
86

An Investigation of Language Input and
Performance Timing for Task Animation

Jeffrey Esakov
Norman 1. Badler

Moon Jung
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, Pennsylvania 19104-6389

Abstract

We describe a prototype system in which task animation
is driven via natural language. The primary effort in develop­
ing the system is concentrated on the link between the natural
language parser and the animation environment. Two primary
problems are object referencing and specifying action durations.
We describe a technique by which objects referenced by the
parser can be correctly mapped to their geometric representa­
tion within the animation environment even though the internal
representations may be vastly different. Furthermore, we show
that results from experiments measuring human motor behavior
can be applied to computer simulations to generate default task
durations.

Nous decrivons un prototype dont la tache de l'animation est
produite via un language nature!. Le developpement du systeme
est surtou t con centre sur la liaison entre le language naturel
et l'environement genere pour le processus de l'animation . Les
deux principaux problemes resident dans la reference des ob­
jects et la specification de la duree des actions. Nous decrivons
une technique dont les objects references par un analyseur gram­
matical peuvent litre correctement lies a.leur representation geo­
metrique tout en faisant partie de l'environement de l'animation
dont les representations internes sont tres differentes. Ensuite,
nous montrons que les resultats des experiences mesurant la con­
duite du moteur humain peuvent litre appliques a. des simula­
tions programmees qui generent des valeurs de default pour la
duree des taches.

KEYWORDS: Task Performance, Temporal Planning, Geo­
metric Database, Knowledge Base, Natural Language, Com­
puter Graphics, Animation, Simulation.

1 Introduction

Simple computer animation is not so simple anymore. What
was once acknowledged as a "good" animation is no longer
acceptable. Animations are not necessarily things which
are "looked at" for aesthetic purposes but are being used
for practical applications in science and engineering anal­
yses . Human figure animation, in particular, is receiving
considerable attention as new display systems and robust
animation software bring motion control and rendering ca­
pabilities to a widening range of users. Animations are
created to evaluate the ability of people to fit or work in

designed environments, determine whether work places sat­
isfy their functional requirements, and analyze human task
performance in a given situation. With the expanded role
of animation and increased viewer sophistication, the tools
for developing animations for these analytic purposes have
become considerably more complex.

To gain control over complexity, animation tools are be­
coming "task oriented." A system which allows a process to
be described at a level best suited for the action allows the
user to specify the action in the least restrictive, and most
natural, manner [4, 22]. This important benefit becomes
crucial as the animation tools shift out of the animation pro­
duction houses and into other industries and laboratories;
human factors engineers often lack the manual and artistic
skills necessary for the specification of animation.

The solution to this problem is two-fold. New users must
be educated, but also, the vocabulary recognized by the
tools must be modified . Certainly, the obvious conclusion
is that the tools must understand a "task level" vocabulary.
Even with that higher level of understanding of tasks, com­
munication would still be limited as the user lacks not only
the vocabulary, but also the language for communication.

The ideal language for communication is natural lan­
guage. Natural language parsers, however, are complex pro­
grams [3]. Furthermore, integrating such a program into the
animation environment introduces several interfacing prob­
lems [5].

We shall describe here a prototype system in which task
animation is driven via natural language. We focus on the
interface between the natural language parser and the mo­
tion generator. The paper is organized as follows. Section
2 discusses how we currently limit the scope of the prob­
lem and describes the domain in which our animations are
created. Section 3 describes relevant research. Section 4 dis­
cusses how the parser and motion generator are integrated.
Section 5 describes the technique which is used to fill in
the timing information tacitly embedded in the naturallan­
guage commands.

2 Problem Domain

Since our goal is to investigate the linkage between language
and task animation, initially the task domain is limited to
"simple" reaches and view changes. (Karlin [17] investi-

Graphics Interface '89

87

Figure 1: Space Shuttle Remote Manipulator System Control Panel

gated more complex motions; these will be added to the
system vocabulary later.) A "simple" reach is one which
requires no locomotion, only movement of the arm or upper
body. A view change is a change in the orientation of a
figure's head (i.e. the figure's view of the world changes).
While seemingly very easy, these tasks already demonstrate
much of the essential complexity underlying language-based
animation control.

