
100

Adaptive Graphics Interface

Marek Holynski

Massachusetts Institute of Technology
Center for Advanced Visual Studies

40 Massachusetts Av ., Boston, MA 02139

Abstract

. ~he Adap~ive Graphics Analyzer (AGA), presented
III thIs paper, IS an example of a graphics interface that
learns about users' representational preferences and in­
cludes them into image generation algorithms. In or­
der to incorporate learning and decision-making capa­
bilities into graphics , the system extracts concrete and
measurable statistics from a given image in terms of vi­
sual variables . The structure of the AGA is based on
variable-value calculus that allows direct adoption of ma­
chine learning techniques. The AGA displays a series of
images on a graphics terminal and requests the user to
assign a preference value to each image. This evaluation
and generation process repeats until the optimal sets of
image variable values are found .

Keywords: Intelligent graphics system, user interface,
knowledge acquisition.

I . Introduction

Graphical presentations should be adjusted to pro­
gramming needs and on-the-spot applications in the same
way an artist tailors his portfolio to the customer's re­
quirements. The manner in which an architect perceives
a picture of a building could be dramatically different
from the way an engineer views the same structure. Im­
age adjustments, based on properties of data, the user's
objectives, design principles and perception rules, require
implementation of techniques that help to organize and
manipulate specific graphics knowledge.

In order to adjust the representation of data to pref­
erences, needs and knowledge of people who are going to
use it, we must equip graphics systems with an adaptive
graphics interface that learns about these preferences and
utilizes them as display rules. The Adaptive Graphics
Analyzer (AGA), presented in this paper, is an example
of such an interface, created for discovering the program­
mers' display rules and including them incrementally into
image generation algorithms .

The simplest way to incorporate learning and
decision-making capabilities into graphics systems is to
borrow it from another field of computer science - artifi­
cial intelligence. There is no need to develop a separate
"graphics intelligence" , since many of the AI techniques
can be integrated with graphics in a coherent manner and
provide acceptable and possibly exceptional results .

Robert W. Garneau

Suffolk University
Computer Engineering Department
41 Temple St., Boston, MA 02114

H . Previous Work

Artificial intelligence and computer graphics have
been close associates for some time. Early computer vi­
sion research, which used AI techniques extensively, ad­
dressed problems related to image analysis and synthe­
sis . A bona fide linking of AI techniques and computer
graphics took place in relational data base management
systems. The data base, AI, graphics tie is explicitly men­
tioned by the builders of the automatic authoring system
[FEINER, NAGY and VAN DAM 82]. In the conclud­
ing remarks of the paper, the authors discussed begin­
ning efforts for the determination of layouts automati­
cally, using domain-specific knowledge about the design
rules for display formats . In [GARRETT and FOLEY
82] an augmented data base management system is de­
scribed that removes the need for a procedural graphics
generation module in interfaces to application programs.
The manipulation of data representing images is done by
the DBMS whenever there is a data update by the appli­
cation or as a result of user queries .

A system that combines intelligent interfacing with
image enhancement is the Steamer simulation program
[STEVENS, ROBERTS and STEAD 83] . In this inter­
active program a combination of iconic images are used
in conjunction with a knowledge base to produce config­
uration changing simulations of actual steam plant oper­
ation.

One question that continues to come up in any graph­
ics interface is the experience level problem. How does
one accommodate both the inexperienced user and the
expert without bewildering the former and boring the
latter? [JACOB 83] attempts to answer that question
using high-level abstraction for describing the semantics
of the user interface with two levels depending on the
experience of the user. A somewhat similar technique is
used by [TIBBERT and BERGERON 84] in XGRAPH,
a system that combines rule-based knowledge base with a
graphics program for specifying computer configurations
interactively. Here, the authors use automaton type con­
trol (state changes) for knowledge base interaction to in­
troduce a "guide" mode when necessary.

Knowledge-based object synthesis from primitive el­
ements for both two and three- dimensional objects is
first demonstrated by [FRIED ELL 84] and later used by
[HOLYNSKI, GARNEAU and LEWIS 86] in two dimen-

Graphics Interface '89

sionallayout for the determination of effective visual rep­
resentation of images . The effectiveness of visual repre­
sentation is further demonstrated by [MACKINLAY 86J .
He uses a presentation tool , a rule-based system that
automatically designs effective graphical presentations of
relational information in the form of bar charts, scatter
plots and connected graphs .

