
203

Conversion and Integration
of Boundary

Representations with
Octrees*

T. K. Chan, 1. Gargantini
Department of Computer Science,

The University of Western Ontario,
London, Ontario Canada N6A 5B7

and T.R.S. Walsh
Departement de Mathematiques et d'Informatique,

Universite du Quebec a. Montreal,
Montreal, Quebec H3C 3P8
e.mail: irene@uwocsd.uwo.ca

Abstract

This paper addresses the problems of convert­
ing polygon-based objects to octree-form and in­
tegrating 3D objects expressed in Volume Repre­
sentation with others expressed in Boundary Rep­
resentation. To achieve this the authors propose
an approach which makes use of: (i) filling by oc­
tants, (ii) connectivity labeling, (iii) digitization of
straight lines and polygons in 3D. Selected exam­
ples are given: among these, one deals with vol­
umes enclosed by slightly inaccurate boundaries,
as those generated, for instance, by the use of dig­
itizing tablets; another deals with joining distinct
volume-based objects with triangular digitized' tiles;
another again simulates bone grafting.

Keywords: octrees, 3D modelling, volume representation,
boundary representation, 3D filling, polygon-to-octree con­
version, digitization

1 Introduction

A variety of methods is available to create an abstract rep­
resentation of a 3D object: among these we distinguish
the Constructive Solid Geometry approach, the Bound­
ary Representation technique and the Volume Represen­
tation method [1]. Very few attempts have been made
to convert a Boundary Representation directly into a hier­
archical block structure: the first successful attempts ap­
peared in [2, 3] and are based on techniques to separate
maximally-connected subsets. Another related approach is
the altorithm used to fill a digitized boundary by octants
[4], which starts from a set of Boundary volume-elements
and proceeds by aggregating to these their internal cubic
neighbours of increasing size.

Converting Boundary-based objects to octree-form is
an issue arising in the writing of user interfaces: users, in
fact, prefer to enter objects' description via vertices of poly­
gons or control points of splines even when using packages
and/or procedures based on octrees; integrating 3D objects
expressed in Volume Representation with others expressed
in Boundary form is also an important issue because it

"The authors gratefully acknowledge the financial support of the
Canadian Government through NSERC grants.

opens the possibility of incorporating pictorial data (pre­
viously created or acquired) into newly defined surfaces in
order to create more complex objects. An example is given
in Fig. 1 where two cones, created in Volume Represen­
tation, are joined by digitized triangular tiles entered in
Boundary Representation. The four viewports show how
the tiling progresses in a back-to-front display.

The work presented in this paper is part of a larger
project dealing with the simulation of bone grafting and
custom-designed prostheses using previously acquired ob­
jects. These objects, most of the time, are given in Vol­
ume Representation - arising, for instance, from recon­
structed X-ray Computerized Tomography, Magnetic Res­
onance Imaging, or Positron Emission Tomography scans.
The above-mentioned simulation requires the ability to han­
dle local modifications of the surface of a given solid, fol­
lowed by the filling of the small gaps created between the
locally-created surfaces and the existing volume-based solid,
thus generating an integrated object with uniform represen­
tation.

To reach our goals we have designed and implemented
some graphics tools: the first deals with the conversion of
polygonal surfaces in 3 dimensions into octrees, the second
with 3-dimensional filling of the digitized surfaces; the third
with the filling of the above-mentioned gaps. This paper
describes in detail the first two topics, i.e. conversion and
filling while only some preliminary results on the third are
given.

The organization of the sections is as follows: Section 2
gives an overview of octrees, Section 3 introduces some rel­
evant definitions, Section 4 addresses the problems of dig­
itization, Section 5 presents the new algorithm, Section 6
outlines the testing of the algorithm and Section 7 gives
the conclusions.

2 Octrees

A 3D rasteris a (2" X 2" X 2")-array of volume elements
called voxels while n is called the resolution. A 3D binary
picture is a 3D raster in which each voxel is either black or
white: the set of black voxels represents the object, that of
white ones the background. If the picture has large blocks of
black voxels, it can be represented effectively by an octree:
a rooted tree, each of whose nodes is a leaf or has 8 sons [5 ,

