
121

The Fill Interpreter:
A Unified View of Brushing, Filling, and Compositing

Shawn R. Neeiy, Kellogg S. Booth, and Peter P . Tanner

Computer Graphics Laboratory, Department of Computer Science
University of Waterloo, Waterloo, Ontario , Canada N2L 3Gl

Tel: 519/888-4534 , E-Mail: KSBooth@cgl.waterloo.edu

Abstract

A unified model for the brushing, filling, and
compositing operations found in a variety of
computer animation and paint systems is introduced
and a specification language based on the model is
presented . Extensions to the standard definition of
fill are described , including operations where the
region boundary and colour of the affected pixels
depend on generalized pixel attributes. These are
supported by the virtual frame buffer abstraction
underlying the model. A linguistic device for
specifying comparison tolerances among pixel
attributes provides a mechanism for achieving
effective results with complex images . An interactive
interpreter for the language has been implemented,
serving as an exploratory testbed . Examples
demonstrating the power of the model and the use of
the interpreter are presented.

Keywords: brush, composite , fill , paint, virtual frame
buffer.

Introduction

Computer animation and paint systems commonly
include facilities for modifying raster images using
three operations: brushing, filling, and compositing.
We are interested in a family of operations that can
be performed on digital images all of which use the
abstraction of a virtual frame buffer [7] in which the
raster image or frame buffer is a two-dimensional array
of pixels each having a number of attributes. In the
simplest cases , only the three red , green and blue
colour attributes and a fourth opacity or alpha
attribute are used (these four attributes are
collectively abbreviated RGBA). More sophisticated
operations use other pixel attributes defined within
the virtual frame buffer model.

In brushing , a raster image called the canvas is
modified under the control of a tablet stylus or other
pointing device. Often the brushing algorithm involves
replacing a small region of the image surrounding the
current tablet position with another image called the
brush. More elaborate brushing algorithms define

combinations of the brush and the canvas, reSUlting in
new pixel values for the canvas that are derived from
the RGBA pixel attributes in the canvas and the
brush [22] .

Many paint programs also provide a facility for
changing the colour of a topologically connected
region by filling [20] . The colour change follows
specific rules and the region is determined by both a
seed point and a set of rules for propagating the region
starting at the seed point. Tools that provide a fill
capability are often used to modify certain attributes
of the colour in regions of images that have been
produced using other graphics techniques , such as
images introduced to the frame buffer from
photographic or video media , images created by
rendering a geometric model , or images created by
other tools in a paint program.

Compositing is the technique of combining two or
more raster images using pointwise rules based on the
pixel values in the input images. A complete calculus
of compositing operations using the RGBA attributes
was introduced by Porter and Duff [18] and extended
to additional pixel attributes by Duff [2] . The most
common application of compositing is to merge a
foreground image with a background image using
auxiliary opacity attributes in the two images, making
the RGB values of the output image appear as if they
were the result of photographically overlaying the two
images (as is done in traditional cel animation) .

Although brushing, filling , and compositing can
be viewed as distinct operations , we believe it is
useful to consider them as variants of a more general
technique. To support this view, we observe the
following "reductions" that demonstrate the
conceptual equivalence of the three operations.

Brushing ~ Compositing: Riggins and Booth have
considered brushing as a special case of compositing,
where the canvas is the background image and the
brush is the foreground image [7] . As the position of
the tablet stylus changes , the brush image is
considered to be translated with respect to the canvas
prior to the compositing operation - a weighted sum

Graphics Interface '89

of the foreground and background images determined
by their opacity attributes.

In the Palette system implemented by Higgins ,
extended brushing operations involve a canvas with
explicit foreground and background images so that
the brushing operation becomes a three-level
composition of the brush with both the canvas
foreground and the canvas background. A separate
mask attribute can be used at each pixel to further
control brushing by inhibiting composition where the
mask has high opacity. More elaborate brushing
algorithms can be incorporated into this view by
permitting the replacement colour to depend on more
complicated functions of the RGBA attributes of the
brush and canvas .