2.1 Task Environment

The tasks to be performed and animated all center around a
control panel (i.e. a finite region of more or less rigidly fixed
manually-controllable objects). By using a control panel, it
is obvious that many everyday tasks can be simulated. Some
control panels encountered in a normal day-to-day routine
are typewriter keyboards, elevator panels, light switches,
~nd car dashboards. We will use as a generic example the re­
mote manipulator system control panel in the space shuttle
(Figure 1) as it contains a variety of controls and indicators.

The purpose of creating the task animation is for task
performance analysis . In particular, we want to determine
if some person, X, can perform a task, and if so, we want
"to view the task performance. However, task performance
depends on who is executing the task. If X has short arms,
"then he might not able to reach the control panel. Therefore,
included in our task environment is the ability to specify the
anthropometric "sizing" of the people to be included [15J .
The size is based on a percentage of some population data
(e.g., NASA crew member trainees [1]). For example, a
50%-i1e man represents the average man in some body of

data, whereas the 95%-ile man represents a man whose size
parameters are in the 95 th percentile. Similar data exist for
women over some population.

3 Relevant Research

Zeltzer [25J first gave names to the various "levels" of com­
puter animation: "guiding level," "production level," and
"task level." Using his nomenclature, the type of system
we describe here is a "task level" system. His system for
controlling the walk of human figure [24J is a specialized
system for a particular task to be performed (i.e., walking).
For now, our "skills" consist of reaching and viewing.

The Story Driven Animation System [21J accepts mod­
ified natural language input and creates the corresponding
animation. The emphasis in this work is on story under­
standing and the ability to choose the correct key frames.
Similar high level (intelligent) selection among existing key
frames is also demonstrated by Fishwick [10, 11J

MIRALOGIC [19J is an interesting approach to embed­
ding a high level of understanding within an animation sys­
tem. Through the use of this expert system, the user can
specify rules for setting up an environment and the system
will identify inconsistencies or potential problems and sug­
gest possible solutions.

AS AS [20], and the object-oriented systems it exempli­
fies [19], can also implement task-level semantics through
task decomposition. A task can be decomposed procedu­
rally.

These systems all address a different type of problem
than that which is being addressed here. The tasks in

Graphics Interface '89

our system are specified in natural (or any syntactically­
described artificial) language with the express purpose of
examining task performance. As such, it is easy to change
the tasks as well as the anthropometric parameters describ­
ing the performers.

4 Integrating Language
and Motion Generation

The primary focus of this work is to examine how natural
language task specification and animation can be combined
in an application-independent manner. The burden of this
requirement falls upon the link between these two environ­
ments. To illustrate the situation, we will discuss a sample
natural language script actually used to create an anima­
tion:

John is a 50 percent man.
Jane is a 50 percent woman .
John, look at switch twf-l.
John, turn twf-l to state 4.
Jane, look at twf-3 .
Jane, look at tglJ-l .
Jane, turn tglJ-l on .
John , look at tglJ-2 .
Jane, look at twf-2 .
Jane, turn twf-2 to state 1.
John, look at twf-2 .
John, look at S .
Jane , look at J .

This type of script is common in performing checklist
procedures such as those done in airplanes or space shuttles
[2J . The verb "look at" represents a view change and the
verb "turn" involves a simple reach. (The parser accepts a
larger variety of syntactic constructions than illustrated by
this example [5J.)

The two primary problems are specifying reach and view
goals, and connecting object references to their geometric
instances.

4.1 Specifying Goals

A goal for a reach task is the point which the hand should
touch. For this particular type of task, such a goal has three
positional degrees of freedom, although there are situations
in which rotational degrees of freedom may be considered
as well. A view goal is a point in space toward which one
axis of an object must be pointed.

Within an animation environment, such goals represent
points in space (for position goals) or coordinate reference
frames (for position and rotation goals) ultimately specified
numerically with respect to a coordinate system. Within
the natural language environment, the goals are not coor­
dinates, but rather are represented by objects as in, for ex­
ample, the commands:

John, look at switch twF-l .
Jane, turn switch tglJ-l on .

88

The information regarding the exact locations of the switches
is basically unimportant at the language level. Somehow,
the switch name tglJ-l must be mapped to the appropri­
ate switch on the panel in the animation environment. The
same process must be followed for the target object toward
which an object axis must be aligned in a view change. This
problem reduces to one of object referencing.

4.2 Object Referencing

In general, all objects have names. Although the names
in the task specification environment may be different from
those in the animation environment, providing a mapping
between the names is not difficult. This, of course, assumes
there is a one-to-one correspondence among the names across
environments . Such a requirement, however, defeats the
goal of independence between the environments.

