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Abstract 

Ray tracing requires testing rays against a scene to 
determine which objects, if any, are intersected . An 
efficient method of reducing the computation 
involved in the intersection tests is to organize the 
objects into a hierarchical data structure. We 
describe two heuristics for constructing space 
subdivisions that partition objects using bin trees . One 
is based on the intuitive notion that the surface area 
of an object is a good estimate of its probability of 
intersecting a ray . The second heuristic arises from 
the observation that the optimal splitting plane for a 
volume lies between the spatial median plane and the 
object median plane of the volume. Techniques for 
traversing the space subdivision are then discussed 
with suggestions for reducing the traversal costs by 
incorporating cross links between nodes , generalizing 
Samet's notion of ropes for octrees. Simulation 
results are presented for the surface area heuristic and 
the cross link scheme. These results for the bin trees 
generalize to other common hierarchical data 
structures . 

Keywords: octree, ray tracing, space subdivision, 
surface area heuristic . 

1. Preliminaries 

Ray tracing is a popular algorithm for computer 
rendering of synthetic images. The main reason that 
the use of ray tracing is so widespread is the 
simplicity of coding and the comparative ease with 
which ray tracing renders many realistic effects, 
including shadows , penumbrae, reflection , refraction 
(transparency), and motion blur [2] . The principal 
drawback of ray tracing is its comparatively high 
computational cost , which is due primarily to the high 
occurrence of one basic operation, the ray-scene 
intersection test. An introduction to ray tracing may 
be found in [5] . 

The simplest , brute force method of determining 
the ray-scene intersection is to test the ray against 
each object , remembering which object, if any , has 
the nearest point of intersection . This has been vastly 

improved with the use of scene structuring [3- 4, 6-8, 
10- 11, 13, 16], which reduces the number of ray
object intersection tests required . 

Scenes are modelled with a variety of different 
implicitly and explicitly defined objects and surfaces. 
They range from simple objects , such as spheres, 
ellipses, triangles , polygons, and parallelepipeds, to 
more complex surfaces such as cubic patches, spline 
surfaces, and implicit functions . For all but the 
simplest of these , an intersection test of a ray with the 
object is a nontrivial computation. To speed up the 
intersection test, a bounding volume is placed around 
the object. The bounding volume is typically a very 
simple type of object with an easy intersection test, 
such as a sphere or a parallelepiped which has sides 
perpendicular to a major axis. In order to determine 
if a ray intersects a particular object, the ray is first 
tested against the object's bounding volume. If the 
ray does not intersect the bounding volume, it does 
not intersect the object inside. Otherwise, the ray 
must be tested against the object in the usual manner: 
A common type of object for bounding volumes is a 
rectangular parallelepiped or box with each side 
perpendicular to a major axis. 

The notion of a bounding box generalizes to the 
idea of scene structuring with a hierarchical data 
structure. There are two main classes of hierarchy 
applicable to ordering the scene, each a dual of the 
other. Object subdivision groups the objects 
composing a scene, recording the space that each 
object inhabits. Space subdivision subdivides space, 
recording the objects that inhabit each region of 
space. 

A hierarchical extents tree is a recursive 
subdivision of objects in this manner. The root of the 
tree corresponds to a bounding volume containing all 
of the objects in the scene . The children of a node 
correspond to a set of bounding volumes that divide 
the objects contained in the node's bounding volume. 
When the number of objects in a node's bounding 
volume is one , the node is given a single child where 
the object is actually stored . Although reference is 
made to objects enclosed by , or contained within, a 
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node's bounding volume, it should be observed that 
objects are actually only stored in the leaves. 
Algorithms to build object subdivisions are reported 
in [8,12]. 

The dual of object subdivision is space 
subdivision, which subdivides object space into 
disjoint subregions, recording the objects which 
inhabit each subset of space. The octree is a common 
type of space subdivision. Initially, the octree 
consists of only one node, representing the bounding 
volume containing all of the objects in the scene, 
exactly the same as the root of a hierarchical extent 
tree. Using three splitting planes , one perpendicular 
to each of the three major axes, the bounding volume 
is divided into eight smaller ones with eight children 
of the root created (hence the term "octree"). Each 
object is placed in whichever child encloses it. Each 
of the children may be re cursively subdivided . 

The bounding volumes associated with nodes are 
usually referred to as voxels, which is the three
dimensional analog of a pixel. Sometimes an object 
belongs in more than one voxel. In this case either 
the object is split into new objects that do not belong 
in more than one node's voxel or the object (more 
often a pointer to the object) is stored in both nodes 
[3,4,10]. As with the hierarchical extent tree, the 
resulting octree has all of the objects stored in the 
leaves and none in the interior nodes . Unlike the 
hierarchical extent tree, a single leaf may contain 
more than one object. 

If a ray intersects the root node of an octree, it is 
recursively tested against the children of intersected 
node. When a leaf node is intersected, all of the 
objects stored in it are tested for intersection and the 
nearest, if any, is recorded. The octree allows testing 
nodes in the order that the ray passes through them 
because it subdivides space into disjoint regions . The 
algorithm can halt as soon as it finds a leaf in which 
an object is intersected. 

The choice of splitting planes for each axis of 
subdivision in an octree may be any arbitrary plane 
within the current box. Often the plane that is 
halfway between the sides of the box, the spatial 
median, is chosen. We refer to this as uniform space 
subdivision. Choosing the spatial median means that 
the positions of the planes need not be stored in each 
node because they can be generated from knowing 
the limits of the node. 

