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Abstract 

. ~he Adap~ive Graphics Analyzer (AGA), presented 
III thIs paper, IS an example of a graphics interface that 
learns about users' representational preferences and in­
cludes them into image generation algorithms. In or­
der to incorporate learning and decision-making capa­
bilities into graphics , the system extracts concrete and 
measurable statistics from a given image in terms of vi­
sual variables . The structure of the AGA is based on 
variable-value calculus that allows direct adoption of ma­
chine learning techniques. The AGA displays a series of 
images on a graphics terminal and requests the user to 
assign a preference value to each image. This evaluation 
and generation process repeats until the optimal sets of 
image variable values are found . 

Keywords: Intelligent graphics system, user interface, 
knowledge acquisition. 

I . Introduction 

Graphical presentations should be adjusted to pro­
gramming needs and on-the-spot applications in the same 
way an artist tailors his portfolio to the customer's re­
quirements. The manner in which an architect perceives 
a picture of a building could be dramatically different 
from the way an engineer views the same structure. Im­
age adjustments, based on properties of data, the user's 
objectives, design principles and perception rules, require 
implementation of techniques that help to organize and 
manipulate specific graphics knowledge. 

In order to adjust the representation of data to pref­
erences, needs and knowledge of people who are going to 
use it, we must equip graphics systems with an adaptive 
graphics interface that learns about these preferences and 
utilizes them as display rules. The Adaptive Graphics 
Analyzer (AGA), presented in this paper, is an example 
of such an interface, created for discovering the program­
mers' display rules and including them incrementally into 
image generation algorithms . 

The simplest way to incorporate learning and 
decision-making capabilities into graphics systems is to 
borrow it from another field of computer science - artifi­
cial intelligence. There is no need to develop a separate 
"graphics intelligence" , since many of the AI techniques 
can be integrated with graphics in a coherent manner and 
provide acceptable and possibly exceptional results . 
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H . Previous Work 

Artificial intelligence and computer graphics have 
been close associates for some time. Early computer vi­
sion research, which used AI techniques extensively, ad­
dressed problems related to image analysis and synthe­
sis . A bona fide linking of AI techniques and computer 
graphics took place in relational data base management 
systems. The data base, AI, graphics tie is explicitly men­
tioned by the builders of the automatic authoring system 
[FEINER, NAGY and VAN DAM 82]. In the conclud­
ing remarks of the paper, the authors discussed begin­
ning efforts for the determination of layouts automati­
cally, using domain-specific knowledge about the design 
rules for display formats . In [GARRETT and FOLEY 
82] an augmented data base management system is de­
scribed that removes the need for a procedural graphics 
generation module in interfaces to application programs. 
The manipulation of data representing images is done by 
the DBMS whenever there is a data update by the appli­
cation or as a result of user queries . 

A system that combines intelligent interfacing with 
image enhancement is the Steamer simulation program 
[STEVENS, ROBERTS and STEAD 83] . In this inter­
active program a combination of iconic images are used 
in conjunction with a knowledge base to produce config­
uration changing simulations of actual steam plant oper­
ation. 

One question that continues to come up in any graph­
ics interface is the experience level problem. How does 
one accommodate both the inexperienced user and the 
expert without bewildering the former and boring the 
latter? [JACOB 83] attempts to answer that question 
using high-level abstraction for describing the semantics 
of the user interface with two levels depending on the 
experience of the user. A somewhat similar technique is 
used by [TIBBERT and BERGERON 84] in XGRAPH, 
a system that combines rule-based knowledge base with a 
graphics program for specifying computer configurations 
interactively. Here, the authors use automaton type con­
trol (state changes) for knowledge base interaction to in­
troduce a "guide" mode when necessary. 

Knowledge-based object synthesis from primitive el­
ements for both two and three- dimensional objects is 
first demonstrated by [FRIED ELL 84] and later used by 
[HOLYNSKI, GARNEAU and LEWIS 86] in two dimen-
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sionallayout for the determination of effective visual rep­
resentation of images . The effectiveness of visual repre­
sentation is further demonstrated by [MACKINLAY 86J . 
He uses a presentation tool , a rule-based system that 
automatically designs effective graphical presentations of 
relational information in the form of bar charts, scatter 
plots and connected graphs . 

