
105

Graphical Interface Services for Application Integration

Susan Franklin
Tony Peters

International Business Machines Corporation
5 West Kirkwood Drive

Roanoke, TX 76299

Abstract
This paper describes a set of graphical object services
which provide a cohesive, consistent application
development environment for implementing graphical
user interfaces in intelligent workstation applications.
These objects are implemented as a set of controls using
the Presentation ManagerTM windowing system. A
control in the Presentation Manager environment is a
user interface element with a unique programming
interface and application function. This programming
interface consists of a series of messages passed between
the creating application and the control. The
application environment as well as the operating
environment of the Presentation Manager is described .
The graphical object services are described functionally,
as well as architecturally, in order to describe the
capabilities of the objects and the necessary detail
required to implement new objects . Protocols required
to pass extensive amounts of graphical data efficiently
between objects in a multi-tasking environment are
discussed.

Keywords. User Interface, Graphical Programming
Services, Windowing, Presentation Manager,
Programming Tools, Application Integration, Office
Automation, Icon, Direct Manipulation, Electronic
Office.

Introduction

The incorporation of graphical user interfaces into
computer applications has promoted the growth of
advanced user interaction styles and techniques. As
application developers attempt to implement many of
these new concepts, the need for a consistent set of
graphical user interface services for applications has
surfaced. Some of this enhanced capability can be
provided by graphical window-oriented operating
systems. Other services must be provided by the
application itself as requirements continue to change.
These services must be implemented such that they are
consistent within the application and, ideally, usable by
other programs as well. The strategy used in providing
graphical services for applications is to provide services
as building blocks which a programmer may use to

build the specific graphics-oriented task at hand. These
building blocks, as well as the operating system services
and communications protocols, may be used by various
applications to achieve a graphical user interface that is
not only intuitive, but also consistent among a set of
integrated graphical applications.

Application Development Environment

The target environment in this discussion of graphical
interface services is the IBM Operating System/2™
(OS/2TM) with the OS/2 Presentation Manager user
interface. OS/2 is a multi-tasking operating system for
IBM or compatible personal computers. Application
programs designed to execute on OS/2 and Presentation
Manager may run concurrently with other OS/2
applications, while sharing many of the user interface
concepts and interaction styles of the Presentation
Manager. While a complete discussion of !tIe OS/2
operating system concepts is beyond the scope of this
paper, a brief introduction follows.

Basic Operating System Services

It is the goal of OS/2 to provide a platform for
application development and execution which provides
sufficient resources to mUltiple applications for
completion of desired tasks . To achieve this goal, OS/2
provides support in resource management,
multi-tasking, and application development tools.

In the OS/2 environment, multiple applications may
run, sharing the same system resources. The operating
system ensures that resources such as memory or files
are accessed such that an application 's data is protected
from corruption by another application in the system.
Shared resources such as processor time are parcelled
out by OS/2 based on a system priority scheme. A
program which accesses another application's data area
is terminated by OS/2, causing the ill-behaved
application to end, rather than bringing down the entire
system.

Application development tools which support the design
and development processes are also provided with OS/2.

Graphics Interface '89

The primary focus of this discussion is on the end-user
interface toolkit, called the Presentation Manager.

User Interface Development with Presentation
Manager

The Presentation Manager allows multiple OS/2
applications to appear on the screen at the same time.
Each application displays its data in a rectangular,
bordered area on the screen called a window. An
application may choose to display its data in more than
one window. The Presentation Manager provides a set
of user interface building blocks, such as a window title
bar or a pulldown menu, that allow windows from
different applications to behave in a similar manner.
Common user actions such as sizing a window, moving
a window, scrolling information, or selecting commands
from menus are handled consistently by the Presentation
Manager. The application-specific data is displayed in
an area known as the client window which is the white
space in the center of an application window. Figure I
shows a typical application window. Each of the system
provided building blocks is labelled.

Once an application displays its data in a window, it
receives messages from the system regarding user input
to the window. For example, if data is entered into a
window or the window is resized, the system notifies the
application of these changes by sending messages to the
application's window. The window's response to these
messages is what determines the path of execution for
the program.