Three graphics systems that use artificial intelli­
gence techniques extensively are the Peridot [MYERS
and BUXTON 86], Predikt [OXMAN and GERO 87J, and
Graflisp [HOLYNSKI, GARDNER and OSTROVSKY
86J. Peridot automatically creates the code for user in­
terfaces using pop-up and pull-down menus with elab­
orate feedback mechanisms and system guesses to save
the designer time in making corrections to the knowl­
edge base. Predikt uses a stand-alone rule-based expert
system shell with forward and backward-chaining to pro­
vide mappings between semantics and graphical syntax.
Grafiisp describes relations among picture elements and
concepts represented by these elements in the form of se­
mantic networks and uses inference reasoning for image
creation.

Ill. Determining Graphics Constraints
with Machine Learning

In order for the system to learn about programming
constraints for graphics, it must have the ability to ex­
tract concrete and measurable statistics from a given vi­
sual image . The system must be able to assign specific
image variable values to each picture generated and re­
alize which values or set of values most influence its ap­
pearance.

There has been a great deal of preliminary research
don~ to select image variables. [LEWIS and HOLYNSKI
85J did early work in determining the appropriate image
variables to construct a "filter" for selecting potentially
acceptable images from the population of possible images .
They explored three different methods : fractals , struc­
tural randomness of primitive elements (the technique
used in this research), and grid systems to establish and
test image variables. They found that visual form could
in fact be quantified using variables such as complexity,
regularity, color and order (symmetry).

In more recent experiments we generated the stimuli
as abstract display matrices comprised of controlled com-

. binations of thirty-six primitive elements . The stimuli
illustrated the four previously used variables along with
three additional variables: balance (image equilibrium),
variety (number of different primitive elements that make
up a single image) and busyness (amount of display image
that contains primitive elements) . Two hundred subjects
from three different student groups evaluated the stimuli.
Standard regression analysis was used to discover which
variables were appropriate predictors for user preference.
Using an interval scale, we found that complexity, regu­
larity, symmetry and busyness had a positive significant
effect of approximately the same magnitude on user pref­
erence [HOLYNSKI, GARNEAU and LEWIS 86J .

101

These findings were consistent with earlier findings in
terms of relationship between regularity and complexity
with preference. Although useful, conventional statistical
packages do not immediately show how one variable in­
teracts or depends on another. In order to more carefully
examine the interrelationship among all the variables, we
used a rule acquisition program that was developed at the
University of Illinois . It allowed us to disclose structural
descriptions of object classes, i.e., descriptions that in­
volve not only object attributes but also relations among
object components and subcomponents . The rule acqui­
sition program more specifically supported the statistical
evaluation and generated rules in the form accepted by
display algorithms.

These preliminary results led to the adoption of more
image variables, more levels within each variable and the
inclusion of a knowledge-repair mechanism that resulted
in the construction of the Adaptive Graphics Analyzer
(AGA). Using these preliminary results a set of default
values have been selected to initialize the AGA. This de­
fault set gives the analyzer a broad base of variable values
so that the system will create initial images that appeal
to a general audience and will help the user to quickly
select his preference set. AGA interacts with the user
and his preference selections to continually adjust its im­
age variable values and generate an image or set of images
that are most suitable to the particular user's preferences,
specifications and requirements .

IV. Formalism for Preference Extraction

The structure of the Adaptive Graphics Analyzer, the
visual form variables that it uses, and their relation to im­
age generation and evaluation can be revealed in a formal
way using an extension of variable-valued logic calculus*
[MICHALSKI and CHILAUSKY 80J.

In the AGA image stimuli are generated in sequences
of ten to fifteen images called an Image Group. The
first sequence of image stimuli, called the Default Image
Group Go, is generated based on initial image attribute
information stored in a file . After the user assigns a pref­
erence to each image stimuli in this group, a second se­
quence of image stimuli called the User Selected Image
Group G, can be generated which allow the user to con­
struct his own preferred image stimuli. New User De­
rived Image Groups Go are created using these two initial
groups of image stimuli as a foundation .