Graphics Interface ' 89

6, 7, 8, 9, 10, 11]. The octree for the picture is generated
by recursively grouping the raster's voxels into (2m x 2m x
2m)-cubes (also called octants of order m), with m=
I,2, .. . ,n-1. The root represents the whole raster. If the
entire picture is black (white), then the root is a black
(white) leaf; otherwise it has 8 sons, each representing an
octant of dimensions (2n- 1 x 2n- 1 x 2n- 1) and is said to
have gray or black-and-white color. This process is applied
recursively to each of the 8 sons, and terminates after at

octant octal quaternary quadrant
digit digit

front-north-west 0 0 north-west
front-north-east 1 1 north-east
front-south-west 2 2 south-west
front-south-east 3 3 south-east
back-north-west 4
back-north-east 5
back-south-west 6
back-south-east 7

Table 1: Labelling octants or quadrants

most n levels of decomposition.
A linear octree [12, 13, 14, 15, 16] is a compressed form

of the regular octree described above: we store only the
black leaves and label them by a code described below.
Octants can be labeled in different ways; in this paper we
have adopted the convention shown in Table 1. The code
for a leaf representing a (2m x 2m x 2m)-cube consists of the
n-m octal digits representing the recursive subdivision of
the raster into octants (labeled as in Table 1) ending in that
cube, followed by m copies of the symbol 'X'. The linear
octree of an object is formally defined as the list of the octal
codes sorted lexicographically in ascending order. For the
object shown in Fig. 2, the linear octree is <OI,IX,35,5I>;
the corresponding regular octree is shown in Fig. 3. In a
more space-efficient version of linear octrees' representation
the (n-m)-digits are padded on the right with m zeros, and
followed by the grouping factor m.

For the 2D case, the raster becomes a (2n x 2n) square,
an octant of dimensions (2m x 2m x 2m) becomes a quadrant
of dimensions (2m x 2m), m=I,2, ... ,n-I, a voxel a pixel, the
8 sons become 4 sons: each node is represented by a string
of n quaternary digits, encoded as shown in the first 4 rows
of Table 1.

3 Definitions and Data Structures

To represent a voxel Q in space we adopt two notations: the
usual matrix notation, with the triplet (j,i,k) identifying
Q (with j increasing from west to east, i increasing from
north to south, and k increasing from front to back) , and
the octal labeling given in Section 2. The reason for this
double notation is that the algorithms are formulated in an
octree environment, while the user will expect to specify
the input data in the first representation.

Rasterborder is the set of voxels forming the border of
the raster, i.e. the set of voxels with at leas(one coordinate

204

being 0 or (2n-l). Two voxels Q=(j,i,k) and Q'=(j',i',k')
are O(p}-adjacent for p=O,I,2,3 iff

0::;1 i - i' I::; 1; 0::;1 j - j' I::; I, 0::;1 k - k' I::; I,
(I i - i' 1 + 1 j - j' 1 + 1 k - k' I) ::; p

In this case, Q and Q' are said to be O(p}-neighbours; the
term neighbours means O(I)-neighbours.

An O(p)-path, p=I,2,3, from voxel Q to voxel Q' is
a sequence of voxels Q=Qo, ... ,Qm=Q', m;:::O, such that
for s=I, ... ,m, Q.-l and Q, are O(p)-adjacent. Two vox­
els Q and Q' in a set S are said to be O(p}-connected in
S, p=O,I,2,3, if there exists an O(p)-path from Q to Q'
consisting entirely of voxels in S. This binary relation is
an equivalence relation on S, dividing S into equivalence
classes called O(p}-components. If S has only one O(p)­
component then it is called O(p}-connected. A region is
an O(I)-component of the black voxels. The Border or
Boundary of a binary picture is the subset of black voxels
in which each element is either a Rasterborder voxel or is
O(l)-adjacent to a white voxel.

We recall that two voxels Q and Q' are referred to as
neighbours iff they are O(I)-adjacent. Two octants (or
nodes) V and V' are called neighbours if there is at least
one voxel in V and one voxel in V' which are O(I)-adjacent;
the number of such voxels in each of V, V' is then 4m, where
m= min (order of V, order of V'). A Rasterborder node or
octant is a node which contains at least one Border voxel.

As the computer representation for a linear octree we
use, most of the time, a singly-linked list with each node
represented by 4 fields, one for the octal code, one for '
the grouping factor, one for the adjacency relations (called
Block) and one for the pointer to the next node. "Block"
itself is a string of 6 bits, called block-bits, one for each
of the <east,south,back,west,north,front> directions, here
denoted, by <E,S,B,W,N,F>.