Eilr .o.ptiDn~ Iree Atran e ~ndl7W Exit fl - Hel

C'rl.letter lIiel,.o t s .. drivf' .

I±iA l1li I±i 0 EBE I±i F I±iG

E
L SYSTE U
SPOOL
SUW'"
TOOUCT11

BIN
C

t~~:E~
t~[

AVl05AMP
BMAI'
cursno
OlAlOG1

IClie nt Win d o w I

~
I!!ru:.....J

Figure 1. Standard Presentation Manager Application Window

Structure of a Presentation Manager Application

A Presentation Manager application always consists of
a main initialization procedure and at least one window
procedure. The main procedure initializes the OS/2
resources used by the program, sets up a message queue
to receive the system messages, and begins a message
processing loop to get messages from the queue and

106

dispatch them to the appropriate window. The window
procedure is the code responsible for receiving and
processing the messages.

The main procedures for all Presentation Manager
applications are nearly identical. It is the window
procedure which distinguishes the behavior of one
application from another. A window procedure may be
used for more than one window. For this reason, a
window procedure is said to define a window class.
That is, each window created by an application using
the same window procedure will behave in the same
manner. An application may define as many window
classes as necessary.

The primary responsibility of a window procedure is to
respond to messages sent to a particular window. A
window procedure may choose not to respond to a
message in which case the system will perform some
default action. A window procedure simply checks for
messages that have a prescribed response and performs
the desired action. Certain system messages are handled
differently by each window class. A primary example is
the WM_PAINT message, which is sent to a window by
the system when the window needs to be repainted.
Since each window class looks different, the response to
the WM_PAINT message must be different.

Application Overview

The application environment for which the application
integration graphical interface services are developed is
that of a set of office applications. The versatility of
these graphical application services is in no way limited
to office applications, but with the office environment
being our current development thrust, the majority of
this paper will discuss the application integration
graphical interface services within the context of the
office application set.

This office environment is the electronic counterpart of
a real office. It makes considerable use of graphics to
represent objects that are available to the user in a real
office. Familiar office objects are presented to the user
as small graphic or pictorial representations known as
icons. For example, the electronic equivalents of filing
cabinets , folders , documents, waste baskets, telephones,
calculators, clocks, and other common office items are
represented on the display screen by icons.

In this electronic office, an object is any entity that can
be manipulated as a single unit, or can be conceptually
regarded by the user as capable of having an
independent existence. Each of the above mentioned
office representations is an object that can have
activities performed on that object.

The office interface will provide a user environment with
graphic presentation of office objects and activities. The

Graphics Interface '89

office desktop itself is an OS/2 Presentation Manager
window and is presented when the office is started from
the file system or from an OS/2 command line. This
window contains an initial set of icons which represent
office objects. Associated with each object is an Object
Handler. The object handler provides the icon that
represents the object and the program to handle user
actions on the object. Object handlers also handle
interactions with other object handlers. The user has
the ability to perform direct manipulation of objects in
the office application. Through the mouse interface, the
user can select an object as represented by an icon and
drag it to another object to accomplish an action. For
example, to discard an object from a mail basket, the
user can select the icon representing the mail item and
drag it to the "shred" icon.

Common Graphical Object Services
It is a primary requirement of the office graphical
interface services to minimize the office Presentation
Manager application programming efforts and the
associated skills level required to develop a best of breed
Presentation Manager application. In providing the
graphical interface services for mmlmlzmg the
application effort for applications, it is important that
the graphical interface services do not sacrifice the
inherent capabilities of the Presentation Manager in
achieving application development efficiency. Office
Presentation Manager application graphical interface
services must be able to provide for the adequate
exploitation of Presentation Manager capabilities across
the entire spectrum of office applications.

