
130 

Teaching a Mouse How to Draw 

David L. Maulsby 
Ian H. Witten 

Knowledge Sciences Laboratory, Department of Computer Science 
The University ofCalgary, 2500 University Drive NW 

Calgary, Canada T2N IN4 

Email: maulsby@UCalgary.CA.ian@UCalgary.CA 

Abstract 

An apprenticeship metaphor is described for programming by 
example, graphically, which enables untrained end users to add 
composite operations to a drawing program using constructive 
methods traditionally employed in drafting. To combat the 
extraneous activity that plagues naturally-produced traces, 
interaction is used to constrain induction by suppressing, or at 
least controlling, variability . A device called "Metamouse" 
serves to concentrate the user's attention on the system's limited 
inferential capabilities. It predicts actions, asks for 
constructions, solicits input parameters when required, and 
induces a program. Implications for machine learning include 
the benefits of simulating a pupil to complete the teaching 
metaphor, and the role of user interaction in constraining the 
search for apt generalizations . Implications for computer 
graphics include the feasibility of teaching an interactive editor to 
perfonn repetitive graphical procedures and the use of familiar 
drawing primitives as a basis for more complex transfonnations. 

KEYWORDS : graphical programming, machine learning, user 
interface, graphical construction 

I. The Drawing Domain 

Interactive graphics provide excellent examples of human­
computer cooperation. Here we find human and computer 
sharing the work of constructing what amounts to a program 
whose output is a hard-copy drawing. Popular drawing 
programs (eg. MacDraw [Cutter 87]) augment the software 
analog of drafting tools with extensive editing capabilities and 
the rudiments of positional constraint. These facilities enable 
casual users to master some of the mechanical skills of 

draftsmen and to concentrate more upon design. Moreover, they 
allow operations to be composed into re-usable structures. 
Many elements of a user's style are just such composites, 
carefully constructed, even parameterized. If executed 
frequently or with difficulty they are well worth adding to the 
system. Clearly, it is highly desirable that the user himself be 
able to augment the drawing system, but we cannot expect him 
to write abstract specifications. Since he already executes his 
own programs in the "concrete" language of the user-interface, 
it suffices that the computer translate such programs into 
machine-executable fonn, with appropriate operators, constants 
and variables. The result is a system for progra=ing by 
example, graphically. 

Figures 1-5 illustrate several tasks to be progra=ed. The 
input picture is transformed into the output picture by 
constructive operations having both ad hoc and derived 
parameters. For example, consider the "box-ta-line" task shown 
in Figure 4. Given a set of boxes, the artist aligns their lower 
right-hand corners to an axis (guide-line) . To ensure that 
translation is strictly horizontal, the artist employs a horizontal 
sweep-line. The "box-to-line" procedure is to set up the task 
environment (draw the guide-line and sweep-line, select the 
boxes), then iterate over the transfonnation (translate each box 
along the sweep-line until its lower right corner touches the 
guide-line), and finish by dismantling the task environment 
(remove the guide- and sweep-lines). 

We propose a graphical system with a metaphorical pupil 
and minimal use of symbolic abstractions. [Halbert 84] and 
[Myers 86a] review graphical programming and programming 
by example. Classic systems such as Pygmalion [Smith 75], 

a. input: two polygons b. construction : measure height of A by 
duplicating and rotating 90°; translate 8 

c. output: A and 8' (=8 transformed) 

Figure 1. Graphical task: translate polygon B such that distance from left extreme of A 
to left extreme of B is 2 x height of A. 

Graphics Interface '89 



131 

Itl<-.;::. 

" ~li 
I 

A 

I 
B 

I1 
c D 

a. input: boxes unsorted 

I 
D 

H 

e. create height-sweep line H 
and move unt il contact with 
top 01 some (lowest) box 

G 

b. sweep line S meets A; 
move A down to guideline G 

S 

I. move D to lateral sweep line S 

I 

c. repeat for B, etc. 

g. advance S by cons!. distance; 
raise H to next contact; move 
B to S (null op.) 

d. boxes lined up for direct 
comparison of height 

.111 
h. output: boxes sorted by 

height and evenly spaced 

Figure 2. Task: given a set of boxes, sort them in order of increasing height. 