The it" Group (or it" sequence of image stimuli) can
be represented as an indexed list:

C, = < Pi, Pi+lI . .. , Plc, ... , Pl > k E [j, I)

where each image stimuli Pk is described by a Set of Visual
Form Variables Vk :

Vk = < j" 12 , ... , fm, . . . , f n > m E [l , n)

* The formal notation adopted here is based on Michal­
ski 's variable-valued logic calculus system VL2.

Graphics Interface '89

which can be considered to be Graphic Image Generation
Functions mapping image stimuli into Visual Form Vari­
able Values (and vice versa) .

In the example presented in this paper, the AGA uses
seven groups of image stimuli:

Go == < PI, ···,PI2 >
G2 ==< PS7,···,P51 >
G. ==< P62, ... , P76 >
G6 ==< PSI,PS2 >

Gl ==< PlS, ... , Pse >
Gs == < PS2, ... , Pel >
Gs == < P77, .. . , Pso >

with the following visual form variable set for all ke:fl, 82]:

Vaga ==< /. ,12 , fs, f. , Is , fe , h, fs , fg >
==< Balance, GridSize , BU8yne88, Complexity, Regularity,

ColorV ariety, S hapeV ariety, Symmetry, Color >

Visual Form Variable fm of image stimuli Plo with value
Qc is called a selector and represents a relational statement

that selects the value Qc of the Visual Form Variable fm for
image stimuli k.

For example, if fs is Regularity, and Qc is low, then
the selector [fs(ps) = low j states that the Regularity of the
image stimuli number 8 in the image generation group Go
is low.

Each Visual Form Variable is only permitted to have
values from a finite value set called the Domain of that
Visual Form Variable DUm) . The Domain of the Visual
Form Variable is dependent on the constraints of the image
generation process. Domains of the Visual Form Variables
used by the AGA are as follows:

DUl) , DU.)' D(Is), DUs) == {Iow, medium, high}

D(h) == {8mall , medium, large}

DUs) , DUe), D(h) == {Iow , medlow, medhigh , high}

DUg) == {Cl , C2 , CS, ... cso}**

A complete description of a single image stimuli Plo,

called a Form Variable Value Set h, is an expression which
assigns values to all the Visual Form Variables of Plo and is
written as a conjunction of selectors:

For example, Default Variable Value Set 8 used by the
AGA to generate image number 8 was defined as,

Is == [ftlps) = medj /\ [hIps) = smallj /\ [fs(ps) = medhj /\

[f. (Ps) = medj /\ [fs(Ps) = medj /\ [/sIps) = medhj /\

[hIps) = medlj /\ [fs(ps) = low j /\ [fg(ps) = (c.,cs,cs)j

which can be simplified as a vector of Visual Form Variable
values : -

Is = (med , 8mall , medhigh, med, med, medhigh, medlow, low,

red , magenta, yellow)

** Color, depending on the Color Variety variable can be
made up of one to four of the 30 available colors.

102

Each image stimuli description 110 can be viewed as a
single point in the image space I which can be constructed
as a cross product of Domains:

1 = DUt! • D(h) • ...• DUm) • ...• DUn)

where DUm) is the domain of Visual Form Variable fm.

This image space contains all possible images. The image
space of the AGA is the set of all possible Form Variable
Value Sets each of which representing one image stimuli.

In order to facilitate the discovery of new, more pre­
ferred images, the system must perform Transformation
Operations on the initial default image group and the
user selected image group creating User Derived Image
Groups. These transformations can be viewed as a map­
ping T from one group of image stimuli G', defined by
Form Variable Value Sets I'(J' c I), described by default
visual form variables Vd, to another group of user derived
image stimuli G", defined by Form Variable Value Sets
J" (1" c I), and described by default visual form variables
Vd:

where Tq , T~ , T),are different transformation functions.
In our example, the AGA uses four transformation

functions, the Default Image Generation Module (Td), the
Image Selection Module (T.), the Averaging Evaluation
Module (Ta), and the Value Set Evaluation Module (Tv)
which are described by [GARNEAU 88J. The operation
of the AGA can be described as a series of mappings
from the Default Image Group Go, defined by default Id,
and the User Selected Image Group Gt, defined by user
selected 1., to the final User Derived Image Group Gs ,
with 1" which should contain images that are attuned to
individual preferences.

