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Abstract 

A unified model for the brushing, filling, and 
compositing operations found in a variety of 
computer animation and paint systems is introduced 
and a specification language based on the model is 
presented . Extensions to the standard definition of 
fill are described , including operations where the 
region boundary and colour of the affected pixels 
depend on generalized pixel attributes. These are 
supported by the virtual frame buffer abstraction 
underlying the model. A linguistic device for 
specifying comparison tolerances among pixel 
attributes provides a mechanism for achieving 
effective results with complex images . An interactive 
interpreter for the language has been implemented, 
serving as an exploratory testbed . Examples 
demonstrating the power of the model and the use of 
the interpreter are presented. 

Keywords: brush, composite , fill , paint, virtual frame 
buffer. 

Introduction 

Computer animation and paint systems commonly 
include facilities for modifying raster images using 
three operations: brushing, filling, and compositing. 
We are interested in a family of operations that can 
be performed on digital images all of which use the 
abstraction of a virtual frame buffer [7] in which the 
raster image or frame buffer is a two-dimensional array 
of pixels each having a number of attributes. In the 
simplest cases , only the three red , green and blue 
colour attributes and a fourth opacity or alpha 
attribute are used (these four attributes are 
collectively abbreviated RGBA). More sophisticated 
operations use other pixel attributes defined within 
the virtual frame buffer model. 

In brushing , a raster image called the canvas is 
modified under the control of a tablet stylus or other 
pointing device. Often the brushing algorithm involves 
replacing a small region of the image surrounding the 
current tablet position with another image called the 
brush. More elaborate brushing algorithms define 

combinations of the brush and the canvas, reSUlting in 
new pixel values for the canvas that are derived from 
the RGBA pixel attributes in the canvas and the 
brush [22] . 

Many paint programs also provide a facility for 
changing the colour of a topologically connected 
region by filling [20] . The colour change follows 
specific rules and the region is determined by both a 
seed point and a set of rules for propagating the region 
starting at the seed point. Tools that provide a fill 
capability are often used to modify certain attributes 
of the colour in regions of images that have been 
produced using other graphics techniques , such as 
images introduced to the frame buffer from 
photographic or video media , images created by 
rendering a geometric model , or images created by 
other tools in a paint program. 

Compositing is the technique of combining two or 
more raster images using pointwise rules based on the 
pixel values in the input images. A complete calculus 
of compositing operations using the RGBA attributes 
was introduced by Porter and Duff [18] and extended 
to additional pixel attributes by Duff [2] . The most 
common application of compositing is to merge a 
foreground image with a background image using 
auxiliary opacity attributes in the two images, making 
the RGB values of the output image appear as if they 
were the result of photographically overlaying the two 
images (as is done in traditional cel animation) . 

Although brushing, filling , and compositing can 
be viewed as distinct operations , we believe it is 
useful to consider them as variants of a more general 
technique. To support this view, we observe the 
following "reductions" that demonstrate the 
conceptual equivalence of the three operations. 

Brushing ~ Compositing: Riggins and Booth have 
considered brushing as a special case of compositing, 
where the canvas is the background image and the 
brush is the foreground image [7] . As the position of 
the tablet stylus changes , the brush image is 
considered to be translated with respect to the canvas 
prior to the compositing operation - a weighted sum 
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of the foreground and background images determined 
by their opacity attributes. 

In the Palette system implemented by Higgins , 
extended brushing operations involve a canvas with 
explicit foreground and background images so that 
the brushing operation becomes a three-level 
composition of the brush with both the canvas 
foreground and the canvas background. A separate 
mask attribute can be used at each pixel to further 
control brushing by inhibiting composition where the 
mask has high opacity. More elaborate brushing 
algorithms can be incorporated into this view by 
permitting the replacement colour to depend on more 
complicated functions of the RGBA attributes of the 
brush and canvas . 

