seem poised on the edge of another 
new technology of potentially great impact in colour 
graphics, the colour LCD display. Its different pixel 
structure compared to a CRT will raise a host of problems 
concerned with the microstructure of images, such as the 
best method for antialiasing coloured lines. The new 
opportunity of most relevance to the subjects addressed in 
this paper, however, is the dual identity of the LCD as either 
self-luminous or reflective display surface. Most current 
representations of colour in computer graphics are based on 
the premise of a self-luminous display. Thus, 
accommodation of LCD displays might require a drastic 
rethinking of the lowest level colour representations. The 
consequences of such a change would, of course, ripple 
through all the topics addressed here. 

VI. ACKNOWLEDGMENTS 

The research discussed in thi s paper has been partially 
supported by grants from the National Science and 
Engineering Research Council of Canada and from Apple 
Canada. Much of this material formed part of the Advanced 
Computer Graphics course at the University of Waterloo and 
I would like to thank the students for many interesting 
discussions on these topics. Finally, I would like to thank 
Tanis Day for stylistic comments and Marc Gauthier for the 
translation of the abstract. 

VII. REFERENCES 

1. Oliver 10nes,Introduction to the X Window System, 
Prentice Hall : Englewood Cliffs, 1989. 

2. Robert M. Boynton,Human Color Vision , Holt 
Reinhart & Winston: New York, 1979. 

Graphics Interface '89 



3. There is some disagreement as to whether or not the 
blue cone contributes to the achromatic channel. 

4. Michael von Griinau and William Cowan, "The role of 
simultaneous contrast in achromatic and chromatic 
channels", Investigative Ophthalmology and Visual 
Science, 29, 301, 1988. 

5. Robert M. Boynton and Conrad X. Olson, "Locating 
Basic Colors in the OSA Space", Color Research and 
Application, 12,94-105, 1987. 

6. Wucius Wong, Principles of Col or Design, Van 
Nostrand Reinhold: New York, 1987. 

7. Michael W. Schwarz, William B. Cowan and John C. 
Beatty, "An Experimental Comparison ofRGB, YIQ, 
LAB, HSV and Opponent Colour Models",ACM 
Transactions on Graphics, 6, 123-158, 1987. 

8 . William Cowan, Colorimetric Properties of Video 
Displays, Course notes, Optical Society of America 
Annual Meeting, Rochester, 1987. 

9. Maureen C. Stone, William B. Cowan and John C. 
Beatty, "Color Gamut Mapping and the Printing of 
Digital Color Images", ACM Transactions on 
Graphics, 7, 249-292, 1988. 

10. Michael G. Lamming and Warren L. Rhodes, "A 
Simple Method for Improved Color Printing of 
Monitor Images", to appear inACM Transactions on 
Graphics. 

11. Colin Ware and John C. Beatty, "Using Color 
Dimensions to Display Data Dimensions", Human 
Factors, 3D, 127- 142, 1988. 

85 

12. Ellen Carter and Robert Carter, "Colour and 
Conspicuousness",Journal of the Optical Society of 
America, 71 ,723-729,198 1; Richard Christ, "Review 
and Analysis of Color Coding Research for Visual 
Displays",Human Factors , 17,542- 570, 1975. 

13 . Louis D. Silverstein and Robin M. Merrifield, The 
Development and Evaluation of Color Systems for 
Airborne Applications, U.S. Department of 
Transportation, Federal Aviation Administration, 
1985. 

14. Lyn R. Bartram, Kellogg S. Booth, William B. 
Cow an and Peter P. Tanner, "A system for conducting 
experiments concerning human factors in interactive 
graphics", Proceedings of Graphics Interface' 88, 
34-42, 1988. 

15 . A. Triesman and H. Schmidt, "Illusory Conjunctions 
in the Perception of Objects", Cognitive Psychology, 
14, 107- 141, 1982. 

16. Macintosh is a registered trade mark of Apple 
Computer, Inc. 

17. Robert Venturi, Denise Scon Brown and Steven 
Isenour, Learningfrom Las Vegas, revised edition, 
MIT Press: Cambridge, 1977. 

18. Colorizer is a Macintosh application program marketed 
by Palomar Software, Inc. 

19 . NeWS Preliminary Technical Overview, Sun 
Microsystems, Inc., Mountain View, California, 1986. 

Graphics Interface '89 