Td < Go , Id, V >=>< G2 , 10 , V >
T. < G" I., V >=>< G2 , I" V >

Tv < G2 , {la, It}, V >=>< Gs , 12 , V >

Ta < Gs , 12 , V > =>< G. , Is, V >

Tv < G., {I2 , Is}, V >=>< Gs , I., V >

Tv < Gs , {J2 , Is , I.} , V > =>< Gs , Is , V >

Tv < Ge, 10 , V >=>< I" V >

V. Evaluation

The AGA displays a series of images on a graph­
ics terminal and allows the user to assign a preference
value to each image . Each image is a composite of up to
four different shapes chosen from a reservoir of thirty-six
primitive elements. Each primitive element has a spe­
cific value for regularity and complexity and was con­
structed so that the user will not associate any particular
meaning to the composite image . By purposely using
non-representational abstract patterns rather than more
meaningful images we were able to determine relevant
form variables and a methodology for measuring prefer­
ence. The primitive shapes are stored as data points in
files which are read in at system start-up and can be
changed at any time to any desired shape.

Graphics Interface '89

103

like
5

3 Deutral

2

dialili:e

Figure 1: Image with Preference Menu

The system generates a total of 82 images in 7 im­
age transformation groups. There were fifty-five research
participants generating and evaluating over four thou­
sand image stimuli . The appearance of each image was
dependent on specific Visual Form Variable Values which
are dynamically generated as images are evaluated. The
first thirty-six images that make up groups Go and GI

are generated based on a combination of Default Visual
For~ Variable Values [HOLYNSKI, GARNEAU, LEWIS
86] and user image variable selections .

The initial mapping functions (Td' T.) create image
stimuli from the initial Visual Form Variable Values in
Go and G I . After image evaluation, the associated Visual
Form Variables are dynamically mapped into a new set
of Visual Form Variable Values which are used to gener­
ate the first group of user derived images G2 • These user
derived images are displayed with a preference menu for
immediate evaluation (Figure 1) . Subsequent user de­
rived image groups (G s through Ge) are evaluated and
generated based on additional mapping functions (To , Tv) .

Figure 2 shows the average preference assigned to im­
ages in each transformation group . The average prefer­
ence increases from 2.987 in group two to 3.852 in group
six. Extensive statistical analysis of these results is pro­
vided in [GARNEAU 88]. The default images (Go) and
the user selected images (G I) are not listed . These two
groups utilize a comparison technique rather than a menu
to extract user preference and their inclusion would be
misleading.

The averaging mapping function T. used to generate
group three (Gs) generated four random images per per­
son which are shown in the graph as the white bar . The
random images were produced by AGA to insure that the
users were not making selections for the wrong reasons
and also to introduce more image variety. Subjects had

no idea that some of the images were produced with ran­
dom form variable values. The average preference of the
random images generated in group three is 2.232. From a
purely statistically viewpoint, it could be expected that
the random images would have the average preference
value of 3, yet when they are compared to user derived
images they are typically assigned lower than average val­
ues . This phenomenon was witness throughout the em­
pirical testing . Random images when displayed with user
derived images often evaluated to be sub-average in mean
preference.

Mean
Preference
5

4

3

2

o
Group 2 Group 3 Group 4 Group 5 Group 6

Figure 2: Mean Preferences Assigned to Images

Graphics Interface '89

VI. Further Research

We have constructed an experimental system which
attempts to eliminate one of the most difficult tasks in
computer graphics generation systems : the determina­
tion of application constraints, user's specific require­
ments, and preferences. Too many of to days graphic pro­
grammers are attuned to their own priorities and meth­
ods and remain out of touch with the exact needs and
req~irements of the user of their products. Rather than
have the programmer determine image qualities, there
will one day be graphics systems that extract the ap­
propriate presentation variables directly from the users.
Once these variables have been found, they could be used
in almost all types of computer graphics applications from
computer aided design to simple presentation graphics in
order to improve and select both functional and pleasing
display techniques. Eventually it will lead, not only to
improved user oriented computer graphics, but to a sys­
tem that makes intelligent user friendly decisions in the
most optimal way. It will display a given image or set of
data based on the needs of an individual or group of in­
dividuals. It may be able to select the most popular way
to display particular images or even animated images for
specified products and specified populations of users.