ThingLab [Borning 86], and SmallStar [Halbert 84] use iconic 
representations that are nonetheless essentially abstract; hence 
the programmer must learn how to interpret the conventions of 
the programming interface. Andreae's robot programming 
scheme [Andreae 85] infers loops and conditional branches from 
traces, which must be carefully ordered by the teacher. 

Since an induction system capable of infening an arbitrary 
program from input and output pictures is practically 
unattainable [Angluin 83], we focus on the constructive 
me thods traditionally employed in drafting and whose 
performance by users we have studied. Our learning system 
induces binary relations between elements of constructions, and 
extends established techniques of action matching and 
generalization [Andreae 85] . Because of the user / 
programmer's enormous computational advantage in the 
graphical domain (consider the relative ease with which a person 
can induce a convex hull function), we require that certain 
conditions of a teaching protocol [Van Lehn 83] govern the 
user's input. To do so without asking the programmer to 
undergo special training, we make the system participate very 
actively in its own instruction. We represent this enthusiastic 
learner by a multi-function cursor called "Metamouse". [Myers 
86b] describes a graphical method of programming responses to 

• • • • • • • • • • • • • 
a. input set b. bring sweep-line up c. rotate sweep line 

to lowest point , M about M to touch N 

mouse events in spatial context by manipulating a mouse icon. 
Metamouse is similar, but the goal is to program the application 
rather than the user interface. Moreover, Metamouse has a more 
general representation of graphical knowledge (spatial relations, 
constraints and procedures). Metamouse is reactive: it predicts 
the user's actions, asks for and assists in building constructions, 
and calls for input parameters as needed. We describe a 
particular Metamouse for a simple drafting domain - a 
graphical turtle called "Basil". 

11. Box-to-Line: A Worked Example 

Consider the "box-to-line" procedure as taught by example 
(Figure 4). The teaching process consists of leading Basil 
through a trace of the task. Basil, or, to be precise, the learning 
system, expects the parameters of actions to be constant, input 
by the user at run-time, or constrained by events (such as a 
corner coming into contact with the guide-line). The teacher 
begins by selecting the boxes; the learning system classifies 
these as the input set. When she places the guide-line's two 
end-points (Figure 4c), Basil observes the absence of a contact 
constraint, classifies the event as underconstrained and interrupts 
to ask (through a dialogue box, see Figure 8) whether the 
location is constant or a run-time input. The teacher indicates 

d. connect M, N; 
center sweep at N 

.) 
e. repeat c, d from N f. output 

Figure 3. Task: given a set of points, find their convex hull . 

Graphics Interface '89 



c=J 
c=J 

c=J 

132 

a. before b. after c. create guideline G 
and sweep-line S 

d. move S upward to 
contact a box B 

e. move B right until 
contact with G 

Cl 
Cl 

Cl 
f. Teacher repeats action d g. Turtle predicts action e h. Turtle predicts action d i. Turtle predicts action e j. remove S and G, done 

Figure 4. Teaching trace of box-to-line procedure. 

that both points are to be specified at run-time. 
The teacher then leads Basil through the main iterative 

sequence (Figure 4d-i). It is easy for Basil to observe that the 
objects transformed are members of the input set, and that 
iteration terminates when every member has been processed. In 
general, however, selection and iteration depend on any number 
of properties of objects or situations. Thus iteration should be 
ordered and conditioned on events that Basil can sense by touch. 
A horizontal sweep-line serves this purpose, and also constrains 
the boxes' path of translation. The teacher draws the sweep-line 
near the bottom of the screen and indicates (through a dialogue 
box) that its initial placement is constant. She then grabs the 
sweep-line at its mid-point handle and moves it upwards until it 
touches the bottom edge of some box (Figure 4d). 