A
P
P
L
I
C
A
T
I
o
N
S

,.------ ------- --- ---- --- --- -- --- -----
i Graphical Interface Services i , ' , ' , ' , ' , '
: eGO P :
, 0 R BR'
: N A J 0 i
: T P E C :

-----L-- --R--- -- .LC __ .f_ -: ----
: 0 ITS
: C 5
: L A 0
: s L R
, , , , , , , ,
: Function
, Library , ,
~ - __________________________ - - ____ - __ I

Figure 2. Graphical interface services functional flow

P
R
E
5
E
N
T
A
T
I

o
N

M
A
N
A
G
E
R

Another equally important objective of the graphical
interface services is to provide for a tight interface
consistency among all office applications . Additional
goals of the office are to provide an open architecture
of snap in applications and to facilitate a wide variety
of application national language support.

107

The office common graphical object services approach
to these requirements is to provide a Presentation
Manager compatible architected set of common
graphical object services. This is achieved by providing
applications with a set of user interface building blocks,
called controls. The Presentation Manager common
graphical object services are functionally illustrated in
Figure 2.

User Interface Controls
A control in the OS/2 Presentation Manager
environment is a user interface element with a unique
programming interface and application function, such as
a menu or scroll bar control. Typically, this interface
element is a window. Examples of such window
interface elements could be as simple as a graphic scroll
bar or as complex as an icon control which displays and
manages the direct manipulation of graphic icons. The
programming interface to controls consists of a series of
messages passed between the creating application and
the control. The following sections describe how these
controls are invoked by calling programs and how such
controls are structured internally.

Invoking User Interface Object Controls
The section "Structure of a Presentation Manager
Application" discussed the general program structure of
a Presentation Manager program. The specific
invocation of a user control will be discussed here in
detail as well as the communication between the control
and the owning application. The example control which
will be used for this discussion will be an icon control
which is a graphical control which lists its elements as
icons. Objects may be inserted, deleted, or edited within
this control. The icons may be rearranged though direct
manipulation or through corresponding commands from
the owning application. Figure 3 shows an owning
application with an underlying icon control containing a
list of several phone messages.

Message Ho. 4 from Ellen
M es;sage Ho. J from SUUfl
Mes S8ge No . 2 from Tony
Message No. 1 trom Cart

Figure 3. Example application with graphic user interface objects

Graphics Interface '89

The two primary responsibilities an application program
has in creating a user control object is to register the
control class and create the control. Each control is an
instance of a particular type of window called a window
class. Registration defines to the operating system all
the necessary information required for an application to
invoke the control. The external invocation identifiers,
the processing routines and specific parameters such as
storage requirements are specified in the control
registration. The class style also defines the action that
the operating system is to perform when moving or
sizing operations occur on the screen and affect a
window belonging to the registered class. Once a
control has been defined to the operating system
through registration the application can create as many
controls of this specific class as it wishes .

Once the window class has been registered, the
application creates the control by issuing a
WinCreateWindow call of the registered class. Using our
example of the icon control, the owning application
issues the WinCreateWindow using the registered class of
leonCtl.

Four basic types of information must be passed when
the control is invoked:

I . Owner information describing the ownership and
parentage of the control. This information is
necessary in defining the messaging matrix to the
system for communication between the owning
windows and the subordinate controls .

2. Size information during the creation of the control.
This information can be omitted at the creation and
can be dynamically supplied when the control is to
be displayed.

3. Application specific parameters. In our ICON
example, these parameters describe specifics of the
icons within the control.

4. System required parameters such as a unique ID
identifying the control to the operating system.

A unique handle is returned by the operating system
from the window creation which is used by the
application in communicating with the control.

Figure 4 shows the sample calling sequence for invoking
the icon control.

The application and the control communicate by
sending each other messages. Messages are addressed to
the window handle which is returned when the windows
are created ("User Interface Controls"). The message
components are a message definition and two message
parameters. The message definition indicates which
message is being sent and the two parameters are data
which is passed to the receiving window. The data
parameters can be as simple as two or four byte fields
or intrinsically complex as the passing of graphical
iconic data. Specifically, how graphical data is passed is
described in detail in "DDE Implementation" and

108

illustrated in Figure 6. Messages can be sent
synchronously and posted asynchronously.