There are a number of directions in which this re­
search can expand and progress to. One can attempt
to convert the primitive elements to three dimensional
shapes and adjust the AGA to make the appropriate
transformations in generating images . By using three
dimensional images we will be able to investigate inter­
esting visual concepts such as depth , viewpoint , lighting,
texture and shadows and how they affect user preference.
We will then be in a position to relate these ideas to pre­
sentation graphics, solid modeling for computer imagery,
computer aided design and other scientific and engineer­
ing applications.

References

1. FEINER, STEVEN, NAGY, SAND OR and VAN
DAM, ANDRIES - 1982, January - "An Experimental
System for Creating and Presenting Interactive Graphical
Documents", ACM Transactions on Graphics, Volume 1,
Number 1, January 1982, pp . 59-77.

2. FRIEDELL, MARK - 1984, July - "Automatic

Synthesis of Graphical Object Descriptions", Computer
Graphics July 1984, Volume 18, Number 3, pages 53-62.

3. GARRETT, MICHAEL T. and FOLEY, JAMES
D. - 1982, April - "Graphics Programming Using a
Database System with Dependency Declarations", ACM
Transactions on Graphics, Volume 1, Number 2, April
1982, pp. 109-128.

104

4. GARNEAU, ROBERT W. - 1988, May - "In­
teractive Adaptive Analysis of Graphic Displays" , Ph.D.
Thesis, Boston University, Dissertation Abstracts Inter­
national, University Microfilms Inc., Pub!. # 88-20,146.

5. HOLYNSKI, MAREK, GARDNER, BRIAN R .
and OSTROVSKY RAFAIL - 1986, May - "Knowledge­
Based Generation of Computer Images", Computer
Graphics '86 Proceedings, National Computer Graphics
Association, Anaheim, May 1986, pp. 624-633.

6. HOLYNSKI, MAREK, GARNEAU, ROBERT W.
and LEWIS, ELAINE - 1986, August 25 - "Adaptive
Graphics Interface for Selection of an Effective Visual
Representation", Proceedings of Eurographics '86: The
computer Interface pp. 195-206.

7. JACOB, ROBERT J .K. - 1983 April- "Using For­
mal Specifications in the Design of a Human-Computer
Interface", Communications of the ACM, Working To­
ward Successful Human-Computer Interface, Volume 26,
Number 4.

8. LEWIS, ELAINE and HOLYNSKI, MAREK -
1985, October - "Effective Visual Representation of Com­
puter Generated Images", IEEE Proceedings, 5th Sym­
posium on Small Computers in the Arts, IEEE Press, pp.
9-12.

9. MACKINLAY, JOCK - 1986, April - "Automat­
ing the Design of Graphical Presentations of Relational
Information", ACM Transactions on Graphics, Volume
5, Number 2, pp. 110-141.

10. MICHALSKI, RICHARD S. and CHILAUSKY,
RICHARD L., - 1980 - "Learning by Being Told and
Learning from Examples: An Experimental Comparison
of the Two Methods of Knowledge Acquisition on the
Context of Developing an Expert System for Soybean
Disease Diagnosis" , International Journal of Policy Anal­
ysis and Information Systems, Vol.4, No.2.

11. MYERS, BRAD A. and BUXTON, WILLIAM
- 1986, August 18 - "Creating Highly-Interactive and
Graphical User Interfaces by Demonstration", Siggraph
86 Conference Proceedings, Dallas, Texas, Volume 20,
Number 4.

12. OXMAN, RIVKA and GERO,JOHN S. - 1987,
February - "Using an Expert System for Design Diagnosis
and Design Synthesis", Expert Systems, The Computer
Society of the IEEE, Volume 4, Number 1, pp. 4-15.

13. STEVENS, ALBERT, ROBERTS, BRUCE and
STEAD, LARRY - 1983, March - "The Use of a Sophis­
ticated Graphics Interface in Computer-Aided Instruc­
tion", Computer Society of the IEEE, Computer Graph­
ics and Applications, pp. 25-30.

14. TIBBERT, LEE and BERGERON, R . DANIEL-
1984, January - "Graphics Programming for Knowledge­
Guided Interaction", University of New Hampshire,
Computer Science Tech. Report CS 84- 18.

Graphics Interface '89