Observe that this program achieves a series of constraints 
expressed by visible contacts. A suitable description, say 
"lower left corner of box in grasp is coincident with some point 
on guide-line," is invariant over iteration on the input set. The 
learning system distinguishes this contact event and induces its 
invariance. 

When the sweep-line touches the first box, the teacher 
grasps and moves it rightward until its lower right corner 
touches the guide-line, its bottom edge still on the sweep-line 
(Figure 4e). The teacher then re-grasps the sweep-line and 
proceeds to the next box (Figure 4f). When Basil sees her 'select 
this second box, he notes that the action patently repeats that of 
selecting the first box. Consequently he conjectures a loop and 
predicts the translation that is to follow (Figure 4g). Up to this 
point Basil has been following the teacher like a studious 
apprentice; now he will attempt to take the lead. The second 
box, however, must be moved to the left. Basil is biased 
towards easily generalizing directions of movement, so this does 
not faze him; he leaps into action and moves the box on his own. 
The teacher does not object; Basil has now learned the body of 
the loop and operates on the next box by himself (Figure 4h-i). 

After processing the third and final box, Basil recognizes 
that he cannot complete the action of moving the sweep-line as 
he has learned it. Hence he terminates the loop on the condition 
of being unable to perform its first step, and calls upon the 
teacher to demonstrate what to do. At this point, she removes 
the sweep- and guide-lines (Figure 4j), and then announces that 
the lesson is over. 

Ill. Metamouse as Mediator 

We asked a group of people to perform 7 or 8 graphical tasks in 
1 hour using MacDraw. Their actions were recorded with a 
commercial programming-by-example system [Tempo 86]. We 
studied their use of constructive methods either on their own 
initiative or with prompting and assistance. Subjects familiar 
with MacDraw were more likely to use constructions without 
prompting. Novices who were coached began using 
constructions on their own initiative after 3 or 4 tasks, but 
required advice throughout. With one notable exception, 
novices who were not coached used few if any visual 
constructions, but instead performed measurements by eye. As 
a result of this study we conclude that traditional constructive 
methods, recently and widely proposed for use by non­
specialists working with graphics editors (see [Bier 86], [Fuller 
86]. [White 88], [Noma 88]), are not natural to most users, 
although they are suitable as a means of performance 
optimization for those with the required experience or geometric 
insight. 

We also observed an alarming amount of extraneous activity, 
which could be classified as: 1) missteps (actions quickly 
retracted); 2) experiments (action sequences retracted, often 
performed on duplicates of input data); 3) bustle (useless 
actions due to confusion or to pass time while thinking); and 4) 
changes in method (actions not retracted). Equally impressive 
were the variety of algorithms used and the tendencies to 
abandon one algorithm for another, to switch back and forth 
without returning to a pristine initial state, and to interleave work 
on different parts of the problem. Of course, some of this 
hyper-activity is surely due to the experimental situation; the 
tasks were unfamiliar, and subjects had to invent algorithms on 
the spot. 

The Metamouse interface to our learning system helps to 
suppress such extraneous activity in several ways. First, Basil 
- as an icon - distinguishes programming from other 
activities, while maintaining context (cursor location). Second, 
the user can put Basil to sleep at any time in order to experiment 
unobserved. Third, Basil embodies the teaching metaphor 
[MacDonald 87] and the leaming system's model of procedures 
and constraints, in the form of touch-sensitive a turtle like those 
used in Turtle Graphics [Papert 81]; this metaphor is readily 

Graphics Interface '89 



D 
D 

D 

R 

D 

a. input: a set of boxes, origin point 0, ruler R 

133 

b. construct center points of boxes, draw radiator 
lines from ° to centers; move R to ° 

D 
D D 
D D 

c. detail: duplicate R to create brake 
line B; rotate R to next radiator 

d. detail: translate box along 
radiator until center touches R 

e. output, alter repeating c) and d) for 
each radiator; iteration stopped at 
brake line 

Figure 5. Task: translate a group of objects such that all lie at equal distance from a reference point. 

understood and helps the teacher meet the felicity conditions 
elaborated below. Fourth, Basil generalizes coordinate positions 
as contacts with named parts of objects and hence can be used to 
precisely manipulate construction tools under programmer 
control. . 