WinRegisterClass«HAB)NULL,(PSZ)"IconCtl",
(PFNWP)IconCtlWndProc,CS SIZEREDRAW,4);

hCtl = WinCreateWindow(hwndParent~
(PSZ)"IconCtl",
(PSZ)NULL,
style,
X,y,cx,cy,
hwndOwner,
HWND TOP,
id, -
(PVOID)NULL,
(PVOID)NULL) ;

Figure 4. Sample icon control invocation by calling application

Graphic Object Control Implementation

While the implementation of a specific Presentation
Manager user interface control will vary depending on
the requirements, general guidelines exist for the
implementation of a control. Successful development of
a control begins by understanding the general
characteristics and the skeletal structure of a control.
This template can then be expanded to include the
specific functional requirements of the control.

General Control Requirements

Message Handling: From an implementation viewpoint,
a control is nothing more than a specialized window
class which is expected to field certain messages and
return the expected values . The internal structure of a
control is simply a window procedure. There is no main
program or invoking routine, since these tasks are
performed by the application creating the control. The
functionality of a control is determined simply by the
kinds of messages that are accepted.

A control generally accepts two types of messages:
general window messages predefined in the Presentation
Manager and new control messages defined by the
control. A subset of the former group is fielded by all
controls. For example, the control must always be
prepared to repaint its contents when the WM_PAINT
message is received. Likewise, the control may need to
reposition or resize its contents when the WM_SIZE
message is encountered. WM_CREATE processing
gives the control a chance to initialize data and set up
storage blocks, while the WM_DESTROY message is
the appropriate time to release all resources allocated
for the control. Beyond these four messages, the
specific purpose of the control determines what
additional system window messages (such as
WM_BUTTONIDOWN) or specific control defined
messages must be fielded .

Control Parent and Owner Relationships: In addition to
fielding certain messages and returning values, controls
often post messages when certain specified events occur.

Graphics Interface '89

An icon control posts a notification message when the
user selects an icon by clicking on it with the mouse.
Notification messages such as these are posted to a
window known as the control's owner. The owner is
specified during creation . of the control. The only
logical relationship between a control and its owner is
the fact that notification messages are posted to the
owner. It is the parent of the window which determines
creation, positioning, and destruction of the control.
The parent and owner may be the same window, but do
not necessarily have to be. For example, if an
application wishes to place a control inside a dialog
box, then the dialog box is the parent of the control.
However, the standard dialog box is not set up to field
notification messages from certain controls, so the
owner of the control will be another window, possibly
the main client window procedure of the application.
The implementation of a user interface control must not
confuse the parent and owner relationship. A simple
rule is that all outgoing messages from a control are
posted to the owner. A control should never have any
reason to communicate with its parent.

Control Status and Instance Data: Since a user interface
control is a resource made available to all applications,
a control cannot make any assumptions regarding its
ongm. For example, the control may be invoked
several times by the same application or by many
different applications. Associated with each invocation
of a control is a particular state. For example, each
icon control contains a certain number of icons
positioned in particular locations within the control.
Data which describes such infonnation is called instance
data and must be stored such that each individual
instance of a control can easily access its state data at
all times during execution of the control.

Storage of instance data is accomplished through the
use of a Presentation Manager concept known as
window words. During class registration, an application
may specify a specific amount of data to be reserved for
each instance of the window class. These data blocks,
or window words, are accessible through a standard
Presentation Manager API call. Given any window
handle, the Presentation Manager can return a pointer
to any of the requested window words. In order to
maintain and access instance data, a control 's window
class must be registered with an additional four bytes of
data . This window word will contain a long pointer to
the control's instance data block, and may be accessed
at any time during the control's execution. Since one of
the parameters to a window procedure is the handle of
the window receiving the message, there is no confusion
as to which invocation of the control is executing, and
the appropriate handle may be used to access the
pointer to the instance data block.

Under this design approach, each user interface control
has a standard four byte window word used to point to
the instance data block. The size and contents of the

109

instance data block will vary widely in different
controls. In the icon control, this block contains
information concerning the number of icons present, the
size of the icons, the presentation format of the icons, as
well as pointers to the data concerning each individual
icon. The contents of the instance data block are likely
to change as the developer iterates on the
implementation of a user interface control. These
iterations have no effect on any other applications, since
the instance block pointer remains the same.