Filling ~ Brushing: In the literature , filling has
been extended from its basic definition to include
soft-edge and pattern fills [3] [12] [13] [20], but it has
remained conceptually disjoint from brushing
operations . We take a broader view here . Filling can
be seen as a special case of brushing. Using the
notion of masking introduced in Higgins's Palette
system, the standard fill operation becomes just
brushing with a full-screen brush consisting entirely of
pixels having the colour of the fill , with a mask
attribute in the canvas having zero opacity inside the
fill region and maximum opacity outside the fill
region. The mask can have intermediate values for
opacity along the boundary of the region if soft edges
are desired , and may , in general , have values
dependent upon attributes of canvas pixels .

In this model , the mask attribute for each pixel
in the canvas must be pre-computed by an algorithm
that determines connectivity with the seed pixel , or
generated on-the-fly during the brushing operation.

Compositing ~ Filling : To complete the
equivalence between the three operations, we observe
that corn positing is just a fill operation if we consider
the canvas to comprise two sets of pixel attributes ,
one from the foreground image and one from the
background image, with the replacement colour for
each pixel being computed using the RGBA attributes
from both . In this situation , the connectivity
computation is trivial because the entire raster is
filled .

These remarks are meant to motivate our claim
that brushing , filling , and corn positing are variants of
a single more general set of raster operations. As
paint program capabilities have increased , there has
been a parallel increase in the functionality of
brushing and filling tools, but almost always as
independent operations . We believe that a unified
view is worth taking because of the flexibility it
provides in defining new operations that extend the
basic ones.

122

A unified approach has been taken before in
systems that define raster manipulations based on
symbolic bitmap expressions. Guibas and Stolfi
defined a bitmap calculus in which all of the common
brushing, filling , and corn positing operations could be
defined [6]. Paeth and Booth implemented a raster
toolkit capable of performing these operations using
Unix pipes between processes that manipulate the
raster images according to primitive operations [15].
Nadas and Fournier [14] and Potmesil and Hoffert
[19] described more complete environments that
encompass similar tools . Common to these earlier
systems was a "batch" treatment suggesting
composition of static images .

Our work concentrates more on the interactive
nature of brushing and filling that arises naturally
from a consideration of paint programs . Closer to
this approach is work by Perlin [16] and Holzmann
[8], where interpretive languages are defined for
manipulating raster images by describing pixel-wise
operations that are applied to an entire image . The
system described here extends this approach to a full
virtual frame buffer model and operations that
depend on interactive parameters such as tablet (x ,y)
position so that the operations found in paint systems
can be implemented directly.

The sections that follow describe a formal model
for a generalized fill algorithm , the implementation of
a fill interpreter that supports brushing , filling , and
corn positing in a uniform manner based on the
model , and examples of the generalized fill algorithm
that have resulted from this work .

A Formal Model

We assume throughout the discussion the use of a
virtual frame buffer model in which each pixel
contains an arbitrary collection of attributes or fields ,
and that a mapping is made from the virtual frame
buffer to a physical frame buffer by some projection
of the various attributes onto the RGB triplets of the
physical device. In addition to opacity (A) , depth
(Z) , and mask (M) attributes , the virtual frame buffer
may contain multiple RGB fields as well as many
other attributes including surface normal information,
quantities resulting from intermediate calculations,
and "mark" fields derived from region propagation
algorithms. A justification of the virtual frame buffer
is given by Higgins and Booth , who also provide
details on efficient software implementations of the
virtual-to-physical mapping [7].

Fishkin and Barsky have shown the utility of a
general filling procedure [3] . Their model includes
two components : a Boolean function INSIDE(x ,y)
that is TRUE if and only if the pixel at (x ,y) has
some property P and has not yet been visited by the
propagatioll algorithm and a procedure SET(x ,y) that
is performed exactly once for each pixel in the region.

Graphics Interface '89

The key insight is that filling consists of two distinct
steps: determining which pixels to fill and determining
how to fill those pixels.