Three graphics systems that use artificial intelli­
gence techniques extensively are the Peridot [MYERS 
and BUXTON 86], Predikt [OXMAN and GERO 87J, and 
Graflisp [HOLYNSKI, GARDNER and OSTROVSKY 
86J. Peridot automatically creates the code for user in­
terfaces using pop-up and pull-down menus with elab­
orate feedback mechanisms and system guesses to save 
the designer time in making corrections to the knowl­
edge base. Predikt uses a stand-alone rule-based expert 
system shell with forward and backward-chaining to pro­
vide mappings between semantics and graphical syntax. 
Grafiisp describes relations among picture elements and 
concepts represented by these elements in the form of se­
mantic networks and uses inference reasoning for image 
creation. 

Ill. Determining Graphics Constraints 
with Machine Learning 

In order for the system to learn about programming 
constraints for graphics, it must have the ability to ex­
tract concrete and measurable statistics from a given vi­
sual image . The system must be able to assign specific 
image variable values to each picture generated and re­
alize which values or set of values most influence its ap­
pearance. 

There has been a great deal of preliminary research 
don~ to select image variables. [LEWIS and HOLYNSKI 
85J did early work in determining the appropriate image 
variables to construct a "filter" for selecting potentially 
acceptable images from the population of possible images . 
They explored three different methods : fractals , struc­
tural randomness of primitive elements (the technique 
used in this research), and grid systems to establish and 
test image variables. They found that visual form could 
in fact be quantified using variables such as complexity, 
regularity, color and order (symmetry). 

In more recent experiments we generated the stimuli 
as abstract display matrices comprised of controlled com-

. binations of thirty-six primitive elements . The stimuli 
illustrated the four previously used variables along with 
three additional variables: balance (image equilibrium), 
variety (number of different primitive elements that make 
up a single image) and busyness (amount of display image 
that contains primitive elements) . Two hundred subjects 
from three different student groups evaluated the stimuli. 
Standard regression analysis was used to discover which 
variables were appropriate predictors for user preference. 
Using an interval scale, we found that complexity, regu­
larity, symmetry and busyness had a positive significant 
effect of approximately the same magnitude on user pref­
erence [HOLYNSKI, GARNEAU and LEWIS 86J . 
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These findings were consistent with earlier findings in 
terms of relationship between regularity and complexity 
with preference. Although useful, conventional statistical 
packages do not immediately show how one variable in­
teracts or depends on another. In order to more carefully 
examine the interrelationship among all the variables, we 
used a rule acquisition program that was developed at the 
University of Illinois . It allowed us to disclose structural 
descriptions of object classes, i.e., descriptions that in­
volve not only object attributes but also relations among 
object components and subcomponents . The rule acqui­
sition program more specifically supported the statistical 
evaluation and generated rules in the form accepted by 
display algorithms. 

These preliminary results led to the adoption of more 
image variables, more levels within each variable and the 
inclusion of a knowledge-repair mechanism that resulted 
in the construction of the Adaptive Graphics Analyzer 
(AGA). Using these preliminary results a set of default 
values have been selected to initialize the AGA. This de­
fault set gives the analyzer a broad base of variable values 
so that the system will create initial images that appeal 
to a general audience and will help the user to quickly 
select his preference set. AGA interacts with the user 
and his preference selections to continually adjust its im­
age variable values and generate an image or set of images 
that are most suitable to the particular user's preferences, 
specifications and requirements . 

IV. Formalism for Preference Extraction 

The structure of the Adaptive Graphics Analyzer, the 
visual form variables that it uses, and their relation to im­
age generation and evaluation can be revealed in a formal 
way using an extension of variable-valued logic calculus* 
[MICHALSKI and CHILAUSKY 80J. 

In the AGA image stimuli are generated in sequences 
of ten to fifteen images called an Image Group. The 
first sequence of image stimuli, called the Default Image 
Group Go, is generated based on initial image attribute 
information stored in a file . After the user assigns a pref­
erence to each image stimuli in this group, a second se­
quence of image stimuli called the User Selected Image 
Group G, can be generated which allow the user to con­
struct his own preferred image stimuli. New User De­
rived Image Groups Go are created using these two initial 
groups of image stimuli as a foundation . 

The it" Group (or it" sequence of image stimuli) can 
be represented as an indexed list: 

C, = < Pi, Pi+lI . .. , Plc, ... , Pl > k E [j, I) 

where each image stimuli Pk is described by a Set of Visual 
Form Variables Vk : 

Vk = < j" 12 , ... , fm, . . . , f n > m E [l , n) 

* The formal notation adopted here is based on Michal­
ski 's variable-valued logic calculus system VL2. 
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which can be considered to be Graphic Image Generation 
Functions mapping image stimuli into Visual Form Vari­
able Values (and vice versa) . 