Enhanced Graphical Object Services: Once the basic
internal structure and data blocks for the control are
determined, the function provided by the control may be
expanded. While the purpose and presentation style of
graphical controls varies greatly, a common requirement
of these controls is the manipulation of graphical
objects. This includes the creation, insertion, and
deletion of graphical objects in the control, as well as
the selection, highlighting, and direct manipulation of
the objects. A pulldown menu and an icon control may
serve entirely different purposes, but both deal with the
user selection of individual primitives which may
contain graphics. If each implementation of a graphical
control employs a different strategy for the
manipulation of graphical objects, this could be
reflected in the user interaction with the control,
resulting in confusion. By providing a lower level of
services for controls to be used in the manipulation of
graphical objects, greater consistency can be achieved.

Primitive Graphical Objects: The Graphical Object
Processor (GOP) is a set of common services that
isolates the manipulation of primitive graphical objects
from the control. Generally, a control keeps two kinds
of infonnation about its graphical objects. First, it
keeps an internal data structure which describes the
object. For example, the icon control creates a data
block for each icon, describing the format of the
graphics , the string name of the icon, and the ID value
for the icon. Second, it keeps the actual picture of the
icon. The goal of the GOP is take over management of
the actual picture, leaving the data block to the
discretion of the control.

Management of the actual graphics is performed by the
GOP using the Presentation Manager GPI interface.
Each graphic object is stored as a GPI segment,
allowing repositioning and user selection through
correlation. Each graphical segment is kept in a
specified position on a segment chain. The control is
responsible only for provid ing the GOP with the source
graphics in any of the acceptable input formats (drawing
orders, bitmaps, or metafiles) . The GOP will in turn
create the segment, draw any borders or add any text
which the control has defined, and position the picture.
If the user selects one of the graphical objects, the GOP
will detect selection and highlight the object in any
manner that the control has defined. If the control
allows direct manipulation of the graphical objects, the

Graphics Interface '89

GOP will detect the mouse movements and perform the
tracking of the object across the screen. It will
reposition the graphical object when tracking is
complete.

By providing additional graphical object services to
controls, the controls can be masked from the segment
manipulation, graphical transforms, and coordinate
conversion that is necessary to create, display, and
manipulate graphical objects. Different input formats
will be handled so that the control need not know the
original format of the objects. Instead, the control may
focus on the relationships between these objects and the
notifications necessary upon the manipulation of the
objects.

Graphical Inter-Program Communication

Throughout the office applications, it will be necessary
to display graphical representations of office objects
produced by many different applications. These objects
will be displayed in a variety of formats, usually by a
graphical list control on behalf of an application which
has produced a list of office objects .

Office graphics management has been designed to
manage the exchange of graphical data between the
applications which create the data and the list control
that will ultimately display some representation of the
data. This exchange must allow the applications to
create, update, and maintain their graphical data
independently of the associated list control, while
providing the application which generated the list with a
copy of the graphical data and informing it when
updates occur.

Many portions of the office user interface make use of
iconic representations of both applications and data
objects. Such iconic representations will occur both
within windows and various forms of lists. The user
can perform various actions on icons such as clicking an
iconic object to expand it into a window or dragging an
icon into another window. An example of such an
action is dragging an iconic representation of a
document into the main office window, placing the
document icon on top a printer icon in order to print a
document. Another such example would be to select a
document which is in an iconic state, expanding it to its
full textual form .

Icons can be constructed in two ways. The first is as a
bit image. The second way an icon can be constructed
is by using the OS/2 Presentation Manager GPI
graphics API. An application would typically use a bit
image icon for a completely static representation of an
object. That is, if an object when it is in an iconic state
is never going to change its appearance, then that object
is a good candidate for using a bit image type icon.
However, if an application will be using an icon
dynamically to indicate its current state, then that

110

application should probably be using the OS/2
Presentation Manager drawing orders to construct its
icons. A good example is the mail application. The
icon is to be updated each time a piece of electronic
mail arrives, perhaps displaying a count of the items in
the inbasket. In this example, the mail application
would change both the content and count within the
icon.