The propagation algorithm is defined so that the
seed pixel for a fill satisfies INSIDE. Neighbouring
pixels are then visited in some unspecified order to
decide if they satisfy INSIDE, with the SET operation
being performed on each pixel as it is visited.

In theory, the predicate P can depend on any
attribute of the pixel at location (x ,y) or on properties
of neighbouring pixels (Smith 's definition of tint fill
appears to rely on this [20)). Unfortunately, this can
lead to situations in which the outcome of the
INSIDE test will depend critically on the order in
which pixels are visited by the propagation algorithm.
Fishkin and Barsky discuss a restricted set of
predicates for which the INSIDE test is independent
of the order in which pixels are visited [3]. We adopt
this same restriction.

With this restriction, we can define the region S
to be filled as the set of pixels having properties P
and Q as follows:

S = {p I P (Po,p) and Q (Po,P)}

where Po is the seed point and P depends only on
attributes of the pixels Po and p (this is what makes
INSIDE independent of the order of propagation). Q
is true if and only if there is a "path" between the
two pixels consisting entirely of pixels for which
INSIDE is true. As such it defines connectivity in a
topological sense.

The connectivity predicate Q is usually
predetermined within the fill algorithm. The
predicate 4-CONNECTED, in which each pixel p is
connected to four neighbours each sharing an edge
with p, is typical, although some fill algorithms use
an 8-CONNECTED connectivity rule in which pixels
are diagonally connected as well . Other rules such as
"have the same y-coordinate" are also possible.

The propagation algorithm assumes responsibility
for ensuring that each pixel in the region is SET
exactly once. This may involve data structures
containing " pixels that have been visited" and/or
"pixels to be visited" (the current implementation
maintains a bit-per-pixel matrix and a stack ,
respectively) . This paper does not address the
propagation method. Fishkin and Barsky provide a
good analysis of several algorithms [4].

By imposing the restriction that P (Po ,p) depends
only upon properties of Po and p , analysis and
implementation become much simpler. This rules out
the possibility of using properties of neighbours of p
or random elements to define the region S, but gives
instead a context-free model within which to work .

123

The procedure for deciding whether or not p is a
candidate for membership in S becomes deterministic
in the sense that it can be made without regard to
how we chose p .

We can use this assumption to speed up our
computations in two ways. First, we can apply the
procedure SET to pixels as they are discovered by the
propagation algorithm (assuming that proper
bookkeeping has been done) . A good propagation
method will not stray away from the region S , and in
this way we can perform the minimal number of SET
operations. Many current compositing tools, for
example, operate upon an entire image (or
rectangular bounding region) even if only a few pixels
change. The second advantage is that parallelism is
readily possible. We may be able to discover pixels in
S in parallel, such as by having four processors
explore quadrants about the seed point.

The Fill Language and Interpreter

The fill interpreter is a mechanism for designing and
implementing general fill operations. A user specifies
the predicate P and a replacement procedure SET.
The fill interpreter automatically supplies the
connectivity predicate Q . (We use 4-CONNECTED
exclusively in our examples.)

Both P and SET are specified in the fill language
which resembles C (in fact we invoke the C
preprocessor), with the following exceptions:

1. One data type - all variables, constants, and
expressions are real No attempt has been made
to specify range or precision, although it is
assumed that arithmetic on "small" integers is
performed exactly.

2. Autodeclaration - there is no need to declare
variables before use . Storage is automatically
allocated whenever a new variable appears in a
program.

3. Control structures, operators, and built-in
functions - we implement most of the C control
structures, assignment operators, arithmetic
operators, logical operators, and functions from
the math library. A simple modulus operator for
real expressions is included : a %b is defined as
a-la/bJxb.