Filling ~ Brushing: In the literature , filling has 
been extended from its basic definition to include 
soft-edge and pattern fills [3] [12] [13] [20], but it has 
remained conceptually disjoint from brushing 
operations . We take a broader view here . Filling can 
be seen as a special case of brushing. Using the 
notion of masking introduced in Higgins's Palette 
system, the standard fill operation becomes just 
brushing with a full-screen brush consisting entirely of 
pixels having the colour of the fill , with a mask 
attribute in the canvas having zero opacity inside the 
fill region and maximum opacity outside the fill 
region. The mask can have intermediate values for 
opacity along the boundary of the region if soft edges 
are desired , and may , in general , have values 
dependent upon attributes of canvas pixels . 

In this model , the mask attribute for each pixel 
in the canvas must be pre-computed by an algorithm 
that determines connectivity with the seed pixel , or 
generated on-the-fly during the brushing operation. 

Compositing ~ Filling : To complete the 
equivalence between the three operations, we observe 
that corn positing is just a fill operation if we consider 
the canvas to comprise two sets of pixel attributes , 
one from the foreground image and one from the 
background image, with the replacement colour for 
each pixel being computed using the RGBA attributes 
from both . In this situation , the connectivity 
computation is trivial because the entire raster is 
filled . 

These remarks are meant to motivate our claim 
that brushing , filling , and corn positing are variants of 
a single more general set of raster operations. As 
paint program capabilities have increased , there has 
been a parallel increase in the functionality of 
brushing and filling tools, but almost always as 
independent operations . We believe that a unified 
view is worth taking because of the flexibility it 
provides in defining new operations that extend the 
basic ones. 
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A unified approach has been taken before in 
systems that define raster manipulations based on 
symbolic bitmap expressions. Guibas and Stolfi 
defined a bitmap calculus in which all of the common 
brushing, filling , and corn positing operations could be 
defined [6]. Paeth and Booth implemented a raster 
toolkit capable of performing these operations using 
Unix pipes between processes that manipulate the 
raster images according to primitive operations [15]. 
Nadas and Fournier [14] and Potmesil and Hoffert 
[19] described more complete environments that 
encompass similar tools . Common to these earlier 
systems was a "batch" treatment suggesting 
composition of static images . 

Our work concentrates more on the interactive 
nature of brushing and filling that arises naturally 
from a consideration of paint programs . Closer to 
this approach is work by Perlin [16] and Holzmann 
[8], where interpretive languages are defined for 
manipulating raster images by describing pixel-wise 
operations that are applied to an entire image . The 
system described here extends this approach to a full 
virtual frame buffer model and operations that 
depend on interactive parameters such as tablet (x ,y ) 
position so that the operations found in paint systems 
can be implemented directly. 

The sections that follow describe a formal model 
for a generalized fill algorithm , the implementation of 
a fill interpreter that supports brushing , filling , and 
corn positing in a uniform manner based on the 
model , and examples of the generalized fill algorithm 
that have resulted from this work . 

A Formal Model 

We assume throughout the discussion the use of a 
virtual frame buffer model in which each pixel 
contains an arbitrary collection of attributes or fields , 
and that a mapping is made from the virtual frame 
buffer to a physical frame buffer by some projection 
of the various attributes onto the RGB triplets of the 
physical device. In addition to opacity (A) , depth 
(Z) , and mask (M) attributes , the virtual frame buffer 
may contain multiple RGB fields as well as many 
other attributes including surface normal information, 
quantities resulting from intermediate calculations, 
and "mark" fields derived from region propagation 
algorithms. A justification of the virtual frame buffer 
is given by Higgins and Booth , who also provide 
details on efficient software implementations of the 
virtual-to-physical mapping [7]. 

Fishkin and Barsky have shown the utility of a 
general filling procedure [3] . Their model includes 
two components : a Boolean function INSIDE(x ,y ) 
that is TRUE if and only if the pixel at (x ,y ) has 
some property P and has not yet been visited by the 
propagatioll algorithm and a procedure SET(x ,y) that 
is performed exactly once for each pixel in the region. 
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The key insight is that filling consists of two distinct 
steps: determining which pixels to fill and determining 
how to fill those pixels. 

The propagation algorithm is defined so that the 
seed pixel for a fill satisfies INSIDE. Neighbouring 
pixels are then visited in some unspecified order to 
decide if they satisfy INSIDE, with the SET operation 
being performed on each pixel as it is visited. 