In the example presented in this paper, the AGA uses 
seven groups of image stimuli: 

Go == < PI, ···,PI2 > 
G2 ==< PS7,···,P51 > 
G. ==< P62, ... , P76 > 
G6 ==< PSI,PS2 > 

Gl ==< PlS, ... , Pse > 
Gs == < PS2, ... , Pel > 
Gs == < P77, .. . , Pso > 

with the following visual form variable set for all ke:fl, 82]: 

Vaga ==< /. ,12 , fs, f. , Is , fe , h, fs , fg > 
==< Balance, GridSize , BU8yne88, Complexity, Regularity, 

ColorV ariety, S hapeV ariety, Symmetry, Color > 

Visual Form Variable fm of image stimuli Plo with value 
Qc is called a selector and represents a relational statement 

that selects the value Qc of the Visual Form Variable fm for 
image stimuli k. 

For example, if fs is Regularity, and Qc is low, then 
the selector [fs(ps) = low j states that the Regularity of the 
image stimuli number 8 in the image generation group Go 
is low. 

Each Visual Form Variable is only permitted to have 
values from a finite value set called the Domain of that 
Visual Form Variable DUm) . The Domain of the Visual 
Form Variable is dependent on the constraints of the image 
generation process. Domains of the Visual Form Variables 
used by the AGA are as follows: 

DUl) , DU.)' D(Is), DUs) == {Iow, medium, high} 

D(h) == {8mall , medium, large} 

DUs) , DUe), D(h) == {Iow , medlow, medhigh , high} 

DUg) == {Cl , C2 , CS, ... cso}** 

A complete description of a single image stimuli Plo, 

called a Form Variable Value Set h, is an expression which 
assigns values to all the Visual Form Variables of Plo and is 
written as a conjunction of selectors: 

For example, Default Variable Value Set 8 used by the 
AGA to generate image number 8 was defined as, 

Is == [ftlps) = medj /\ [hIps) = smallj /\ [fs(ps) = medhj /\ 

[f. (Ps) = medj /\ [fs(Ps) = medj /\ [/sIps) = medhj /\ 

[hIps) = medlj /\ [fs(ps) = low j /\ [fg(ps) = (c.,cs,cs)j 

which can be simplified as a vector of Visual Form Variable 
values : -

Is = (med , 8mall , medhigh, med, med, medhigh, medlow, low, 

red , magenta, yellow) 

** Color, depending on the Color Variety variable can be 
made up of one to four of the 30 available colors. 
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Each image stimuli description 110 can be viewed as a 
single point in the image space I which can be constructed 
as a cross product of Domains: 

1 = DUt! • D(h) • ...• DUm) • ...• DUn) 

where DUm) is the domain of Visual Form Variable fm. 

This image space contains all possible images. The image 
space of the AGA is the set of all possible Form Variable 
Value Sets each of which representing one image stimuli. 

In order to facilitate the discovery of new, more pre­
ferred images, the system must perform Transformation 
Operations on the initial default image group and the 
user selected image group creating User Derived Image 
Groups. These transformations can be viewed as a map­
ping T from one group of image stimuli G', defined by 
Form Variable Value Sets I'(J' c I), described by default 
visual form variables Vd, to another group of user derived 
image stimuli G", defined by Form Variable Value Sets 
J" (1" c I), and described by default visual form variables 
Vd: 

where Tq , T~ , T),are different transformation functions. 
In our example, the AGA uses four transformation 

functions, the Default Image Generation Module (Td), the 
Image Selection Module (T.), the Averaging Evaluation 
Module (Ta), and the Value Set Evaluation Module (Tv) 
which are described by [GARNEAU 88J. The operation 
of the AGA can be described as a series of mappings 
from the Default Image Group Go, defined by default Id, 
and the User Selected Image Group Gt, defined by user 
selected 1., to the final User Derived Image Group Gs , 
with 1" which should contain images that are attuned to 
individual preferences. 