4. Fuzzy comparison - as Smith notes , thresholding
is required in deciding "colourness"; some
tolerances about this threshold are necessary
[21]. We address this with the introduction of
fuzzy comparisons in the fill language. A
comparison tolerance variable which we call fuzz
is defined, modifying the semantics of the
comparison operators to be as follows :

Graphics Interface '89

expression

a == b
a != b

a < b
a >= b

a > b
a <= b

equivalent C expression

abs(a-b) <= fuzz
abs(a-b) > fuzz
a + fuzz < b
a + fuzz >= b
a > b + fuzz
a <= b + fuzz

All comparisons use the current value of fuzz
(which is initially zero). When fuzz equals zero the
standard semantics (as defined in C) of the
comparison operators are preserved. Although we
are currently using fuzz as an absolute threshold, a
mechanism for specifying relative tolerances is under
consideration. A similar mechanism exists for APL
[9] [11], where 7,pically fuzz is set to a very small
value (say 1.0-1) and used to disguise the fixed­
precision representation of real numbers . Our use of
fuzz is much more dynamic.

With these definitions , the following familiar
properties hold for all values of fuzz :

expression

a == b

a != b
a < b
a < b

a >= b

a >= b
a > b
a > b
a <= b
a <= b

equivalent expression

!(a != b)
!(a b)

!(a >= b)
(a <= b) && (a != b)
!(a < b)

(a > b) I I (a == b)
!(a <= b)
(a >= b) && (a != b)
!(a> b)
(a < b) I I (a == b)

In practice, these definitions and properties give
the user a simple yet powerful model that replaces
strict equality with the notion of containment in an
interval. We cannot have everything, however ; the
fundamental transitive property of equality is lost.
Fortunately, this has not posed any problems in our
applica tions.

A parser translates a program into a stack-based
intermediate language, details of which are beyond
the scope of this paper. The fill program comprises
two sections - one for P and one for SET. A simple
interpreter executes the first section whenever P is to
be evaluated and executes the second section
whenever the replacement procedure SET is required.

The current implementation identifies the
following fields within a virtual pixel:

124

field associated attribute

X column coordinate
y row coordinate
R red colour component
G green colour component
B blue colour component
A alpha (opacity)
H hue
S saturation
V value

A field is referenced like a C structure. For
example, p. R denotes the red component of pixel p.
Fields X and y have integer values , while all other
fields are expected to have values in the range [0,1].

As an example, a tint fill would be completely
specified by the following two parts (each a fill
language block) :

{

fuzz = 0 . 1;
inside (this .H==seed.H &&

this.S==seed . S) ;
}

{

this .H 0 . 25 ;
this .S 0 . 8 ;

}

The first block provides the test that will be
applied to every pixel connected to the seed point.
The built-in variable inside (initially FALSE for
each pixel) determines whether or not the pixel passes
the test . Built-in variables seed. <attribute> are
automatically initialized to the values of the seed
pixel. Similarly , built-in variables this . <attribute>
are keywords giving the values of the current pixel
(the one being tested) , and may be examined and
optionally modified. In this example, the Hand S
fields refer to hue and saturation attributes ,
respectively . The built-in variable fuzz is a
programming convenience (described above) used for
the equivalence tests . Setting fuzz to 0.1 causes the
inclusion test to accept pixels whose tint is close to
but not exactly the same as that of the seed point.

The pixel change routine is in the second block .
The values 0.25 and 0.8 are the hue and saturation of
the replacement tint . In this case, the values in
this. H and this. S (along with the unchanged
this . V) are used for an HSV to RGB transformation ,
and this pixel is then displayed using the resulting
RGB value.

Graphics Interface '89

The language provides automatic consistency
updates between RGB and HSV representations
(change of colour basis) . Thus the programmer may
use either representation, or a mixture of the two,
and still be sure that appropriate transformations are
performed whenever necessary. This feature permits
simple expression of compound replacement
procedures , such as " make the pixel twice as red and
then desaturate it by ten percent" .

Some Examples

This section provides a few simple examples of
applications of the fill language. The first two
examples define typical fills .