There is an important clarification to be made 
concerning the determination of whether a certain 
object belongs in a given node of an octree. An 
object belongs in a node only if the surface of the 
object intersects the node's box. The reason for this 
is that the point of intersection of a ray with an object 
cannot occur within a box that does not contain some 
part of the surface. 
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Octrees have a problem peculiar to space 
subdivision hierarchies. Depending on the 
implementation , an object may be stored in more 
than one node and may not be totally enclosed by any 
particular node . Therefore, an intersection test of a 
ray with an object may find an intersection point 
outside the current node . The algorithm as described 
so far assumes that this is the nearest point of 
intersection and halts . However, because the 
intersection point may be outside the node, we have 
no guarantee that there is not a closer intersection 
point with some other object in the scene. Only ray
object intersections within the node currently being 
examined are valid . To avoid testing a ray with the 
same object more than one time, ray-object cache can 
be used [1] . 

The two-way analog of the eight-way octree is 
the k-d tree or billtree [14] . The only difference is that 
where the octree divides a node into eight subnodes 
using three splitting planes, a bin tree divides a node 
into only two subnodes using just one splitting plane. 
Any octree can be represented by a corresponding 
bintree . The subdivision of a node in an octree is 
represented by three levels of subdivision of a node in 
a bintree. Not all bintree subdivisions can be 
represented exactly by an octree. It is often more 
convenient and more efficient to use bintrees for 
space subdivision [10]. 

In the following sections we review three 
particular space subdivision techniques in terms of 
their costs for construction , tra versal , and storage. We 
then introduce two heuristics for constructing space 
subdivisions and a neighbour link strategy for 
improving traversal and storage costs. We report on 
simulations that test these ideas using bin tree 
implementations . 

2. Previous Space Subdivision Algorithms 

Glassner gives one of · the earliest published 
applications of octrees to ray tracing using the spatial 
median splitting planes [4], with later papers 
elaborating on the technique [6 ,7]. Glassner's 
method of construction is a simple breadth first 
technique. Nodes which have more than a certain 
number of objects are subdivided until a pre
determined size of tree is reached. The tree building 
is governed by two parameters: the maximum number 
of nodes and the threshold value used for determining 
whether to split a node. Glassner's algorithm 
subdivides the smaller volume, rather than the large 
node. It is likely that only a few rays go through the 
small node, while many intersect the large node. 
Therefore, subdividing the smaller gives very little 
performance gain . It is probably better to subdivide 
the larger node. 

The crux of the problem is that Glassner's 
algorithm does not take into account any measure of 
the chance of a ray intersecting a node . Glassner 

Graphics Interface '89 



presents an improved algorithm [6] in which a node is 
subdivided if it contains more than a threshold 
number of objects, or if it is larger than a given 
volume. It seems that the choice of threshold is very 
critical to the performance of this algorithm. 

During ray tracing , the ray progresses through 
the volumes defined by the leaves of the octree, 
alternately functions to enumerate the leaf nodes 
intersected by the ray in order of nearness to the ray 
origin . The objects within the enumerated leaves are 
tested for intersection and the ray tracing algorithm 
halts at the first intersected object. 

Each time the ray enters a new leaf of the 
octree, the traversal procedure starts at the root node 
and works down the tree node-by-node until a leaf is 
found . But two consecutive leaves along the path of 
a ray generally share several ancestor nodes . 
Glassner's approach ignores this . A simple 
optimization of Glassner's traversal algorithm would 
be to perform a binary search among the ancestors for 
the lowest common ancestor. Even with this 
optimization , we suspect that for really large octrees 
the doubly logarithmic search time would still be a 
significant overhead. Perhaps the worst drawback to 
Glassner's traversal algorithm is the problem of 
ensuring that a "good" hash function exists, since this 
is the mechanism used to rapidly access nodes in the 
octree. This is not adequately described by Glassner 
for large octrees. A basic problem seems to be that 
Glassner's approach is geometric in nature and 
ignores the connectivity (or topology) implicit in the 
octree. 

Kaplan describes an implementation of a bin tree 
very similar to Glassner's octree approach [10] . A 
node is subdivided at the spatial median in each of 
the three coordinates and three levels of sub nodes are 
created to represent the subdivision . The traversal 
algorithm for a bin tree is simpler and a bintree 
typically results in fewer leaves than the 
corresponding octree. 

The construction of the tree is governed by the 
same criteria as G lassner's second method [6] . A 
node is subdivided if it contains more than a 
threshold number of objects , or if it is larger than a 
threshold size. Kaplan suggests using one as the 
threshold number of objects. The problems with this 
approach are the same as for Glassner's method. 

Fujimoto, Tanaka, and Iwata described what 
they consider to be a significant speed breakthrough 
with regard to space subdivision structures for ray 
tracing [3]. Their ARTS implementation, which 
stands for "accelerated ray tracing system," is 
distinguished from Glassner's method by the speed of 
its traversal algorithm , as opposed to the uniqueness 
of its octree. The traversal algorithm uses 
incremental integer arithmetic to enumerate the space 
through which a ray travels . It is a three dimensional 
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adaptation of the standard two dimensional DDA 
(digital differential analyzer) used to draw lines . 
ARTS uses a uniform space subdivision with explicit 
storage of the octree as a tree. This method is 
superior to Glassner's hash table strategy in terms of 
storage, requiring about 16 percent less space. 