Basil enforces the felicity conditions that render a rather 
naive learning system instructible. Felicity conditions [Van 
Lehn 83]. are conventions of behavior that facilitate 
communication in a particular social situation. Van Lehn 
describes four that apply to our system. 

"Show work" obliges the teacher to present sample 
executions of a procedure, rather than ask the pupil to induce it 
from inputs and outputs. This motivates our use of constructive 
methods. Basil is a graphical robot that records actions; he does 
not analyze static pictures. He performs a construction as a 
sequence of drawing operations, each step beginning and 
ending with a tactile event or ad hoc input from the user. 

"Invisible objects" (eg. the portal of an arch) must be 
indicated, so that the pupil can distinguish them. Measuring in 
graphics (distance, alignment, etc.) is often done by visual 
inspection. Basil inhabits Flatland [Abbott 1884], where touch 
is more useful than vision. Basil requires tactile events to bound 
actions, thereby enforcing the use of visible constructors, such 
as a ruler line to measure off distance. If no constructor is 
possible, as when placing the guide-line in the "box-to-line" 
procedure (see Figure 4), Basil confirms that the action is to be 
performed by the user at run-time (see Figure 8). 

Basil generalizes actions by relaxing the tactile constraints 
that govern them. For example, "any part of A touching any 
part of B" is a generalization of "Ieftmost vertex of A touching 
any part of B". 

The "show work" and "no invisible objects" conditions 
actually help the teacher construct correct examples. Consider 
the Star problem (Figure 5). The teacher first places the origin 
point on the display. Basil queries and the teacher replies that 

this is a parameter. She marks the centers of the objects to be 
moved, using a built-in operator or a constructive technique, 
then draws radiator lines from these center points to the origin. 
She creates a measuring line (ruler), another input parameter, 
and places one of its end-points at the origin. She rotates the 
ruler until it coincides with a radiator, then translates the attached 
object along the radiator until its center point lies at the ruler 's 
end. The teacher repeats this until the ruler returns to its original 
orientation (marked by a copy of itself). 

From this execution trace the learning system need only 
induce the regularities that govern the movement of rult~r and 
objects, and detect iteration by sequence matching. Now, 
suppose we eliminate the ruler. The learning system must 
discover the invariability of distance from the origin point along 
a radiator to an object's center after it is moved. This requires 
function induction, which in general is very difficult [Andreae 
85] . But the teacher's effort also increases; she must judge the 
distance by eye. Obviously, the chance of error grows. Now 
suppose we eliminate the radiators as well. This need not 
increase the difficulty of function induction for the learning 
system, but the teacher will have considerably greater trouble 
judging distances. 

"One disjunct" means that any lesson introduces at most 
one branch of a program. Since our pupil has perfect memory, 
we propose a "one method" felicity condition, banning irrelevant 
activity and permutation on the order of actions. Basil keeps his 
teacher on track by predicting the next action whenever possible, 
using a multiple-context prediction technique similar to that of 
PURR-PUSS [Andreae 77] . If the teacher rejects a prediction, a 
disjunct (conditional branch) is implied. 

"Correctness" is an obvious felicity condition but the most 
difficult to enforce. Graphical traces are full of noise produced 
by vagaries in the movement of the user's hand. Basil filters out 
minor positioning errors by a variant of the familiar "gravity" 
function. Basil is drawn towards the most specific tactile event 

Graphics Interface '89 



134 

forward = "up" 

left + right 

backward = "down" 

Brain: click here to toggle Turtle's 
attention on or off; Tutrle's outline ----""'­

is grey when "asleep." 

Foot; rotate Turtle in direction 
of mouse movement. 

Shell: move Turtle along an ---4-.-11-
unconstrained path. 