Example 1:

/* basic flood fill INSIDE *{
inside

}

(this.R==seed . R &&
this.G==seed.G &&
this.B==seed.B);

/* SET colour in region to full magenta */
{

this . R=1 . 0; this . G=O.O; this . B=1 . 0;
}

Example 2:

/* INSIDE looks for "same" hue */
{

}

fuzz = 0 . 1;
inside = (this.H seed . H)

/* SET shifts the hue by 120 degrees */
{

this . H = (this.H + 0 . 333) y. 1.0;
}

The next two examples illustrate the use of the
fill language to define brushing algorithms. In the
first case P defines an llxll square region about the
seed point and SET defines a transformation from full
colour to NTSC black and white . The fill interpreter
continuously samples the current tablet (x ,y) to
determine a seed point, which is then filled
(brushed) .

125

Example 3:

/* INSIDE is a square brush */
{

fuzz = 5;
inside = (this.X==seed . X && this . Y==seed.Y)

}

/* switch to NTSC black and white */
{

y = this.R*0 . 30 + this . G*0.59 + this.B*0.11;
this.R = this . G this . B = y;

}

In the second case a circular brush of radius 10
pixels is defined inside which pixels are converted to
high contrast black and white images by setting the
saturation to zero (this makes setting the hue
irrelevant) and the value to either full intensity or no
intensity, depending on a random threshold.

Example 4:

/* INSIDE is round brush */
{

radius = 10;
dx = this . X - seed.X;
dy = this . Y - seed . Y;
inside = (dx*dx + dy*dy) < (radius*radius);

}

/* SET is random dither to single-bit B&W */
{

this . S 0;
this.V (random() > this.V) ? 0 1 · ,

}

The built-in function randomO provides a
uniform distribution on the interval [0 ,1] . A library
of mathematical functions is also provided .

Any of the examples could have used the
following SET definition instead to achieve a hue
that depends on the (x ,y) position of the pixe!.

Example 5 :

/* SET for rainbow stripe */
{

}

this . H
this . S
this . V

«this.X + this . Y) Y. 256) / 255;
1 ;

1 ;

Graphics Interface '89

The next example defines a "compositing brush"
which blends two images along the path of the tablet
stylus . The brush is rectangular , and illustrates the
use of different fuzz values . (Alternatively , we could
have simply set inside to TRUE, affecting the entire
frame .)

Example 6:

/* INSIDE for 11x7 cornpositing brush */
{

}

inside = FALSE;
fuzz = 5;
if(this.X

{

fuzz = 3;

seed.X

if(this . Y == seed . Y
inside = TRUE;

}

#define blend(x, y, a) (a)*(x)+(1-(a»*(y)

/* SET assumes "fore" and "back" #defined */
{

this.R blend(fore . R, back . R, fore . A) ;
this . G blend(fore.G, back . G, fore . A) ;
this.B blend(fore.B, back.B, fore . A) ;

}

The final example illustrates the use of the fill
interpreter to build an interactive tool for examining
the contents of the frame buffer. The P predicate
doesn't select any pixels , but instead simply prints out
the (x ,y) position of the tablet and the RGBA
contents of the virtual frame buffer at the pixel.
Because P is never true (inside is initially FALSE),
it is only executed for the seed point . The SET
function is null in this case.

Example 7:

/* attribute inquiry */
{

}

print("x = ", this . X, "y = ", this.Y);
print(this . R, this . G, this . B, this . A);

/* SET is null */
{
}

More elaborate examples of the fill interpreter
are illustrated in the figures at the end of the paper.

Figure 1 (courtesy of Michael Sweeney) shows a
face rendered using a ray-tracing algorithm . Figure 2
is the result of changing the hue at each pixel within
the face to a straw colour and then modulating the
value at each pixel using a weave pattern, similar to

126

the rainbow stripe example above. Figure 3 is the
result of further modulating the alpha (opacity) of the
weave pattern and compositing the resulting image
over two coloured rectangles .