In addition to being more compact, the ARTS 
method has faster traversal times because of the 
explicit links to the children and because space is 
partitioned into small voxels of a fixed size. Using 
incremental integer arithmetic, the algorithm 
determines the voxels that a ray travels through and, 
using these, which leaves of the octree the ray 
intersects. The size of the voxels is appropriately 
chosen so that the smallest leaf node in the octree is a 
nonnegative power of two times the size of the small 
voxels. The splitting planes of the octree coincide 
with faces of the small voxels, allowing a 
straightforward mapping of a small voxel to a leaf 
node . The ARTS system traverses upwards from the 
previous leaf only as far as required and then down to 
the leaf in question. It is claimed that this can be 
done quite efficiently using byproducts of the 
incremental integer arithmetic algorithm. 

We see three basic bottlenecks in the published 
descriptions of these space subdivision algorithms: the 
construction of optimal hierarchies given a fixed 
number of nodes, the traversal time as rays are traced 
through volumes, and the storage costs associated 
with individual nodes . These issues are addressed in 
turn in the following sections. 

3. The Surface Area Heuristic 

The construction of the bin tree or octree is typically 
insignificant compared to the computation spent in 
actually traversing the tree to determine ray-object 
intersections . Therefore it would be advantageous to 
devote a greater effort to creating a more efficient 
tree, under the assumption that the extra time would 
then be recovered during tree traversal. 

A heuristic approach for bin tree construction can 
be derived from Stone's [15] observation that the 
number of rays likely to intersect a convex object is 
roughly proportional to its surface area , assuming that 
the ray ongms and directions are uniformly 
distributed throughout object space and that all 
origins are sufficiently far from the object. This 
observation has been used to provide a measure of 
the likelihood that a ray will intersect a bounding 
volume in a hierarchical extent tree [8). We derive a 
similar prediction of the number of objects , interior 
nodes , and leaves intersected in a space subdivision 
hierarchy. 

We assume that all rays intersect the bounding 
vo lume for the entire scene . Thus every ray intersects 
the root voxel. We further assume that the 
probability of a ray intersecting any interior or 
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exterior node is equal to the surface area of the node 
divided by the surface area of the root. This results 
in the following intersection estimates . 

# of interior nodes hit per ray = 

Ni 
~SA (i)/SA (root) 
i-I 

# of leaves hit per ray = 

NI 
~ SA (/) /SA (root) 
1-1 

# of objects tested for intersection per ray = 

NI 
~ SA (1)'N (l)/SA (root) 
1-1 

where the various quantities are 

Ni = # of interior nodes 

NI = # of leaves 

SA (i) = surface area of interior node i 

SA (/) = surface area of leaf node I 

N (I) = # of objects stored in leaf I 

Given these measures of the node , leaf, and 
object visits performed during traversal of the tree , an 
estimate of the cost of the tree can be obtained . The 
costs associated with these three components depend 
on the particular implementation of the traversal 
algorithm and may be determined theoretically or 
experimentally. The total cost of a particular tree is 
determined from the three sums above and the three 
related costs, which are assumed to be constants for a 
given implementation . This is expressed as 

cost of tree = 

Ni NI NI 
C;, ~SA (i)+C( ~SA (I)+Co ' ~ SA (I) 'N(I) 

i-I i-I 1- 1 

SA (root) 

where the new quantities are 

Ci = cost of traversing an interior node 

Cl = cost of traversing a leaf 

Co = cost of testing an object for intersection 

This cost function assumes that rays do not 
intersect any objects , but also represents an upper 
bound for rays that do intersect objects . The cost 
function implies that if an object occurs in two or 
more leaves, it is tested for intersection each time a 
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ray intersects one of these leaves. Therefore a given 
object may be tested against the same ray several 
times . As observed before , this is usually 
unacceptable, and is avoided by caching objects 
intersected against a ray so that each object is tested 
at most once per ray. The cost function given above 
must be modified to account for this caching. 

To derive the correct cost function , we require a 
measure of the probability that a ray intersects at 
least one leaf from the set of leaves within which a 
particular object resides. This is equivalent to 
determining the probability that a ray intersects the 
volume defined by the union of the set of leaves. 
Because this union may be non-convex, the 
probability of ray intersection must be estimated by 
finding a convex region to approximate the non
convex region. A simple approximation is the sum of 
the areas of the projection of the set onto the six faces 
of the root bounding volume divided by the root 
bounding volume's surface area. For a convex object, 
this measure is exactly equal to its surface area 
divided by the root bounding volume's surface area. 
We can use this approximation for the set of leaves 
for all objects, whether the set of leaves for each 
object is convex or not. This makes the object 
portion of the cost of a tree 

N. 

Co' ~ SAset(S/(o» 
0- 1 object cost per ray = ----,----

SA (root) 

where the new quantities are 

No = # of objects 

S/(O) = leaves in which object 0 resides 

SAset(s) = approximate surface area of set s 

If we assume that the above costs are accurate, 
we can use these equations to govern the construction 
of the tree , choosing nodes to subdivide so as to 
minimize the total cost of the tree for a given number 
of nodes in the tree. We call this rule the surface area 
heuristic. 