Move Turtle along NE/SW diagonal. 

ft Approximate actual size. 
A iocator / pick device separate from but 
controlled by the mouse. 

,.------ Snout: grasps and carries an object. 

.__--- Brain: flashes when Turtle 
detects a sensory event. 

Move Turtle along vertical line. 

-1..--- Move Turtle along horizontal line. 

Move Turtle along NW/SE diagonal. 

'------ Tail : undo predicted action. 

Figure 6. Anatomy of Metamouse, a moveable menu that sometimes runs away. 

within a certain distance. Larger errors in measurement are 
filtered out by the use of constructions. Potential errors in a 
trace are filtered out by prediction. Errors in the algorithm are 
not dealt with. 

IV. Anatomy and Psychology of a Metamouse 

Our prototype Metamouse programming system has for its 
domain a drawing program called A.Square which, although 
very simple, is nonetheless capable of representing problems 
such as positioning labels, maintaining connectivity, evenly 
distributing objects across a window, etc. The drawing program 
has two primitive objects, box and line, and two transforms, 
scaling and translation. Its user interface resembles MacDraw. 

Basil is designed to permit two modes of instruction: 
teaching by demonstration and teaching by leading. In the 
former the teacher manipulates objects herself and Basil follows 
(see Section IT). In the latter, the teacher manipulates Basil who 
in turn draws, grasps and moves objects at her direction. A 
design for Basil is illustrated in Figure 6. With respect to 
tradition and squeamishness, the turtle was chosen over other 
short-sighted creatures such as mice and spiders. Note that it 
adds rotation and constrained-path translation to the operators in 
A.Square; these help the user communicate her intentions 
(consider the difficulty of rotating a line, without also scaling it, 
by translating one of its end points) - in leading mode. Thus 
Metamouse augments the representational power of A. S quare so 
that the user can teach the system procedures involving rotation, 
such as the Star transform or finding a convex hull. To date, 
only teaching by demonstration has been implemented. Rotation 
is not yet supported. Path constraints on translation are induced 
from observations. 

Basil has the following initial knowledge: 1) there are two 
types of primitive object, box and line; 2) an object has 
distinguished components , namely its handles and the line 
segments between them; 3) picking (grabbing) an object 
activates its handles; 4) grabbing a handle (other than the center) 
scales a box and rotates and scales a line; 5) grabbing an object's 
center or mid-point handle translates it; 6) a spatial relation 
between two objects can be described with reference to the 

touching of their components, or to lines that connect them; 7) 
the display window is enclosed by an invisible box object. 
Users of drawing programs understand most of this already. 
Items 2, 6, and 7 may require explanation but have strong 
intuitive appeal. 

As Basil follows the teacher through a task, he records his 
perceptions. These comprise: 1) the magnitude and direction of 
his motion; 2) tactile events (begin touching and cease touching) 
occurring at his snout or at any component of an object in his 
grasp; 3) types of objects touched; 4) location of all of their 
components; 5) spatial relations established by tactile events. 
Our hierarchy of spatial relations may be compared to that given 
by [Geller 87] and is illustrated in Figure 7. 

Basil's working memory contains: 1) his own current 
position and orientation; 2) the sensory feedback described 
above; 3) the steps of the current trace, stored as (precondition, 
action, postcondition) triples, where conditions are derived from 
1 and 2 above; 4) the program he is executing and learning, 
represented as a directed graph of step tuples, each of which 
may have several predecessors and successors; 5) the individual 
identity of objects created or transformed during the trace. 

As the teacher demonstrates the algorithm, Basil predicts 
actions from the program, and observes and generalizes the 
tactile pre- and postconditions that govern actions (see Figures 7 
and 8). He also predicts the need to create a particular 
constructor object and knows whether it should be parameterized 
by the user. When predicting actions, Basil must instantiate 
object and position variables. This is done using a simple 
constraint solver that generates a translation vector to be applied 
to Basil and any handle he is grasping [Maulsby 89b] . If the 
postconditions fail to hold after applying the vector, alternative 
vectors are attempted. 