Figure 4 shows a line drawing of various kitchen
utensils produced by a CSG modeler. Figure 5 is the
result of a basic fill applied to the cutting board,
rolling pin, and spoon , with gradient fills (value is a
function of y) applied to the bowl , eggs, and table.
Artificial highlights were then added to the bowl
using a single application of a brush that intensifies
the seed point and rapidly diminishes as it moves
away from the seed point . A brick pattern fill was
performed on the wall , which was then modified by
individual applications of a random colour shift to
various bricks. A few bricks were filled with random
grey and graffiti was brushed on using a circular
brush having a Gaussian interpolation parameter.

Figure 6 is an example of abstract artwork
created using only the filling tool. An Il-pointed star
was created by converting to polar coordinates and
constraining the fill to r ~sin(B) .

Examples of z-fill in which an explicit depth
attribute is used to control filling/brushing, specular
brushes in which saturation is a function of a surface
normal attribute , composite brushing in which two
images are merged in a region defined by tablet
strokes , and many more are easily specified with the
fill language.

Implementation

The fill interpreter
implemented for
configurations so far.

is portable and has been
two different hardware

The first is a multiprocessor configuration in
which a V AX 8600 compiles the fill program for
downloading into an Adage bitslice processor. The
interpreter resides in the bitslice, where arithmetic
operations are performed in a scaled fixed-point
format. Cursor tracking , seed point selection , and
other user interface duties are provided by a 68000
microprocessor running multiple tasks under the
Harmony operating system [5] . In this configuration ,
one can alternately run the fill interpreter and the
multitask Harmony-based Paint system [1].

The second configuration has both compiler and
interpreter residing on the 8600 , with the user
interface provided on a V AXstation II/GPX running
the X Window System. Single-precision floating-point
format is used.

Both configurations use frame buffer memory to
store pixel arrays. R ,G ,B , and A fields are stored
explicitly, while H ,S,V fields are computed as
required [20] . Performance is better on the
multiprocessor configuration , but both systems are

Graphics Interface '89

127

Figure 1 Figure 4

Figure 2 Figure 5

Figure 3 Figure 6

Graphics Interface '89

capable of real-time activity . For production work,
fill programs are automatically translated into C
subroutines for compilation into dedicated programs .

A number of optimizations remain to be
implemented in the fill interpreter, such as run-time
compilation of efficient field handling routines
expressed directly in machine code [10] [17], rather
than the interpreted intermediate language used
currently. The automatic conversion between RGB
and HSV representations relieves the user of tedious
bookkeeping, but the current implementation
performs the conversion more often than necessary .
Standard compiler techniques for flowgraph analysis
could be used to minimize these conversions.

Discussion

It has been observed that brushes commonly in use in
today's paint systems, including all brushes based on
the rubber-stamp approach , can be implemented by
the fill interpreter. As a programmer's tool it is
excellent for discovery, but it is not yet appropriate
for artists whose expertise lies outside the realm of
computing.

To make the results of this work accessible to
artists , paint tools developed with the fill interpreter
need to be classified and parameterized . A possible
interface approach would be " cafeteria-style" , where
an artist could assemble a painting tool by choosing
attributes implemented (and perhaps discovered)
through the use of the fill interpreter. INSIDE
factors such as shape, size , or colour conditions and
SET functions affecting tint , value , or texture of the
region must be selectable. Significant work remains
to be done to organize the tool parameters into a
comprehensive and comprehensible hierarchy.

Experience with the fill interpreter has shown it
to be a useful tool for experimenting with different
ways to modify the shade or texture of areas within a
frame-buffer image. Elaborate effects may be
programmed quite simply. The ease with which this
is accomplished using a single tool blurs the
distinction between brushing, filling, and
corn positing.

Acknowledgements

This work was supported by an operating grant from
the Natural Sciences and Engineering Research
Council of Canada and by equipment and operating
funds from Digital Equipment of Canada.

References

[1] R . J . Beach, J. C. Beatty , K. S. Booth, E. L.
Fiume, and D . A . Plebon . The message is the
medium: Multiprocess structuring of an
interactive paint program. Proc. ' SIGGRAPH

128

'82 (Boston, July 26-30 1982.). Computer
Graphics , 16(3):277-287, July 1982.