The validity of the surface area heuristic was 
tested using a simulation . A set of 100 boxes with 
random sizes and positions were created , where each 
box was a standard rectangular parallelepiped. 
100,000 random rays were traced through the 
bounding volume enclosing the boxes. These rays 
had origins outside the bounding volume, and were 
directed towards the bounding volume. The statistics 
recorded are presented in graphical form in Figure 1, 
where each point represents the surface area of a box 
and the number of rays which intersected the box. 
The number of rays intersecting a box is thus shown 
to be directly proportional to its surface area to within 
statistical varia tion. 
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Figure 1. Surface area heuristic data . 

The graph illustrates that the number of rays 
intersecting a box is proportional to its surface area, 
assuming random rays. However , this does not prove 
that the estimates of interior and leaf nodes 
intersected are correct because the search is truncated 
as soon as an intersection is found. The number of 
object tests also cannot be assumed to be proven 
because the estimate is derived from an 
approximation of a possibly concave set of leaves by a 
convex volume. To test the validity of these 
estimates , a further simulation was performed . 

Random scenes of objects and random bin trees 
were created using the surface area heuristic. These 
were used to trace random rays as in the previous 
simulation . The estimated numbers of interior nodes, 
leaves, and objects visited were compared with the 
actual numbers from the ray tracing . Each scene 
contained a random number of objects between 10 
and 500 , with random distribution in size from .01 to 
1. The bin tree created for the scene contained a 
random number of nodes between 10 and 1000, where 
nodes were subdivided in random order along a 
random axis at a random position within the 
corresponding voxels. 529 random scenes were 
created and 10000 rays were traced for each scene. 
Table 1 summarizes the results of the simulation . 

In all cases the actual number is proportional to 
the estimated number. In the case of the number of 
interior nodes and leaves intersected, the estimate 
actually provides an upper bound rather than an 
average case estimate. This is understandable , as the 
derivation of the estimate assumes that the rays hit no 
objects . The constants of proportionality may 
therefore be used in conjunction with the surface area 
heuristic to give a more accurate estimate of the 
average number of interior nodes and leaves 

intersected. The estimate of the number of objects 
intersected was shown to be quite accurate , with a 
constant of proportionality close to one . 

One reason that this estimate provided an 
average case estimate, rather than an upper bound, is 
that there are too few objects in the scene. 
Truncating the search as soon as an intersection was 
found probably did not save many intersection tests 
because each ray may have intersected zero or one 
objects . Therefore the estimate provided an average 
case estimate. With denser scenes, the object 
intersection estimate should probably be scaled down 
in the same way as the interior and leaf node 
estimates . 

4. Spatial Median Versus Object Median 

In all of the octree and bintree constructions the 
position of the splitting planes is arbitrary, even if the 
surface area heuristic is employed. Traditionally, the 
splitting plane is chosen as the spatial median, 
resulting in a uniform space subdivision . Heckbert 
(9) employed a medial! split algorithm that chooses a 
splitting plane based on the object medial! in a k-d 
tree , where the objects are colour triplets (points). 
The object median is the splitting plane that places 
one half of the objects on each side of the plane. The 
cost estimate developed using the surface area 
heuristic can also be applied to selecting "good" 
splitting planes in this extended model. 

In the following discussions of splitting planes, 
we will only consider the bintree. We assume that 
only major planes are used as splitting planes and we 
ignore the possibility of an object straddling a splitting 
plane. We have to choose a parameter b , where 
b = 0 corresponds to the lower limit of the splitting 
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Table 1 

Quantity Actual Std. Dev. Corr. Coeff. 
# rays intersecting box 27.5 . surface area 5.2% 

12.7% 
14.1% 
9.5 % 

.995 

.945 

.900 

.985 

# interior nodes intersected 
# leaves intersected 
# object tests 

0.752 . estimate 
0.831 . estimate 
1.03 . estimate 

plane b = 1 is the upper limit. Choosing b = 0.5 is 
equivalent to selecting the spatial median . 

Let us look at the cost as a function of this 
parameter b . We observe that the internal node and 
leaf node components of this cost savings function are 
constant with respect to b . Therefore, for the 
purposes of minimizing cost, one can minimize the 
function 

f(b) = LSA(b) ·L(b) + RSA(b) ·(n -L(b» 

-SA ·n 

where n is the number of objects in the node , L (b) is 
the number of objects to the left of the plane at b, 
and n -L (b) is the number to the right. The surface 
area of the left and right sub nodes are LSA (b) and 
RSA (b) , respectively. and the surface area of the node 
itself is SA . The first term represents the probability 
that a ray intersects the left subnode multiplied by the 
number of intersection tests performed in the left 
subnode . The second term is a similar quantity for 
the right subnode . The SA·/1 term is the amount of 
work required if the node were not subdivided and 
thus is an amount of work saved by changing the 
original node from a leaf to an internal node . hence 
the minus sign. This last quantity is a constant with 
respect to b , so it may be removed from the function. 
resulting in the following function to be minimized . 

f(b) = LSA (b)-L (b) + RSA (b ) ·(I1-L (b» 

To find a "good" splitting plane. one might 
evaluate this function at several different positions 
and choose the position with the minimum value . 
However, let us examine the behaviour of this 
function. The value of this function at the spatial 
median (b=0.5) is 

n ·LSA (0.5) 

because LSA (0.5) = RSA (0.5) . Curiously enough, the 
value of this function at the object median , where 
half of the objects are on each side of the splitting 

plane and L (b )=~ is 

(LSA (b)+RSA (b» · ; = n ·LSA(0 .5) 

because LSA (b )+RSA (b) is a constant independent of 
b which means that we can substitute 

LSA (0.5)+RSA (0.5) which is 2 ·LSA (0 .5). This shows 
that picking the object median results in the same 
gain as picking the spatial median. Intuitively, one 
might assume that picking the object median would 
be a reasonable heuristic for choosing an arbitrary 
splitting plane , but the above observation indicates 
that it is equivalent to the standard spatial median 
subdivision. 