V. Dialog with Basil 

A teaching session is one execution of the procedure on sample 
data. The program elements to be learned are the inputs, 
outputs, constants, variables, operators, conditional branches 
and loops. This section describes how these are induced during 
a demonstration of the Box-to-Line task shown in Figure 4 and 

Graphics Interface '89 



le = leading end-point of line 
te = trailing end-point 
(as line is moved by Metamouse) 

/-

Ielte 

mp 
te/le 

a. parts of a line 

135 

?? = any point on line 

A~ 
le te mp 

b. generalization 01 line parts 

?? 
ul um ur 

ml [::l 
bl bm br 

ul ml bl um mm bm ur mr br 

c. parts of a box d. generalization 01 box parts 

L.le touches B.ul L.le touches B. ?I 

/ D ·,·,·,·"·,}t:,,,·, /1 B : ! "'"''''''':;}:i,''''' .Yi B: ! 
e. line and box; no tactile relation f. line moved to upper-left corner 01 box g. lurther generalization 01 relation in I 

Figure 7. Tactile relations and their generalizations. 

described in Section IT. 
Inputs are those objects already on the display when 

execution begins, and those objects created during the course of 
execution with the assistance of the end user. When the position 
or size of a constructed object is not constrained by tactile 
events, Basil asks the teacher for the parameter(s} required, as 
illustrated in Figure 8. 

Outputs are those objects remaining on the display after 
execution. Construction tools, ego the sweep- and guide-lines, 
are removed in the course of the training trace; Basil 
distinguishes these objects and will remove them at run-time. 

Constants are constraints on position attained or distance 
moved, classified by the teacher in reply to Basil's questions. 
The end-points of the sweep-line are positional constants. 
Variables refer to objects in touch relations, ego "the line 
currently grasped" or "the box whose bottom edge was touched 
by the guide-line in the previous step." The learning system 
replaces object addresses with variables when it generalizes trace 
actions into program steps. It searches back through the trace 
for previous occurrences of the object to ensure that the same 
variable is used. A variable is typed according to object class 
(line, box). A variable is instantiated by a drawing operation or 
by the constraint solver, which finds an object satisfying all the 
currently-sensed touch relations in which the variable occurs. 

Operators are Metamouse and A.Square commands. In the 
prototype, the only commands are those to create boxes and 
lines and move their handles. Instead of explicit operands, an 

action has pre- and postconditions; the constraint solver derives 
the operands. Conditions are tactile constraints or numeric 
inputs or constants. Normally, the postcondition of one action 
is the precondition of the next, but they should be distinguished 
since their terms of generalization may differ. Only pre- and 
postconditions are generalized, not the actions themselves. 
When Basil predicts an action but terminates it incorrectly, the 
teacher rejects the prediction and then demonstrates the operation 
herself. Basil generalizes the postcondition to cover the action. 
Preconditions are generalized when Basil is unable to predict the 
next action but the teacher insists upon it. At present, we use 
minimal generalization. We recognize that more promiscuous 
generalization heuristics might make Basil learn faster, at the 
cost of having to specialize when creating conditional branches. 

Conditional branches are taught in separate training 
sessions or separate iterations of a loop. Recall that each 
program step may have a number of successors (ie. branches) 
following it. The precondition must match Basil's current 
sensory feedback, the postcondition must be attainable by 
solving constraints, and the teacher must accept the predicted 
action. If no option succeeds, a new branch is learned. As the 
system observes the teacher's actions it tries to match them with 
steps already in the program to close the branch. In order to test 
the connection, Basil predicts subsequent actions; if the teacher 
assents, the connection is confirmed. Technical issues such as 
ordering the options are discussed elsewhere [Mauls by 88]. 

Graphics Interface '89 



D 

Why did we STOP here? 

Always stop here. 

Ask user where to stop. 

Always move this far. 

Oops! Forgot to construct this position. 