The problem domain specifically includes control pan­
els . From a task specification perspective, a control panel
is a very complex object consisting of many features such
as controls, indicators, etc. From a computer graphics per­
spective, the most salient feature of the control panel is its
appearance, not necessarily the detailed geometry of the in­
dividual switches. An object such as a control panel can
most efficiently be represented as a single textured object
which can then be mapped onto a polygon. The alternative
of representing each individual switch would require a large
number of polygons and an extensive amount of digitizing
to obtain a visually adequate representation of the switches.

By allowing each environment to represent the panel in
a manner that is best suited to the way in which it will be
referenced, the one-to-one correspondence among names is
lost. The many objects in the task specification environment
all correspond to a single texture mapped panel. A method
is needed which will allow the construction of a mapping
of feature names in the task specification environment to
texture map locations in the animation environment.

We used a paint program as the basis for such a tool.
Since a paint program allows one to create only the texture
maps in image space, additional information was required
to specify the polygon on which the image is to be mapped.
One version of the paint program also allowed the complete
generation of the knowledge base description of an object's
attributes (e.g., switch or indicator, rotary control or push
button, etc.) . The output of this tool provided input to
both the knowledge base, and the geometric database.

4.2 .1 The Knowledge Base

The knowledge base needs to contain information about ob­
ject names and hierarchies , but need not be concerned with
actual geometry or location. Furthermore, as the task spec­
ifications and object definitions become more complex, the
knowledge base can contain causality relationships. For ex­
ample, turning switch tglJ-l to on may cause some other
object to move or change state [5J. We use a frame-like
knowledge base called DC-RL to store symbolic informa­
tion [8J . For example, the DC-RL code for an isolated toggle
switch, tglJ-l follows:

Graphics Interface '89

{ concept tglJ-1 from control

}

having (
[role name with [value .. "TOGGLE J-1"]]
[role locative with [value· panel1]]
[role type-of with [value" switch]]
[role sub-type with [value .. tgl]]
[role direction with [value = (down up)]]
[role states with [value" (off on)]]
[role movement with [value =

(discrete mm linear «off on) 20 5))]]
[role current with [value" off]])

To reference this switch from within the animation en­
vironment, a mapping file is generated at the same time the
graphical object is described.

{ concept ctrlpanel from panelfig
having (

[role twF-1 with
[value = ctrlpanel.panel.twf_1

[role twF-2 with
[value = ctrlpanel .panel .twf _2

[role twF-3 with
[value = ctrlpanel.panel.twf_3

[role tglJ-1 with
[value = ctrlpanel .panel.tglj_1

[role tgIJ-2 with
[value = ctrlpanel.panel .tglj_2

}

]]

]]

]]

]]

]]

The names twF-l , twF-2, tglJ-l correspond to the names
of switches in the existing knowledge base panel descrip­
tion called panelfig. These names are mapped to the
corresponding names in the animation environment (e.g.,
ctrlpanel. panel . twf _1, etc.) and are guaranteed to match .

4.2.2 The Geometric Database

The geometric database is called the Peabody Environment
Network (or just peabody). In peabody, a figure is com­
posed of a set of segments, each of which may have geome­
try associated with it. The geometry within each segment
is defined within its own local coordinate system. Joints
connect segments at attachment points called sites. A joint
is actually a transformation between sites and hence sites
have an orientation as well as a location . Segments can have
any number of sites and it is through those sites that the
different interesting points on the texture map are identified
for the animation environment.

The relevant part of the peabody description of the panel
figure is shown:

figure ctrlpanel {
segment panel {

psurf = "panel.pss";
site ba~e->location ..

trans(O.OOcm,O . OOcm,O.OOcm);
site twf_1->location =

trans(13.25cm,163.02cm,80.86cm);
site tvf_2->location •

trans(64.78cm,l15.87cm,95.00cm);
site tvf_3->location •

trans(52 .84cm,129.09cm,91.43cm);

89

}
}

site tglj_1->location •
trans(72 .36cm,158.77cm,81.46cm) ;

site tglj_2->location ..
trans(9 . 15cm,l15.93cm,94.98cm);

This entire file is automatically generated from within the
paint program. Since the panel is a rigid object with no
movable parts, no joints are required. The location of each
site (each of which represents a different switch) was cal­
culated by applying the texture mapping transformations
normally applied when the image is rendered.