Office graphics management supports both bit image
and presentation graphics forms of icons. Applications
can send both forms of icons to office windows by
storing the bit images or the graphical representation of
the icon in a segment of shared memory and making
that shared memory available to the recelvmg
application. Figure 5 illustrates how graphics data is
shipped between applications.

Snared. Wemary

Master Object (client)

GpiGetOoto

Application (Server)

OOE

Figure 5. Graphics Data Flow

The communications between office applications
exchanging graphics will be achieved through the use of
the Presentation Manager Dynamic Data Exchange
(DDE) protocol. Parameter passing conventions for the
Presentation Manager version of DDE have changed
significantly from the original Microsoft® Windows
DDE protocol.

Office Graphical Data Exchange Model

In the office applications, the collection of available
office objects in the system, as well as the graphical
representation of those objects, is constantly changing
based upon user actions. Those object handlers which
choose to provide a dynamically descriptive icon must
communicate with any graphical list control which is
displaying a representation of that object. Generally,
the object handlers which are providing the graphics are
the "server" applications in the DDE model, while those
applications receiving the graphics are the "client"
applications. Applications which intend to

Graphics Interface '89

communicate can make no assumptions concerning the
identity of interested participants . Therefore, it is the
responsibility of a newly activated client or server
application to initiate a DDE conversation.

A server application is typically initiated when a new
office object is opened by the user. If the application
wishes to provide a dynamically descriptive icon, it must
initiate a DDE conversation in order to provide any
applications which display that icon with updates to the
graphical data.

DDE Protocol Structure with GDE Blocks

IParaml - hwnd
IParam2 - PDDESTRUCT

"-. struct _DDESTRUCT {

ULONG cbData ;
USHORT IsStatus;
USHORT usFormat;
USHORT ollszl temName ;
USHORT ollabData ;

DDESTRUCT

: szltemName :
I I

Qr ______ ~ ~ ~ ~ ~~~O_C_k _______ :

I h . d . t I grap ICS escrlp or8 I

I ~ I I I
I I
I I
I I
I I

Figure 6, DDE message contents

User actions may also result in the addition of client
applications, since there may be several graphical lists of
office objects on the screen at one time, each
continuously being updated by the applications
managing these objects. These lists mayor may not
contain some of the same objects. When a new
graphical list is created through some user action, the
list may need to initiate conversations with server
applications .

Since the number of client and server applications
changes dynamically, a newly activated client (graphical
list) or a newly activated server (object handler) must
broadcast a conversation initiation message to all
windows, to allow any interested applications to
participate in the exchange.

111

DDE Implementation

The office implementation of the DDE protocol for
graphical data exchange takes a two-tiered approach in
the data sharing. The first layer of this implementation
is the DDE messages and structures. Conversation
initiation, update notifications, and data requests are
transmitted using the DDE messages. In the majority of
these messages, a pointer to a data structure,
DDESTRUCT, is passed. This data structure contains
two kinds of data : a fixed portion that is filled by all
applications partIcIpating in conversations and a
variable portion that differs from conversation to
conversation. The first part of the structure contains
information about the types of data being passed, the
data formats, and the topic of conversation. These
fields are provided in all DDE conversations. The
second variable part of the structure contains the actual
data being passed. In the case of office graphical data
exchange, this data contains pointers to the second
layer, the GDE control blocks.

Graphical Data Exchange Control Block --'._-,.-
xxxxxxxxxxxxxxxx
GDE Structure

- GDE atring nom ..
- GOE atyle bit.
- COEMTA pointer

GDEDATA Structure
- dota format etylablte
- dota length
- graphic. data pointer

xxxxxxxxxxxxxxxx

GP! Drawing Orders

Figure 7. GDE Control Blocks

,~'!'

,/-,-"

-'

, ,

hSPB

pGDE

Figure 6 illustrates the relationship between the DDE
messages and the GDE control blocks.

The second layer of the graphical data exchange
implementation contains the GDE control blocks. The
GDE data structure is used to identify the types of
graphics being exchanged, the identity and class of the
object handler providing the graphics, and other
conversation specific information . The GDEDATA
structure contains the actual graphical information.
There may be multiple GDEDAT A structures chained
together. These GDEDATA structures can be passed
directly by the receiving applica tion to the graphical list
control which will display the graphical objects.