/ 

D 

@ 
@ 
@ 
@ 

Figure 8. Asking Teacher to explain a seemingly arbitrary 
decision. Dialog for start of line is similar. 

Loops are sequences ending with a jump back to the head. 
Basil always reviews his most recent actions to match sequences 
that predict a loop. In the Box-to-line task trace, he observes 
repetition of the action "move to grasp sweep-line's mid-point". 
When the teacher accepts his subsequent predictions, the loop is 
confIrmed. 

VI. Results and Conclusions 

A pilot implementation has been tested on a number of action 
traces garnered from users of ASquare. Learning performance 
data for three tasks are given in Table 1 . "Colonnade" is the 
sub-task of the sort procedure (Figure 2) that distributes boxes at 
equal spacing along a line. "Connectivity" re-connects the edges 
of a polygon when one of them is moved. "Box-to-line" is as 
described in this paper. Basil learned each procedure 
incrementally from one or more traces. The table shows the total 
number of steps in each trace, the number predicted correctly by 
Basil, and the ratio of steps performed by Basil to the total. The 

136 

complexity of the programs constructed was measured as the 
number of edges in their state graphs. The data gathered for 
each task indicate that Basil learns quickly: in these tests he was 
able to predict all actions from the second trace onwards, except 
when a variant on Connectivity was introduced. The program 
graphs were as small as those designed by the researchers. 

These results are of course preliminary. We intend to gather 
more traces and try more complex tasks. The effectiveness of 
eager prediction to filter out errors, variability and coincidences 
was tested by comparing programs learned with and without this 
technique. The results, reported elsewhere, indicate that eager 
prediction is extremely useful [Maulsby 89a]. 

The design of Basil has been strongly influenced by the 
results of our experimental study of user behavior in 
constructive graphical tasks. We have not completed a proper 
evaluation of how people interact with the new drawing tool. 
Nevertheless, we can already draw some conclusions from the 
work. 

First, user interaction can augment or replace domain 
knowledge in constraining the massive searches incurred by 
function induction without requiring that the user manipulate or 
even understand the internal representation. The three-way trade­
off between search space, ease of teaching, and built-in 
knowledge can be readily investigated in the graphical domain. 
Second, an eager learner can reduce teacher noise and enforce 
felicity conditions. Basil ' s actions must be clearly indicated, and 
it is of course vital that a convenient "undo" facility be provided 
to control his impetuosity. Third, an appropriate metaphor can 
quickly and forcefully convey the learning system's limitations. 

Finally, we have demonstrated the feasibility of inducing 
programs from examples in a rich domain - interactive graphics 
- without placing an excessive burden on the user. It is hoped 
that programming by example will help ordinary users customize 
their graphics editors with a minimum of effort. 

Acknowledgements 

This research is supported by the Natural Sciences and 
Engineering Research Council of Canada. We gratefully 
acknowledge the key role Bruce MacDonald has played in 
helping us to develop these ideas, and the stimulating research 
environment provided by the Calgary Machine Learning Group. 

Task Steps perfonned in Task Edges in Program Graph 

Trace # Total by Basil Ratio Rejected Total Growth 

Colonnade 1 35 12 0.34 5 22 22 
2 27 27 1 0 22 0 

I Connectivity 1 6 0 0 0 7 7 
2 6 6 1 0 7 0 
5* 4 1 0.25 2 11 4 
6 4 4 1 0 11 0 
7 6 6 1 0 11 0 
8 6 6 1 0 11 0 

Box-to-Line 1 20 8 0.4 0 13 13 
2 24 24 1 0 13 0 
3 20 20 1 0 13 0 

* variant of task: move one end-point rather than entire line 

Table 1. System performance in learning three tasks. 

Graphics Interface '89 



References 

[Abbott 1884] 
Edwin A. Abbott. Flatland - A Romance of Many 
Dimensions. Signet Classics. New York. 1984. 

[Andreae 77] 
J. H. Andreae. Thinking with the Teachable Machine. 
Academic Press. London. 1977. 