In theory, the predicate P can depend on any 
attribute of the pixel at location (x ,y) or on properties 
of neighbouring pixels (Smith 's definition of tint fill 
appears to rely on this [20)). Unfortunately, this can 
lead to situations in which the outcome of the 
INSIDE test will depend critically on the order in 
which pixels are visited by the propagation algorithm. 
Fishkin and Barsky discuss a restricted set of 
predicates for which the INSIDE test is independent 
of the order in which pixels are visited [3]. We adopt 
this same restriction. 

With this restriction, we can define the region S 
to be filled as the set of pixels having properties P 
and Q as follows: 

S = {p I P (Po,p) and Q (Po,P )} 

where Po is the seed point and P depends only on 
attributes of the pixels Po and p (this is what makes 
INSIDE independent of the order of propagation). Q 
is true if and only if there is a "path" between the 
two pixels consisting entirely of pixels for which 
INSIDE is true. As such it defines connectivity in a 
topological sense. 

The connectivity predicate Q is usually 
predetermined within the fill algorithm. The 
predicate 4-CONNECTED, in which each pixel p is 
connected to four neighbours each sharing an edge 
with p, is typical, although some fill algorithms use 
an 8-CONNECTED connectivity rule in which pixels 
are diagonally connected as well . Other rules such as 
"have the same y-coordinate" are also possible. 

The propagation algorithm assumes responsibility 
for ensuring that each pixel in the region is SET 
exactly once. This may involve data structures 
containing " pixels that have been visited" and/or 
"pixels to be visited" (the current implementation 
maintains a bit-per-pixel matrix and a stack , 
respectively) . This paper does not address the 
propagation method. Fishkin and Barsky provide a 
good analysis of several algorithms [4]. 

By imposing the restriction that P (Po ,p ) depends 
only upon properties of Po and p , analysis and 
implementation become much simpler. This rules out 
the possibility of using properties of neighbours of p 
or random elements to define the region S, but gives 
instead a context-free model within which to work . 
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The procedure for deciding whether or not p is a 
candidate for membership in S becomes deterministic 
in the sense that it can be made without regard to 
how we chose p . 

We can use this assumption to speed up our 
computations in two ways. First, we can apply the 
procedure SET to pixels as they are discovered by the 
propagation algorithm (assuming that proper 
bookkeeping has been done) . A good propagation 
method will not stray away from the region S , and in 
this way we can perform the minimal number of SET 
operations. Many current compositing tools, for 
example, operate upon an entire image (or 
rectangular bounding region) even if only a few pixels 
change. The second advantage is that parallelism is 
readily possible. We may be able to discover pixels in 
S in parallel, such as by having four processors 
explore quadrants about the seed point. 

The Fill Language and Interpreter 

The fill interpreter is a mechanism for designing and 
implementing general fill operations. A user specifies 
the predicate P and a replacement procedure SET. 
The fill interpreter automatically supplies the 
connectivity predicate Q . (We use 4-CONNECTED 
exclusively in our examples.) 

Both P and SET are specified in the fill language 
which resembles C (in fact we invoke the C 
preprocessor), with the following exceptions: 

1. One data type - all variables, constants, and 
expressions are real No attempt has been made 
to specify range or precision, although it is 
assumed that arithmetic on "small" integers is 
performed exactly. 

2. Autodeclaration - there is no need to declare 
variables before use . Storage is automatically 
allocated whenever a new variable appears in a 
program. 

3. Control structures, operators, and built-in 
functions - we implement most of the C control 
structures, assignment operators, arithmetic 
operators, logical operators, and functions from 
the math library. A simple modulus operator for 
real expressions is included : a %b is defined as 
a-la/bJxb. 