The optimum heuristic is to pick the splitting 
plane which minimizes f(b). Differentiating with 
respect to b gives 

f' (b) = LSA '(b) -L (b) + LSA (b) -L' (b) 

+/1 ·RSA'(b) 

- RSA 'Cb )·L(b) - RSA (b)-L ' (b) 

which can be simplified by substituting -LSA ' (b) for 
RSA' (b) because LSA (b) + RSA (b) is a constant, 
giving. 

f'(b) = (2 ·L(b)-n) ·LSA '(b) + (LSA(b) 

-RSA(b» ·L ' (b) 

Since L (b) is a discontinuous function, L ' (b) is not 
defined . However. for the purposes of minimization 
of f(b). we can assume that L' (b) is always 
nonnegative (the number of objects stored in the left 
subnode cannot decrease as b increases) . 

Let us investigate the case where the object 
median lies at some point b<0.5 . To the left of the 

object median. f' (b) is negative , because L (b)<; 

and LSA (b ) <RSA (b). To the right of the spa tial 

median. f' (b) is positive, because L (b» ; and 

LSA (b » RSA (b). Therefore the minimum must occur 
between the object median and the spatial median in 
the case where the object median is to the left of the 
spatial median . A similar proof can be used for the 
other case where the object median is to the right of 
the spatial median, thereby proving that for any node 
and set of objects within it. the optimum splitting 
plane occurs between the object median and the 
spatial median. reducing the required search range . 

The optimum splitting plane actually occurs 
within this reduced range and at the upper or lower 
edge of one of the objects within the range, rather 
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than in the middle of "white space" . To take 
advantage of this reduced range , one must first find 
the object median , which is easy if the objects are 
sorted, but otherwise requires a search of the space. 
If one does not want to perform this search, one can 
determine how many objects are on each side of the 
spatial median , thereby determining on which side of 
the spatial median the object median occurs . This 
allows one to cut the search space in )1alf. In the 
cases of small numbers of objects, one can try 
splitting planes at the limits of each object within the 
appropriate half and record the maximum. For large 
numbers of objects, one might try a small set of 
splitting planes at equally spaced intervals , or even 
randomly selected , within the appropriate half. 
Alternatively , a cheap heuristic is to select the 
splitting plane midway between the object median and 
the spatial median . 

Because of space limitations , we have not dealt 
with objects spanning the slicing plane in this paper. 
Our results can be extended to handle this case as 
well . 

5, Comparisons 

Having verified the surface area metric as reasonably 
accurate, different construction techniques for space 
subdivision were investigated. Four new construction 
algorithms. as well as Kaplan 's algorithm , were 
implemented for purposes of comparison and 
evaluation. All algorithms were implemented on 
bintrees . The construction algorithms consist of two 
algorithms where the spatia l median is chosen as the 
splitting plane . two algorithms where the splitting 
plane can be in an arbitrary position , and Kaplan's 
algorithm as a standard of comparison. These 
algorithms are the following. 

Kaplall's Algorithm (zero degrees of freedom in the 
splitting plane selection): This is simply Kaplan's 
algorithm with a threshold value of one. Nodes 
are subdivided until they contain zero or one 
objects, in a breadth-first order. The maximum 
height of the tree was set to 30 , which was felt to 
be large enough not to restrict the growth , yet 
provide a practical bound. 

Arbitrary Acyclic (two degrees of freedom): Splitting 
planes can be anywhere within the node , and a 
node may be divided along any of the three axes . 
The optimal splitting plane is determined by 
sampling at nine equally spaced intervals within 
the node, recording the maximum value of the 
function given previously . Nine is an arbitrary 
parameter chosen so as to attempt to focus on 
the optimal plane , yet not incur unreasonable 
amounts of computation . A node is subdivided 
along whichever axis provides the greatest gain 
and nodes are subdivided according to highest 
gain . 
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Arbitrary Cyclic (one degree of freedom) : same as 
Arbitrary Acyclic , except that the first level of 
subdivision always occurs along the x axis , the 
second along the y axis, the third along the z 
axis, cycling through the three axes. 

Spatial Mediall Acyclic (one degree of freedom): same 
as Arbitrary Acyclic, except that the spatial 
median is always chosen as splitting plane . 

Spatial Mediall Cyclic (zero degrees of freedom) : same 
as Arbitrary Cyclic, except that the spatial 
median is always chosen as splitting plane . 

These algorithms were encoded as simply as 
possible without any attempts to optimize the code. 
It was felt that it was more important that the code be 
correct , and our emphasis was verification , rather 
than efficiency . Statistics on the trees were recorded 
during the construction of the tree. The statistics 
include the number of interior nodes, the number of 
empty leaves , the number of non-empty leaves 
(containing one or more objects) , the estimated 
number of leaves visited , estimated number of 
interior nodes visited, and the estimated number of 
objects tested for intersection . 

The ultimate goal of the strategies for building 
the space subdivision structures is to improve 
performance in actual ray tracing systems . The 
performance should therefore be evaluated with 
scenes that represent a reasonable sample of all scenes 
subjected to ray tracing. Five scene types proposed 
by Kingdon were used [12] . The object distributions 
are based on three simple random number generators: 
V 3, which selects a random point within a unit 
sphere ; VO, which selects a random point on the unit 
sphere; and V', which returns the output of VO scaled 
by a Gaussian distributed random number with a 
mean of 0 and variance of 1. The five scene types 
used in the simulations were the following. 