Td < Go , Id, V >=>< G2 , 10 , V > 
T. < G" I., V >=>< G2 , I" V > 

Tv < G2 , {la, It}, V >=>< Gs , 12 , V > 

Ta < Gs , 12 , V > =>< G. , Is, V > 

Tv < G., {I2 , Is}, V >=>< Gs , I., V > 

Tv < Gs , {J2 , Is , I.} , V > =>< Gs , Is , V > 

Tv < Ge, 10 , V >=>< I" V > 

V. Evaluation 

The AGA displays a series of images on a graph­
ics terminal and allows the user to assign a preference 
value to each image . Each image is a composite of up to 
four different shapes chosen from a reservoir of thirty-six 
primitive elements. Each primitive element has a spe­
cific value for regularity and complexity and was con­
structed so that the user will not associate any particular 
meaning to the composite image . By purposely using 
non-representational abstract patterns rather than more 
meaningful images we were able to determine relevant 
form variables and a methodology for measuring prefer­
ence. The primitive shapes are stored as data points in 
files which are read in at system start-up and can be 
changed at any time to any desired shape. 
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Figure 1: Image with Preference Menu 

The system generates a total of 82 images in 7 im­
age transformation groups. There were fifty-five research 
participants generating and evaluating over four thou­
sand image stimuli . The appearance of each image was 
dependent on specific Visual Form Variable Values which 
are dynamically generated as images are evaluated. The 
first thirty-six images that make up groups Go and GI 

are generated based on a combination of Default Visual 
For~ Variable Values [HOLYNSKI, GARNEAU, LEWIS 
86] and user image variable selections . 

The initial mapping functions (Td' T.) create image 
stimuli from the initial Visual Form Variable Values in 
Go and G I . After image evaluation, the associated Visual 
Form Variables are dynamically mapped into a new set 
of Visual Form Variable Values which are used to gener­
ate the first group of user derived images G2 • These user 
derived images are displayed with a preference menu for 
immediate evaluation (Figure 1) . Subsequent user de­
rived image groups (G s through Ge) are evaluated and 
generated based on additional mapping functions (To , Tv) . 

Figure 2 shows the average preference assigned to im­
ages in each transformation group . The average prefer­
ence increases from 2.987 in group two to 3.852 in group 
six. Extensive statistical analysis of these results is pro­
vided in [GARNEAU 88]. The default images (Go) and 
the user selected images (G I ) are not listed . These two 
groups utilize a comparison technique rather than a menu 
to extract user preference and their inclusion would be 
misleading. 

The averaging mapping function T. used to generate 
group three (Gs ) generated four random images per per­
son which are shown in the graph as the white bar . The 
random images were produced by AGA to insure that the 
users were not making selections for the wrong reasons 
and also to introduce more image variety. Subjects had 

no idea that some of the images were produced with ran­
dom form variable values. The average preference of the 
random images generated in group three is 2.232. From a 
purely statistically viewpoint, it could be expected that 
the random images would have the average preference 
value of 3, yet when they are compared to user derived 
images they are typically assigned lower than average val­
ues . This phenomenon was witness throughout the em­
pirical testing . Random images when displayed with user 
derived images often evaluated to be sub-average in mean 
preference. 

Mean 
Preference 
5 

4 

3 

2 

o 
Group 2 Group 3 Group 4 Group 5 Group 6 

Figure 2: Mean Preferences Assigned to Images 
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VI. Further Research 

We have constructed an experimental system which 
attempts to eliminate one of the most difficult tasks in 
computer graphics generation systems : the determina­
tion of application constraints, user's specific require­
ments, and preferences. Too many of to days graphic pro­
grammers are attuned to their own priorities and meth­
ods and remain out of touch with the exact needs and 
req~irements of the user of their products. Rather than 
have the programmer determine image qualities, there 
will one day be graphics systems that extract the ap­
propriate presentation variables directly from the users. 
Once these variables have been found, they could be used 
in almost all types of computer graphics applications from 
computer aided design to simple presentation graphics in 
order to improve and select both functional and pleasing 
display techniques. Eventually it will lead, not only to 
improved user oriented computer graphics, but to a sys­
tem that makes intelligent user friendly decisions in the 
most optimal way. It will display a given image or set of 
data based on the needs of an individual or group of in­
dividuals. It may be able to select the most popular way 
to display particular images or even animated images for 
specified products and specified populations of users. 

There are a number of directions in which this re­
search can expand and progress to. One can attempt 
to convert the primitive elements to three dimensional 
shapes and adjust the AGA to make the appropriate 
transformations in generating images . By using three 
dimensional images we will be able to investigate inter­
esting visual concepts such as depth , viewpoint , lighting, 
texture and shadows and how they affect user preference. 
We will then be in a position to relate these ideas to pre­
sentation graphics, solid modeling for computer imagery, 
computer aided design and other scientific and engineer­
ing applications. 
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