[Andreae 85] 
P. M. Andreae. "Justified Generalization: Acquiring 
Procedures from Examples." PhD dissertation. MIT. 
January 1985. 

[Angluin 83] 
D. Angluin, C. H. Smith. "Inductive inference: theory and 
methods," Computing Surveys 3 (15), p. 237-269. 
September 1983. 

[Bier 86] 
E. A. Bier, M. C. Stone. "Snap-Dragging." 
Computer Graphics: Proc. ACM SIGGRAPH. Dallas. 
August 1986. 

[Borning 86] 
A. Borning. "Defining Constraints Graphically." 
Human Factors in Computing Systems: 
Proc. ACM SIGCHI '86. Boston. April 1986. 

[Cutter 87] 
M. Cutter, B. Halpern, J. Spiegel. MacDraw. 
Apple Computer Inc. 1985, 1987 

[Fuller 86] 
N. Fuller, P. Prusinkiewicz. "L.E.G.O.-An Interactive 
Graphics System for Teaching Geometry and Computer 
Graphics." Proc. CIPS Edmonton. 1986. 

[Geller 87] 
J. Geller, S. C. Shapiro. "Graphical Deep Knowledge for 
Intelligent Machine Drafting." Proc. IJCAI 87. 
Milan. August 1987. 

[Halben 84] 
D. C. Halben. "Programming by Example." Research 
Repon OSD-T8402. Xerox PARCo Palo Alto CA. 
December 1984. 

[MacDonald 87] 
B. A. MacDonald, 1. H. Witten. "Programming Computer 
Controlled Systems by Non-Experts." 
Proc. IEEE SMC Annual conference. Alexandria, V A. 
October 1987. 

[Maulsby 88] 
D. L. Maulsby. "Inducing procedures interactively." 
Masters thesis. Dept. of Computer Science, University of 
Calgary. December 1988. 

[Maulsby 89a] 
D. L. Maulsby, 1. H. Witten. "Inducing procedures in a 
direct-manipulation environment." Proc. CHI' 89. (in press) 

[Maulsby 89b] 
D. L. Maulsby, K. A. Kittlitz, I. H. Witten. "Constraint­
solving in interactive graphics--a user-friendly approach." 
Proc. Computer Graphics International 1989. (in press) 

[Myers 86a] 
B. A. Myers. "Visual Programming, Programming by 
Example, and Program Visualization: 
A Taxonomy." Human Factors in Computing Systems: 
Proc. SIGCHI '86. Boston. April 1986. 

137 

[Myers 86b] 
B. A. Myers, W. Buxton. "Creating Highly-Interactive and 
Graphical User Interfaces by Demonstration." Computer 
Graphics: Proc. ACM SIGGRAPH '86. August 1986. 

[Noma 88] 
T . Noma, T. L. Kunii, N. Kin, H. Enomoto, E. Aso, 
T. Y. Yamamoto. "Drawing input through geometrical 
constructions: specification and applications." 
in [Thalrnann 88]. pp. 403-415. 

[Papen 81] 
S. Papen. Mindstorms. Basic Books. New York. 1980. 

[Smith 75] 
D. C. Smith, "Pygmalion: a Creative Programming 
Environment." Repon No. ST AN-CS-75-499. Stanford U. 
1975. 

[Tempo 86] 
Tempo. Affinity MicroSystems Ltd. Boulder CO. 198"6. 

[Thalmann 88] 
N. Magnenat-Thalmann, D. Thalmann, eds. New Trends in 
Computer Graphics. Proc CG International '88. June 1988. 

[Van Lehn 83] 
K. Van Lehn. "Felicity Conditions for Human Skill 
Acquisition: Validating an AI-Based Theory." Research 
Repon CIS-21. Xerox PARCo Palo Alto CA. 1983. 

[White 88] 
R. M. White. "Applying direct manipulation to geometric 
construction systems." in [Thalmann 88]. pp. 446-455. 

Graphics Interface '89 