Figure 7 illustrates the content and relationship between
the GDE control blocks.

Graphics Interface '89

112

Conclusion

The development of user interface controls in order to
implement newly defined user interaction techniques
allows many different applications to provide new
function in a consistent manner. System services and
protocols also serve to link applications such that they
share actual data as well as the presentation style. The
strategy of providing these services as building blocks to
be shared by applications rather than using all resource
to develop a single, complex application ensures an
increased level of integration among participating
applications.

Bibliography

1. S. Franklin and T. Peters, "A Technical Study of
Dynamic Data Exchange Under Presentation
Manager ,"Microsoft Systems Journal, Vo!. 4, No. 3
(May 1989).

2. E. Iacobucci, OS/2 Programmer's Guide,
McGraw-Hill , Inc. , Berkeley, California (1988).

3. " IBM Operating System/2,"IBM Personal System j2
Seminar Proceedings, Vo!. 5, No. 5 (May 1987).

4. IBM Operating System/2 Internals Volume 2:
Presentation Manager, IBM International Technical
Support Center, Boca Raton, Florida (1988) .

5. IBM Operating System/2 Version 1.1 Technical
Reference Programming Reference: Volume 1, IBM
Corporation, Armonk, New York (1988).

6. IBM Operating System/2 Version 1.1 Technical
Reference Programming Reference: Volume 2, IBM
Corporation, Armonk, New York (1988).

7. IBM Operating System/2 Version 1.1 Technical
Reference Programming Reference: Volume 3, IBM
Corporation, Armonk, New York (1988).

8. "IBM OS/2 Standard Edition Version
Operating System/2 Update, Presentation
(Part I)," IBM Personal System/2
Proceedings, Vo!. 6, No. I (April 1988).

1.1 , IBM
Manager
Seminar

9. " IBM OS/2 Standard Edition Version 1.1 ,
Presentation Manager (Part 2)," IBM Personal
System/2 Seminar Proceedings, Vo!. 6, No. 2 (April
1988).

10. Operating System/2 Version 1.1 Programming Guide,
IBM Corporation, Armonk, New York (1988) .

11. Operating System/2 Version 1.1 Programming
Overview, IBM Corporation, Armonk, New York
(1988).

12. C. Petzold, "The Graphics Programming Interface:
A Guide to OS/2 Presentation Spaces," Microsoft
Systems Journal, Vo!. 3, No. 3 (May 1988).

13. C. Petzold, "OS/2 Graphics Programming Interface:
An Introduction to Coordinate Spaces," Microsoft
Systems Journal, Vo!. 3, No. 4 (July 1988).

14. C. Petzold, Programming the OS/2 Presentation
Manager, Microsoft Press, Redmond , Washington
(1988) .

15. K. Welch, "Creating User-Defined Controls for
Your Own Windows Applications," M icrosoji
Systems Journal, Vo!. 3, No. 4 (July 1988).

16. K . Welch, "Inter-Program Communication Using
Windows' Dynamic Data Exchange," Microsoft
Systems Journal, Vo!. 2, No. 6 (November 1987).

Biography

Susan Franklin is a software developer for IBM
Application Systems Division, Westlake, Texas. She is
currently working in end user interface design and
development for IBM office systems. She joined IBM in
1987. She graduated from Texas A&M University in
College Station, Texas with a BS Degree in Computer
Science.

Tony Peters is a software developer for IBM
Application Systems Division, Westlake, Texas. His
current assignment is development of the end user
interface for the IBM office system applications.
Previous assignments include both application and
systems programming assignments. He joined IBM in
1982. Prior to joining IBM he was a Member of the
Technical Staff at Bell Telephone Laboratories 10

Naperville, I!. He graduated from the University of
Tennessee with a MS Degree in Computer Science.

Trademarks

IBM is a registered trademark of the International
Business Machines Corporation.

Microsoft is a registered trademark of Microsoft
Corporation.

Operating System/2 and OS/2 are trademarks of the
International Business Machines Corporation.

Presentation Manager is a trademark of the
International Business Machines Corporation.

Graphics Interface '89