4.3 Creating an Animation

Mapping objects from the task description environment to
the animation environment provides one of the crucial links
needed for creating an animation . The language proces­
sor provides another link. Our Motion-Verb Parser (MVP)
[5] uses both a subset of natural language and an artificial
language (NASA checklists) for its syntax. Information ob­
tained during the parse is stored in the semantic knowledge
base DC-RL. The natural language task descriptions that
are included in the problem domain are such that a single
animation key frame can be developed from a single com­
mand. Each part of speech fills in slots in an animation
command template.

Figure 2 shows the relationship between the task speci­
fication and the animation commands. A "turn" command
specifies a reach which can be solved using inverse kinemat­
ics; a "look at" command specifies an orientation change
which can also be solved using inverse kinematics [6, 14].
Frames from an animation created using the script shown
in Section 4 are shown in Figure 3.

5 Default Timing Constructs

Given that the basic key frames can be generated based
upon a natural language task description, creating the over­
all animation can still be somewhat difficult . Techniques for
creating motion by animating the solution algorithm such as
those done by Badler, Manoochehri and WaIters [6], Witkin,
Fleisher and Barr [23]' or Barzel and Barr [7] are themselves
inappropriate for task performance analysis. Instead, the
positions created must be taken for what they are: the de­
sired configuration of the body at a particular time. The
exact time, however, is either unknown, unspecified, or ar­
bitrary.

The timing of actions could be explicitly specified in the
input, but (language-based) task descriptions do not nor­
mally indicate time. Alternatively, defining the time at
which actions occur cari be arbitrarily decided and a rea­
sonable task animation can be produced. In fact, much
animator effort is normally required to temporally position
key postures. There are, however, more reasonable ways of
formulating a guess for possible task duration.

Several factors effect task performance times, for exam­
ple: level of expertise, desire to perform the task, degree of
fatigue (mental and physical), distance to be moved, and
target size. Realistically speaking, all of these need to be

Graphics Interface '89

90

John, look at switch twf-l. ==}

John, turn twf-l to state 4. ==}

Jane, look at tglJ-l. ==}

Jane, turn tgIJ-1 on. ==}

point..at(" ctrlpanel.panel.twLl" ,"john.bottom-head.between-eyes" ,(1,0,0));
reach..site(" ctrlpanel.panel.twLl " ," john.right-hand.fingers_distal");
point-!l-t("ctrlpanel.panel.twj_l" ,"jane.bottom-head.between-eyes" ,(1 ,0,0));
reach..site(" ctrlpanel.panel.twj_l" ,"jane.left-hand.fingers_distal");

Figure 2: Natural Language Input and Animation Commands

considered in the model, yet some are difficult to quantify.
Obviously, the farther the distance to be moved, the longer
a task should take. Furthermore, it is intuitively accepted
that performing a task which requires precision work should
take longer than one not involving precision work: for ex­
ample, threading a needle versus putting papers on a desk.

Fitts [12] and Fitts and Peterson [13] investigated per­
formance time with respect to two of the above factors, dis­
tance to be moved and target size. It was found that ampli­
tude (A, distance to be moved) and target width (W) are
related to time in a simple equation:

Movement Time = a + b log ~ (1)

where a and b are constants. In this formulation , an index
of movement difficulty is manipulated by the ratio of target
width to amplitude and is given by:

2A
ID = log­

W
(2)

This index of difficulty shows the speed and accuracy
tradeoff in movement . Since A is constant for any partic­
ular task, to decrease the performance time the only other
variable in the equation W must be increased. That is, the
faster a task is to be performed, the larger the target area
and .hence the movements are less accurate.

This equation (known as Fitts' Law) can be embedded in
the animation system, since for any given reach task, both
A and Ware known. The constants a and b are linked to
the other factors such training, desire, fatigue, and body
segments to be moved; they must be determined empiri­
cally. For button tapping tasks, Fitts [13] determined the
movement time (MT) to be

MTarm = 74ID - 70ms ec (3)

In determining this equation, it was necessary to filter
. out the extraneous factors . This was done by having the

subjects press the button as quickly as possible and allow­
ing them to control the amount of time between trials. Ja­
gacinski and Monk [16] performed a similar experiment to
determine the movement time for the head and obtained the
following equation

MThead

ID'

.199ID' - .268sec
2A

log W - Wo

(4)

(5)

This equation is the result of equating the task to inserting a
peg of diameter Wo into a hole of diameter W, and resulted
in a better fit of the data.