4. Fuzzy comparison - as Smith notes , thresholding 
is required in deciding "colourness"; some 
tolerances about this threshold are necessary 
[21]. We address this with the introduction of 
fuzzy comparisons in the fill language. A 
comparison tolerance variable which we call fuzz 
is defined, modifying the semantics of the 
comparison operators to be as follows : 

Graphics Interface '89 



expression 

a == b 
a != b 

a < b 
a >= b 

a > b 
a <= b 

equivalent C expression 

abs(a-b) <= fuzz 
abs(a-b) > fuzz 
a + fuzz < b 
a + fuzz >= b 
a > b + fuzz 
a <= b + fuzz 

All comparisons use the current value of fuzz 
(which is initially zero). When fuzz equals zero the 
standard semantics (as defined in C) of the 
comparison operators are preserved. Although we 
are currently using fuzz as an absolute threshold, a 
mechanism for specifying relative tolerances is under 
consideration. A similar mechanism exists for APL 
[9] [11], where 7,pically fuzz is set to a very small 
value (say 1.0-1 ) and used to disguise the fixed­
precision representation of real numbers . Our use of 
fuzz is much more dynamic. 

With these definitions , the following familiar 
properties hold for all values of fuzz : 

expression 

a == b 

a != b 
a < b 
a < b 

a >= b 

a >= b 
a > b 
a > b 
a <= b 
a <= b 

equivalent expression 

!(a != b) 
!(a b) 

!(a >= b) 
(a <= b) && (a != b) 
!(a < b) 

(a > b ) I I (a == b) 
!(a <= b) 
(a >= b) && (a != b) 
!(a> b) 
(a < b) I I (a == b) 

In practice, these definitions and properties give 
the user a simple yet powerful model that replaces 
strict equality with the notion of containment in an 
interval. We cannot have everything, however ; the 
fundamental transitive property of equality is lost. 
Fortunately, this has not posed any problems in our 
applica tions. 

A parser translates a program into a stack-based 
intermediate language, details of which are beyond 
the scope of this paper. The fill program comprises 
two sections - one for P and one for SET. A simple 
interpreter executes the first section whenever P is to 
be evaluated and executes the second section 
whenever the replacement procedure SET is required. 

The current implementation identifies the 
following fields within a virtual pixel: 
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field associated attribute 

X column coordinate 
y row coordinate 
R red colour component 
G green colour component 
B blue colour component 
A alpha (opacity) 
H hue 
S saturation 
V value 

A field is referenced like a C structure. For 
example, p. R denotes the red component of pixel p. 
Fields X and y have integer values , while all other 
fields are expected to have values in the range [0,1]. 

As an example, a tint fill would be completely 
specified by the following two parts (each a fill 
language block) : 

{ 

fuzz = 0 . 1; 
inside (this .H==seed.H && 

this.S==seed . S) ; 
} 

{ 

this .H 0 . 25 ; 
this .S 0 . 8 ; 

} 

The first block provides the test that will be 
applied to every pixel connected to the seed point. 
The built-in variable inside (initially FALSE for 
each pixel) determines whether or not the pixel passes 
the test . Built-in variables seed. <attribute> are 
automatically initialized to the values of the seed 
pixel. Similarly , built-in variables this . <attribute> 
are keywords giving the values of the current pixel 
(the one being tested) , and may be examined and 
optionally modified. In this example, the Hand S 
fields refer to hue and saturation attributes , 
respectively . The built-in variable fuzz is a 
programming convenience (described above) used for 
the equivalence tests . Setting fuzz to 0.1 causes the 
inclusion test to accept pixels whose tint is close to 
but not exactly the same as that of the seed point. 

The pixel change routine is in the second block . 
The values 0.25 and 0.8 are the hue and saturation of 
the replacement tint . In this case, the values in 
this. H and this. S (along with the unchanged 
this . V) are used for an HSV to RGB transformation , 
and this pixel is then displayed using the resulting 
RGB value. 
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The language provides automatic consistency 
updates between RGB and HSV representations 
(change of colour basis) . Thus the programmer may 
use either representation, or a mixture of the two, 
and still be sure that appropriate transformations are 
performed whenever necessary. This feature permits 
simple expression of compound replacement 
procedures , such as " make the pixel twice as red and 
then desaturate it by ten percent" . 

Some Examples 

This section provides a few simple examples of 
applications of the fill language. The first two 
examples define typical fills . 