[2] T . Duff. Corn positing 3-D Rendered Images.
Proc. SIGGRAPH '85 (San Francisco , July 22-26
1985.) . Computer Graphics , 19(3):41-44, July
1985.

[3] K. P. Fishkin and B. A . Barsky. A Family of
New Algorithms for Soft Filling. Proc.
SIGGRAPH '84 (Minneapolis, July 23-27 1984.).
Computer Graphics, 18(3):235-244, July 1984.

[4] K . P. Fishkin and B. A. Barsky. An Analysis
and Algorithm for Filling Propagation. In Proc.
Graphics Interface' 85 , pages 203-212, May 1985 .

[5] W. M . Gentleman. Using the Harmony Operating
System . Technical Report NRCC-ERB-966,
Division of Electrical Engineering,

National Research Council of Canada,
December 1983.

[6] L. J . Guibas and J. Stolfi . A Language for
Bitmap Manipulation . ACM Transactions on
Graphics , 1(3):191-214, July 1982.

[7] T . M. Higgins and K. S. Booth. A Cel-based
Model for Paint Systems . In Proc . Graphics
Interface ' 86, pages 82-90 , May 1986.

[8] G. J. Holzmann . PICO - A Picture Editor.
ATT Technical Journal , 66(2):2-13 , March/April
1987.

{9] H . Katzan , Jr. APL User 's Guide. Van
Nostrand Reinhold , 1971 .

[10] K. C. Knowlton. A Programmer's Description
of L 6. Communications of the ACM, 9(8):616-625 ,
August 1966.

[11] R. H . Lathwell. APL Comparison Tolerance.
Proc. APL '76 (Ottawa , September 22-241976 .)

[12] M. Levoy. Area Flooding Algorithms . Hanna­
Barbara Productions, June 1981. Reprinted in
SIGGRAPH '82 2-D Animation Tutorial notes.

[13] H . Lieberman. How To Color In A Coloring
Book. Proc. SIGGRAPH '78 (Atlanta, August
23-25 1978.) . Computer Graphics , 12(3):111-116,
August 1978.

[14] T. Nadas and A . Fournier. GRAPE: An
Environment to Build Display Processes. Proc.
SIGGRAPH '87 (Anaheim , July 27-31 1987.) .
Computer Graphics , 21(4) :75-84, July 1987.

[15] A . W. Paeth and K. S. Booth. Design and
Experience with a Generalized Raster Toolkit.
In Proc . Graphics Interface '86, pages 91-97, May
1986.

Graphics Interface '89

(16) K. Perlin. An Image Synthesizer. Proc.
SIGGRAPH '85 (San Francisco , July 22-26
1985 .) . Computer Graphics, 19(3) :287-296 , July
1985.

(17) R. Pike. Graphics In Overlapping Bitmap
Layers . ACM Transactions on Graphics,
2(2):135-160, April 1983.

(18) T. Porter and T. Duff. Compositing Digital
Images. Proc. SIGGRAPH '84 (Minneapolis ,
July 23-27 1984.) . Computer Graphics,
18(3):253-259, July 1984.

(19) M . Potmesil and E . M. Hoffert. FRAMES:
Software Tools for Modeling , Rendering , and

129

Animation of 3D Scenes . Proc. SIGGRAPH '87
(Anaheim , July 27-31 1987.) . Computer
Graphics, 21(4):85-93 , July 1987.

(20) A . R . Smith. Tint Fill. Proc. SIGGRAPH '79
(Chicago, August 8-10 1979.) . Computer
Graphics, 13(2):276-283 , August 1979.

(21) A. R . Smith . Fill Tutorial Notes. Technical
Memo No. 40 , Lucasfilm Ltd. Reprinted in
SIGGRAPH '82 2-D Animation Tutorial notes .

(22) A. R. Smith. Paint. In Tutorial : Computer
Graphics, J. C. Beatty and K. S. Booth eds.
(IEEE Computer Society 1982) , pages 501-515 .

Graphics Interface '89