For our purposes the above constants may not apply.
Since it was our desire to have the man in our animation

move sluggishly and the woman move quickly (but not too
quickly), we scaled Equations 3 and 4 by differing constants.

MTman(arm)

MTman(head)

MTwoman(arm)

MT woman(head)

3 * MTarm

3 * MThead
1.5 * MTarm

1.5 * MThead

This width of the target, W in equation 2 was chosen
to be 1cm. For head movements, we chose Wo = .330 after
[16]. This results in the action durations shown in Figure 4.

Although Fitts' Law has been found to be true for a vari­
ety of movements including arm movements (A = 5-30cm),
wrist movements (A = 1.3cm) [9, 16, 18], and head move­
ments (A = 2.45 - 7.50 0

) [16] the application to 3D com­
puter animation is only approximate. The constants differ
for each limb and are only valid within a certain movement
amplitude in 2D space, therefore the extrapolation of the
data outside that range and into 3 dimensional space has
no validated experimental basis.

Nonetheless, Fitts' Law provides a reasonable and eas­
ily computed basis for approximating movement durations.
Should a more exact model be developed, it should read­
ily fit into a 3D computer animation environment in which
default task durations must be computed.

6 Conclusions and
Future Work

One of the goals of the Computer Graphics Research Lab
at the University of Pennsylvania is to develop human task
performance analysis tools specifically for users who are en­
gineers and not particularly likely to be animators . Higher­
level animation tools are deemed essential to the satisfaction
of this goal. We have demonstrated the feasibility of build­
ing a complete pipeline of processes beginning with natural
language input , proceeding through semantic resolution of
simple tasks, default task time durations, and object refer­
ences, and ultimately terminating in inverse kinematic po­
sitioning and rendered graphics. The pipeline confronts the
issues of establishing appropriate linkages between objects,
time, and actions at the language and geometric levels with­
out adopting ad hoc solutions such as the selection of pre­
defined key frames or the use of fixed default timings.

Of course, the model is quite incomplete in many re­
spects, but we have work in progress in many areas, includ­
ing:

• Extending the knowledge base to more complex task
verbs and more general object environments.

Graphics Interface '89

91

(a) (b)

(c) (d)

(e) (f)

Figure 3: Animation Frames Showing "Look" and "Reach"

Graphics Interface' 89

92

Task Duration Times (msec)
Actor Action ID Min. Duration Scaled Duration

John Look twf-l 2.96 321.04 963.12
John Turn twf-1 5.47 334.78 1004.34
John Look tglJ-2 4.19 565.81 1697.43
John Look twf-2 4.01 530.00 1590.00
John Look Jane 4.64 655.36 1966.08
Jane Look twf-3 4.28 583.72 875.58
Jane Look tglJ-1 3.64 456.36 684.54
Jane Turn tglJ-1 5.39 328.86 493.29
Jane Look twf-2 4.16 559.84 839.76
Jane Turn twf-2 4.99 299.26 448.89
Jane Look John 4.33 593.67 890.50

Figure 4: Task Durations Using Fitts' Law

• Extending the animation interface to include dynam­
ics and constraints as well as inverse kinematics .

• Extending the task processor to a more general task
simulator which handles temporal expressions, resource
management, and task interruption.

• Extending the panel editor to permit on-line changes
to panel object locations and semantics.

Ultimately the user should be able to control most of as­
pects of the animation (excepting the creation of the actual
geometric environment) through a language-based interface.
This will include the ability for parameterizing (1) bodies,
(2) object and object feature locations , and (3) tasks. With
this .capability, experiments can be performed without de­
scending to the key frame level for animation.

1 Acknowledgements

Many people helped developed the software described in
this paper: especially Jean Griffin, Cary Phillips, Aamer
Shahab, and Jianmin Zhao. Suzanne Morin and Richard
Quach translated the abstract into French.

This research is partially supported by Lockheed Engi­
neering and Management Services, Pacific Northwest Labo­
ratories B- U0072-A-N, the Pennsylvania Benjamin Franklin
Partnership, NASA Grants NAG-2-426 and NGT- 50063,
NSF CER Grant MCS-82-19196, NSF Grants IST-86-12984
and DMC85-16114, and ARO Grant DAAG29-84- K- 0061
including participation by the U.S. Army Human Engineer­
ing Laboratory.