Example 1: 

/* basic flood fill INSIDE *{ 
inside 

} 

(this.R==seed . R && 
this.G==seed.G && 
this.B==seed.B); 

/* SET colour in region to full magenta */ 
{ 

this . R=1 . 0; this . G=O.O; this . B=1 . 0; 
} 

Example 2: 

/* INSIDE looks for "same" hue */ 
{ 

} 

fuzz = 0 . 1; 
inside = (this.H seed . H) 

/* SET shifts the hue by 120 degrees */ 
{ 

this . H = (this.H + 0 . 333) y. 1.0; 
} 

The next two examples illustrate the use of the 
fill language to define brushing algorithms. In the 
first case P defines an llxll square region about the 
seed point and SET defines a transformation from full 
colour to NTSC black and white . The fill interpreter 
continuously samples the current tablet (x ,y) to 
determine a seed point, which is then filled 
(brushed) . 
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Example 3: 

/* INSIDE is a square brush */ 
{ 

fuzz = 5; 
inside = (this.X==seed . X && this . Y==seed.Y) 

} 

/* switch to NTSC black and white */ 
{ 

y = this.R*0 . 30 + this . G*0.59 + this.B*0.11; 
this.R = this . G this . B = y; 

} 

In the second case a circular brush of radius 10 
pixels is defined inside which pixels are converted to 
high contrast black and white images by setting the 
saturation to zero (this makes setting the hue 
irrelevant) and the value to either full intensity or no 
intensity, depending on a random threshold. 

Example 4: 

/* INSIDE is round brush */ 
{ 

radius = 10; 
dx = this . X - seed.X; 
dy = this . Y - seed . Y; 
inside = (dx*dx + dy*dy) < (radius*radius); 

} 

/* SET is random dither to single-bit B&W */ 
{ 

this . S 0; 
this.V (random() > this.V) ? 0 1 · , 

} 

The built-in function randomO provides a 
uniform distribution on the interval [0 ,1] . A library 
of mathematical functions is also provided . 

Any of the examples could have used the 
following SET definition instead to achieve a hue 
that depends on the (x ,y) position of the pixe!. 

Example 5 : 

/* SET for rainbow stripe */ 
{ 

} 

this . H 
this . S 
this . V 

«this.X + this . Y) Y. 256) / 255; 
1 ; 

1 ; 
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The next example defines a "compositing brush" 
which blends two images along the path of the tablet 
stylus . The brush is rectangular , and illustrates the 
use of different fuzz values . (Alternatively , we could 
have simply set inside to TRUE, affecting the entire 
frame .) 

Example 6: 

/* INSIDE for 11x7 cornpositing brush */ 
{ 

} 

inside = FALSE; 
fuzz = 5; 
if( this.X 

{ 

fuzz = 3; 

seed.X 

if( this . Y == seed . Y 
inside = TRUE; 

} 

#define blend(x, y, a) (a)*(x)+(1-(a»*(y) 

/* SET assumes "fore" and "back" #defined */ 
{ 

this.R blend( fore . R, back . R, fore . A ) ; 
this . G blend( fore.G, back . G, fore . A ) ; 
this.B blend( fore.B, back.B, fore . A ) ; 

} 

The final example illustrates the use of the fill 
interpreter to build an interactive tool for examining 
the contents of the frame buffer. The P predicate 
doesn't select any pixels , but instead simply prints out 
the (x ,y ) position of the tablet and the RGBA 
contents of the virtual frame buffer at the pixel. 
Because P is never true (inside is initially FALSE), 
it is only executed for the seed point . The SET 
function is null in this case. 

Example 7: 

/* attribute inquiry */ 
{ 

} 

print( "x = ", this . X, "y = ", this.Y ); 
print( this . R, this . G, this . B, this . A ); 

/* SET is null */ 
{ 
} 

More elaborate examples of the fill interpreter 
are illustrated in the figures at the end of the paper. 

Figure 1 (courtesy of Michael Sweeney) shows a 
face rendered using a ray-tracing algorithm . Figure 2 
is the result of changing the hue at each pixel within 
the face to a straw colour and then modulating the 
value at each pixel using a weave pattern, similar to 
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the rainbow stripe example above. Figure 3 is the 
result of further modulating the alpha (opacity) of the 
weave pattern and compositing the resulting image 
over two coloured rectangles . 