Small Spherical: a set of triangles whose first vertices 
are V 3 distributed in space and whose other two 
vertices are O.OIO ·Vo distributed offsets from the 
first point. 

Large Spherical : a set of triangles whose first vertices 
are V 3 distributed in space and whose other two 
vertices are 0.333 ' VO distributed offsets from the 
first po in t. 

Small Gaussiall : a set of triangles whose first vertices 
are 0.333 ' V' distributed in space and whose 
other two vertices are O.OIO ·Vo distributed offsets 
from the first point. 

Large Gaussiall : a set of triangles whose first vertices 
are 0.333 ·V' distributed in space and whose 
other two vertices are 0 .333 ' VO distributed offsets 
from the first point. 
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Figure 2. Summary of simulations . 

Three Random Vertices: a set of triangles whose 
vertices are U 3 distributed in space , creating a set 
of dense, interpenetrating triangles . 

The small spherical and small Gaussian scenes 

contain triangles that are roughly 2~0 times the 

width of the scene, while the large spherical and large 

Gaussian scenes contain triangles approximately ~ 
times the width of the scene , attempting to simulate 
the limits of object sizes in typical scenes . The 
Gaussian distributions provide a cluster of objects 
while the spherical distributions provide more spread 
out objects . Six instances of each scene were used , 
varying only in the number of objects comprising the 
scene . The numbers used were 256 , 512, 1024, 2048 , 

4096 , 8192 . The maximum number of nodes was set 
according to the amount of time and memory 
required and range from 2000 to 8000 nodes, 
depending on the scene type . Also , for some scene 
types, only the first five scene sizes were used , to 
limit computer usage . 

Data from the simulations was analyzed to 
compare the various algorithms. Figure 2 shows a 
graph of the results for 1024 small spherical objects . 
The other cases were similar , but are omitted from 
this paper due to space limitations. 

In summary , the estimated number of nodes and 
leaves visited for a given scene were very similar over 
all five algorithms , as is evident from examining their 
graphs . Overall , the arbitrary acyclic algorithm 
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performed slightly better than the rest in terms of 
number of nodes and leaves visited. However , the 
number of objects intersected varied widely over the 
different construction algorithms . For this reason and 
because the object cost is typically higher than the 
other two costs , let us concentrate on the number of 
objects intersected in order to evaluate the algorithms' 
performance. 

For the small spherical and small Gaussian scene 
types, the arbitrary acyclic algorithm performed the 
best, providing up to three orders of magnitude 
reduction in the number of objects tested for 
intersection . For the large spherical and large 
Gaussian scene types, the arbitrary acyclic algorithm 
was also the best. but only up to one order of 
magnitude better. However. for the scenes consisting 
of three random vertices , the Kaplan method 
performed best. The general rule seems to be that 
the arbitrary acyclic algorithm performs best for 
scenes with non-overlapping small objects, while 
Kaplan 's performs best for denser scenes with 
interconnected objects. 

The explanation for this behavior is that the 
arbitrary acyclic algorithm is a greedy algorithm, 
governing the subdivision by only looking one step in 
advance. If subdividing a node is not immediately 
advantageous. then it is not subdivided. even if 
subjecting the node to two levels of subdivision would 
be advantageous. Kaplan's algorithm. by virtue of its 
breadth-first nature and an inability to evaluate the 
benefit of subdividing a node , may subdivide a node 
many times, resulting in a gain where the arbitrary 
acyclic algorithm would not. 

These observations indicate that a hybrid of the 
arbitrary acyclic and Kaplan 's algorithms might 
provide optimum performance in all scene types. A 
hybrid implementation was performed where the 
arbitrary acyclic algorithm was applied to a node first 
to determine an optimum splitting plane. If it does 
not find a speed gain above a certain threshold 
dependent upon the surface area of the node , then 
the spatial median is chosen . The coordinate is 
dependent on the level of the node, similar to 
Kaplan's method except that nodes are only 
subdivided with one level of subdivision at a time 
(rather than three levels) . This forces the algorithm 
to assume that subdividing a node results in a 
decrease in cost. even if the one-step look ahead 
indicates an increase. Thus . a node which the 
original algorithm does not find advantageous to 
subdivide may be subdivided by the hybrid algorithm, 
resulting in a tree with a higher cost than if the node 
remained a leaf. The children of this node may then 
be subdivided, possibly resulting in an overall 
decrease in the cost of the tree. 

This process is used , as in the other algorithms, 
only to determine the splitting plane, splitting 
coordinate , and estimated gain. if the node were to 
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be subdivided . The selection of the next node to 
subdivide is , as in the arbitrary acyclic algorithm , the 
node which has the highest estimated gain . When the 
hybrid algorithm resorts to selecting the spatial 
median . the gain associated with this split is set at the 
threshold, rather than the actual value. which would 
be lower. This hybrid algorithm was run on each of 
the five scene types containing 1024 objects , except 
for the scene type containing three random vertices, 
which had only 64 objects for efficiency. It performs 
better overall than any of the other algorithms (it was 
outperformed slightly by the arbitrary acyclic 
algorithm in the case of a large Gaussian scene). 