References

[1] Man-system integration standards. NASA, NASA­
STD-3000 edition, March 1987.

[2] Space Shuttle Flight Data File Preparation Standards.
Flight Operations Directorate, Operations Division ,
NASA Johnson Space Center, 1981.

[3] James Allen. Natural Language Understanding. Ben­
jamin(Cummings, 1987.

[4] N. Badler. A representation for natural human move­
ment. Technical Report MS-CIS-86-23, Dept. of Com­
puter and Information Science, Univ. of Pennsylvania,
Philadelphia, PA , 1986.

[5] N. Badler and J. Gangel. Natural language input for
human task description. In Proc. ROBEXS '86: The
Second International Workship on Robotics and Expert
Systems, Instrument Society of America, June 1986.

[6] N. Badler, K. Manoochehri , and G. Waiters. Articu­
lated figure positioning by multiple constraints. IEEE
Computer Graphics and Applications, 7(6) , June 1987.

[7] R. Barzel and A. Barr. A modeling system based on
dynamic constraints. Computer Graphics, 22(4), 1988.

[8] D. Cebula. The Semantic Data Model and Large Infor­
mation Requirements. Technical Report MS-CIS-87 -72,
Dept. of Computer and Information Science, Univ. of
Pennsylvania, Philadelphia, PA, 1987.

[9] C. Drury. Application of Fitts' Law to foot-pedal de­
sign. Human Factors, 17, 1975.

[10] P. Fishwick. The role of process abstraction in simu­
lation. IEEE Trans. Systems, Man, and Cybernetics,
18(1), Jan.(Feb. 1988.

[11] Paul A. Fishwick. Hierarchical Reasoning: Simulating
Complex Processes over Multiple Levels of Abstraction.
PhD thesis, Dept. of Computer and Information Sci­
ence, Univ. of Pennsylvania, Philadelphia, PA, 1986.

[12] P. Fitts. The information capacity of the human mo­
tor system in controlling the amplitude of movement.
Journal of Experimental Psychology, 47, 1954.

[13] P. Fitts and J . Peterson. Information capacity of dis­
crete motor responses. Journal of Experimental Psy­
chology, 67(2), 1964.

Graphics Interface '89

[14] M. Girard and A. Maciejewski. Computational model­
ing for the computer animation of legged figures. Com­
puter Graphics (Proc. SIGGRAPH 85), 19(3), 1985.

[15] M. Grosso, R. Quach, and N. Badler. Anthropome­
try for Computer Graphics Human Figures. Technical
Report, Dept. of Computer and Information Science,
Univ. of Pennsylvania, Philadelphia, PA, 1989.

[16] R. J. Jagacinski and D. L. Monk. Fitts' Law in two
dimensions with hand and head movements. Journal
of Mo tor Behavior, 17, 1985.

[17] R. Karlin. SEAFACT: A semantic analysis system for
task animation of cooking operations. Master's thesis,
Dept. of Computer and Information Science, Univ. of
Pennsylvania, Philadelphia, PA, December 1987.

[18] G. D. Langolf, D. B. Chaffin, and J . A. Foulke. An
investigation of Fitts' Law using a wide range of move­
ment aplitudes . Journal of Motor Behavior, 8, 1976.

[19] N. Magnenat-Thalmann and D. Thalmann. MI-
RANIM: An extensible director-oriented system for the
animation of realistic images. IEEE Computer Graph­
ics and Applications, 5(3), October 1985.

[20] C. Reynolds. Computer animation with scripts and
actors. Computer Graphics (Proc. SIGGRAPH 1982),
16(3), 1982.

[21] Y. Takashima, H. Shimazu, and M. Tomono. Story
driven animation. Proc. of Computer Human Interface
and Graphics Interface, 1987.

[22] J . Wilhelms. Toward automatic motion contro!' IEEE
Computer Graphics and Applications, 7(4), April 1987.

[23] A. Witkin, K. Fleisher, and A. Barr. Energy constraints
on parameterized models . Computer Graphics, 21(3),
1987.

[24] D. Zeltzer. Motor control techniques for figure anima­
tion. IEEE Computer Graphics and Applications, 2(9),
September 1982.

[25] D. Zeltzer. Towards an integrated view of 3-D computer
animation. The Visual Computer: The International
Journal of Computer Graphics, 1(4), 1985.

93

Graphics Interface '89