Figure 4 shows a line drawing of various kitchen 
utensils produced by a CSG modeler. Figure 5 is the 
result of a basic fill applied to the cutting board, 
rolling pin, and spoon , with gradient fills (value is a 
function of y) applied to the bowl , eggs, and table. 
Artificial highlights were then added to the bowl 
using a single application of a brush that intensifies 
the seed point and rapidly diminishes as it moves 
away from the seed point . A brick pattern fill was 
performed on the wall , which was then modified by 
individual applications of a random colour shift to 
various bricks. A few bricks were filled with random 
grey and graffiti was brushed on using a circular 
brush having a Gaussian interpolation parameter. 

Figure 6 is an example of abstract artwork 
created using only the filling tool. An Il-pointed star 
was created by converting to polar coordinates and 
constraining the fill to r ~sin(B) . 

Examples of z-fill in which an explicit depth 
attribute is used to control filling/brushing, specular 
brushes in which saturation is a function of a surface 
normal attribute , composite brushing in which two 
images are merged in a region defined by tablet 
strokes , and many more are easily specified with the 
fill language. 

Implementation 

The fill interpreter 
implemented for 
configurations so far. 

is portable and has been 
two different hardware 

The first is a multiprocessor configuration in 
which a V AX 8600 compiles the fill program for 
downloading into an Adage bitslice processor. The 
interpreter resides in the bitslice, where arithmetic 
operations are performed in a scaled fixed-point 
format. Cursor tracking , seed point selection , and 
other user interface duties are provided by a 68000 
microprocessor running multiple tasks under the 
Harmony operating system [5] . In this configuration , 
one can alternately run the fill interpreter and the 
multitask Harmony-based Paint system [1]. 

The second configuration has both compiler and 
interpreter residing on the 8600 , with the user 
interface provided on a V AXstation II/GPX running 
the X Window System. Single-precision floating-point 
format is used. 

Both configurations use frame buffer memory to 
store pixel arrays. R ,G ,B , and A fields are stored 
explicitly, while H ,S,V fields are computed as 
required [20] . Performance is better on the 
multiprocessor configuration , but both systems are 
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Figure 1 Figure 4 

Figure 2 Figure 5 

Figure 3 Figure 6 
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capable of real-time activity . For production work, 
fill programs are automatically translated into C 
subroutines for compilation into dedicated programs . 

A number of optimizations remain to be 
implemented in the fill interpreter, such as run-time 
compilation of efficient field handling routines 
expressed directly in machine code [10] [17], rather 
than the interpreted intermediate language used 
currently. The automatic conversion between RGB 
and HSV representations relieves the user of tedious 
bookkeeping, but the current implementation 
performs the conversion more often than necessary . 
Standard compiler techniques for flowgraph analysis 
could be used to minimize these conversions. 

Discussion 

It has been observed that brushes commonly in use in 
today's paint systems, including all brushes based on 
the rubber-stamp approach , can be implemented by 
the fill interpreter. As a programmer's tool it is 
excellent for discovery, but it is not yet appropriate 
for artists whose expertise lies outside the realm of 
computing. 

To make the results of this work accessible to 
artists , paint tools developed with the fill interpreter 
need to be classified and parameterized . A possible 
interface approach would be " cafeteria-style" , where 
an artist could assemble a painting tool by choosing 
attributes implemented (and perhaps discovered) 
through the use of the fill interpreter. INSIDE 
factors such as shape, size , or colour conditions and 
SET functions affecting tint , value , or texture of the 
region must be selectable. Significant work remains 
to be done to organize the tool parameters into a 
comprehensive and comprehensible hierarchy. 

Experience with the fill interpreter has shown it 
to be a useful tool for experimenting with different 
ways to modify the shade or texture of areas within a 
frame-buffer image. Elaborate effects may be 
programmed quite simply. The ease with which this 
is accomplished using a single tool blurs the 
distinction between brushing, filling, and 
corn positing. 
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