It is interesting to note that the portions of the 
graphs pertaining to Kaplan 's algorithms often 
contain line segments and abrupt changes of slope. 
These are due to the fact that after some point in the 
construction of the tree , Kaplan 's algorithm 
essentially builds the tree level by level. The line 
segment portions correspond to individual levels, and 
the abrupt changes in slope correspond to the filling 
of a leVel. 

At the end of each simulation, the total number 
of object instances (number of objects stored at the 
leaves) were recorded . The arbitrary algorithms 
produced near optimum numbers , that is, only 10 or 
20 percent mor.e object instances than objects, while 
Kaplan 's and the other two spatial median algorithms 
produced trees with up to ten times as many object 
instances as objects. The reason for this is the 
implicit motivation to keep objects in as few leaves as 
possible , provided by the cost function used in 
selecting the splitting plane fur arbitrary subdivision. 

6. Storage 

The simplest and most obvious method of storing the 
bintree (octree) is as an explicit tree with two (eight) 
pointers per node. This has a large space 
requirement, motivating the more compact octree 
schemes of Glassner [4] and Fujimoto et al. [3]. 

The storage method has a marked effect on the 
speed of traversing a tree . In ray tracing the internal 
nodes of a space subdivision are not interesting. All 
useful information is in the leaves. The traversal cost 
can be decreased by storing links to neighbours on 
each of the six faces of each leaf. Samet [14J 
describes such links in quadtrees , which he terms 
ropes. For the purposes of the following discussion , 
let each face of each leaf have exactly one neighbour , 
defined as the smallest node (interior or leaf) whose 
vox el's surface totally encloses the face of the leaf in 
question. By this definition , the neighbours of a leaf 
are not necessarily leaves . However , .this definition 
guarantees that each leaf has exactly one neighbour 
per face (except leaves on the boundary of the scene, 
which have none) . 
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1 leaf n leaves 

y 
2n links 

Figure 3. Neighbour links in octree. 

During traversal of the structure it is necessary to 
determine the face exited . The neighbour link of this 
face is followed and if the neighbour of the face is a 
leaf, processing of the objects within the leaf is 
performed. If the neighbour is an interior node, then 
the exit point of the current leaf must be computed 
and used to descend the neighbour's subtree to find 
the appropriate leaf. This strategy eliminates all 
upward traversal of the tree and some downward 
traversal. In general. when a ray travels from one 
area to an area of equal or lower subdivision, the 
neighbour is a leaf and the hierarchy traversal cost is 
zero. It is only when travelling to an area of higher 
subdivision that there is any hierarchy cost. In this 
case the cost is less than the corresponding cost of the 
methods described earlier because the upward 
traversal to the common ancestor is eliminated and 
some of the downward traversal may also be avoided 
(about equal to the upward traversal eliminated). 
Therefore. the neighbour links reduce the hierarchy 
cost significantly, at the added expense of six pointers 
per leaf. 

A further modification of the neighbour links is 
to redefine the neighbours of a face as all leaves 
adjacent to that face . Now, all neighbours are leaves, 
but any given face may have more than one 
neighbour , which requires more memory per leaf than 
the previous link strategy. However, in the case of 
spatial median subdivision, the amount of memory 
required is now less than 12 pointers per leaf on 
average, only twice that of the former method. The 
average 12 pointers per leaf stems from the 
observation that, although some faces have a large 
number of neighbours , others have only one 
neighbour, with the average being two pointers per 
face. This is illustrated in Figure 3, which shows 11+1 

faces, and 2 '11 links , and hence ~ links per leaf , 
11+1 

which is less than two pointers per face. With 
arbitrary subdivision, the number of pointers per face 
may be higher , because Figure 3 no longer covers all 
possible subdivision cases . 

The storage of the neighbours for a leaf consists 
of six integers representing the number of neighbours 
of each face , plus a list of pointers to the neighbours 
of each face . Alternatively , the neighbours could be 
stored in a two dimensional bintree (or quadtree) to 
quickly determine the appropriate neighbour for a 
given exit point. 

This complete neighbour lillks scheme eliminates 
the hierarchical traversal altogether, because finding 
the next node only requires following the links, but it 
introduces the additional cost of determining which 
link to follow if a leaf has more than one neighbour 
on a given face . We assume that the number of 
neighbours of a leaf is proportional to its surface 
area. 

Better search performance may result by using a 
two dimensional bin tree to search for the neighbours 
or by performing a binary search on the sorted 
neighbour lists . Either of these two methods reduces 
the expected number of tests per face to log n 
complexity. The form of the tests is single 
comparisons in the case of the two dimensional 
bintree, rather than four comparisons. The expected 
number of comparisons is therefore proportional to 

NI 
~SA (l)logSA (l) 
1- 1 

NI 1 -2 
"-- '-'logNI 
1~1 2 3 

Nl 3 

3v'N/' logNI 
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Table 2 

Up / Down Traversals , 1000 nodes 

Scene Type 
1000 Small Spherical 
1000 Large Spherical 
1000 Small Gaussian 
1000 Large Gaussian 
64 3-Random Verts 

Up 
36 .35589981 
15.85369968 
33 .94269943 
24 .50469971 
15.17660046 

Although it appears that the neighbour links 
approach may have large space requirements, there is 
a memory-speed tradeoff that can be invoked. 
Instead of defining links to occur at all leaves , one 
can define the links to occur at all interior nodes that 
only have leaves for children. This decreases the 
extra space to approximately one eighth of the 
original space requirements in the octree case, or one 
half in the case of a bin tree. This method incurs the 
same traversal cost as the original neighbour links 
plus one additional upward traversal per leaf and 
possibly one downward traversal. 

More generally, the linking can be defined only 
for the set of nodes at a particular height above the 
leaves. For example, links may be stored in all nodes 
which are a fixed distance 11 above the deepest leaf in 
their subtree. The case 11 = 1 corresponds to the 
above method of storing at all nodes that only have 
leaves for children. The amount of memory required 

is proportional to (t) n in the case of an octree, yet 

the extra traversal cost is only proportional to n . A 
suitable value of 11 results in an appropriate tradeoff 
between space and the additional up and down 
traversals. For practical cases 11 can be chosen so that 
the extra indirection to follow links is modest and the 
additional storage for links is vanishingly small. 

A neighbour links strategy was implemented, 
using the simple definition of neighbours which gives 
exactly one neighbour per face , as opposed to the 
complete neighbour links strategy. One instance of 
each of the five scene types was used to build an 
arbitrary acyclic type bintree, with the neighbour links 
for each leaf computed. All scenes had 1000 objects 
and the bintrees constructed contained 1000 nodes. 
After building the bintrees, 10000 random rays were 
traced and the number of parent-to-child and child
to-parent movements were recorded for each of the 
conventional traversal algorithms and the neighbour 
links method. These numbers indicate the savings in 
traversal cost by using the neighbour links strategy . 

Table 2 summarizes the number of parent-to
child and child-to-parent traversals recorded from the 
simulation. The second and third columns give the 
number of up and down links followed for the 
conventional traversal algorithms . The fourth column 

Down 
36.38169861 
20.09070015 
33 .94810104 
25 .91119957 
19.25169945 

Neighbours Down 
9.951199532 
8.987500191 

10.09840012 
8.954000473 
9.043399811 

gives the number of down links followed for the 
neighbour link algorithms (there are no up links 
followed). If it is assumed that the cost of a single 
upward traversal is equivalent to a single downward 
traversal, then these numbers show that the neighbour 

link scheme decreases the traversal cost to between ; 

1 
and '4 of the cost of an ARTS-type traversal method. 

Storage of the lists of objects that belong in each 
leaf have large space requirements . Glassner stores 
all the object lists in a single array of object indices, 
where each list ends with a " nil" index. Glassner's 
scheme provides a separate object list for each leaf. 
A more compact scheme would allow more than one 
leaf to point to the same object list. In cases where 
there are many duplicate leaf lists, this scheme would 
result in significant memory savings. There would be 
an added cost during the traversal phase in order to 
identify duplicate lists but only one extra level of 
indirection. Even more savings would result if lists 
which are subsets of other lists are identified, and a 
pointer to the beginning of a sublist within a larger 
list used to avoid explicit storage of the sublist. The 
larger list would have to bc organized so that the 
sublist is at the end. 

The most compact scheme is to partition the set 
of objects into equivalence classes , where each 
equivalence class is a set of objects which belong in 
the same set of leaves. In the worst case , each 
equivalence class consists of one object, in which case 
this scheme is equivalent to the above many-to-one 
linking with the overhead being a single extra level of 
indirection . The object list for a leaf is thus a list of 
equivalence classes , rather than a list of object 
indices . Although the computation of the 
equivalence classes might be quite expensive, it is 
only computed once when the space subdivision is 
constructed . The savings in space might well 
outweigh the extra computing time. 

7. Summary 

The cost of ray tracing using space subdivision trees 
can be estimated by the number of interior nodes, 
leaves , and objects visited per ray, and the respective 
costs of these visits . This paper reports new 
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construction algorithms which represent considerable 
improvement over conventional methods in terms of 
reducing the number of nodes, leaves, and objects 
visited by a ray . The algorithms employ the surface 
area heuristic and a heuristic for estimating the 
optimal splitting plane between the spatial median 
and the object median . 

The efficiency of traversal has been improved by 
attacking its two main costs, the processing of interior 
nodes (a major improvement) and the computation of 
the ray exit point (a minor improvement). The 
neighbour link strategy has been introduced to 
significantly reduce the number of interior nodes 
visited compared to G lassner's algorithms. 

Many of the ideas in this paper should carry over 
to hierarchical extent trees . All of the ideas should 
be examined with respect to higher-dimensional data 
structures , dynamic data structures , and multi
processor algorithms. We suggest a few areas for 
future research as our closing remarks. 

In computer animation, it is common for scenes 
to change from frame to frame, as objects appear, 
disappear , and change position, shape , colour , and 
other attributes. The data structures representing the 
scene must be updated to reflect these changes. An 
important issue when choosing a data structure to 
represent scenes is whether the structure allows 
dynamic modification as the scene changes and 
whether the dynamic modification is more efficient 
than rebuilding a static structure each time the scene 
changes. The restriction to static structures is not 
unreasonable, as static structures are appropriate in 
cases where the viewpoint changes often compared to 
the objects in the scene. But when this is not the 
case, our algorithms must be extended to 
accommodate dynamic changes. One specific method 
of dealing with dynamic objects is to treat time as 
simply another dimension , with the data structure 
subdividing the objects in 4-space . Glassner [7] has 
reported on such an approach . 

Our discussion has not addressed issues related 
to multiprocessors . Other authors have suggested a 
variety of techniques for utilizing multiprocessors in 
ray tracing. We believe that many of our techniques 
can be applied as well. 
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