We set the it" Block-bit, i E<E,S,B,W,N,F>, of node
Q to 0 and say that Q is unblocked in direction i if we
know that each of Q's voxels in its direction-i face is black
and has a black direction-i neighbour. If we know that the
contrary is true - that is, .one of these voxels is white or has
a white direction-i neighbour or no direction-i neighbour at
all (this face is part of the Rasterborder) - then we set the
bit to 1 and say that Q is blocked in direction i. Assume
that the color of Q is known, that Q's direction-i face is not
on the Rasterborder, and that the color of its neighbour
P of the same order ,s as Q is known (if Q has a black
neighbour of order s, then P can be taken as the one order­
s subnode adjacent to Q). Let Vj and Wj be the number of
order-j black subnodes of Q and P, respectively, which share
Q's direction-i face. Since each order-j node contributes 4;
black voxels to the face and 4' of them are needed on either
side, the condition for Q to be unblocked in direction i is
that

Ej=o vj4j = Ej=o wj4j = 4' (1)

In 2 dimensions a voxel becomes a pixel, an octant a quad­
rant, the concepts of O(p)-adjacency and O(p)-connectivity

Graphics Interface '89

are defined only for p=O,l,2, and in relation (I), 4 is re­
placed by 2.

4 Digitization

4.1 The two-dimensional case

In this section we describe how to convert polygon's edges
into pixels while determining the adjacency relations with
respect to the background. The latter is, of course, derived
from the direction in which the polygon's vertices are speci­
fied: counterclock-wise for external contours, clock-wise for
internal. We now adapt the Digital Differential Analyser
[17] to express pixels directly in their quaternary codes to­
gether with the corresponding Block-bits. Let Q be the
starting-point and Q' the end-point of an edge. If Q' is to
the north and to the west of Q, then every pixel in the edge
has its <E,S,W,N> Block-bits set to < 1,0,0,1>. If Q' is
due west of Q, then every pixel in the edge except Q and
Q ' has its Block-bits set to <0,0,0,1>; Q has its Block-bits
set to <2,0,0,1> and Q' has its Block-bits set to <0,0,2,1>
(2 means "don't know yet"). For different directions of Q'
with respect to Q these rules are rotated by multiples of
90 0 and, for clockwise traversal, by an additional 1800

•

Note that two 0 (1)-adjacent black pixels may be blocked
in each other's direction, but mutual adjacency of black
pixels is immaterial, since it does not play any role in any
of the subsequent filling stages.

Each edge, together with the Block-bits of all its pix­
els, is digitized individually. The endpoints of these edges
will be represented twice, often with conflicting Block-bi ts;
other pixels may also occur several times because of very
acute angles, a highly concave polygon, or polygons ap­
proaching each other very closely. The following conflict­
resolution scheme is used. If among the ith Block-bit of all
copies of the same pixel there is at least one 0 and at least
one 1 then this bit is changed to 2 for every copy; otherwise
all the 2's are changed to conform with the 0 or 1 bits, if
such exist.

For Fig. 4 the resulting digitization is given in Fig. 5,
w here an arrow indicates a blocked pixel (Block-bit = 1) ,
a dark dot an unknown condition (Block-bit = 2) and no
symbol indicates an unblocked condition (Block-bit = 0).

4.2 The three-dimensional case

In 3D the digitization deals with 2 cases: isolated straight­
line segments and convex polygons. The first case (digiti­
zation of an edge in 3D) is similar to its 2D counterpart,
discussed previously. We explain it by an example. With­
out loss of generality, assume that the given straight line
(here denoted QQ') starts at Q, points toward the south­
east-front direction, and terminates at Q', and its ith coor­
dinate changes faster than either its /h or k th coordinate.

205

Point Q is digitized into a voxel (also denoted by Q) and its
southern 0(1)-neighbour (say Qc) is created as a candidate
for the next voxel. If the line (with endpoints shifted to
the middle of voxels Q and P) cross~ the (extended) bor­
der between Qc and its eastern neighbour at a point more
northerly than the middle of Qc then Qc is changed into
its eastern O(l)-neighbour (which is renamed Qc); other­
wise it is left unchanged. If the line crosses the (extended)
border between Qc and its front neighbour at a point more
northerly than the middle of Qc then Qc is changed to its
front 0(1)-neighbour; otherwise it is left unchanged. In all
cases the next voxel approximating the given line in 3D
space is 0(3)-connected to the previous one. As an exam­
ple, if Q=(2,2,6) and Q'=(8,12,3), then the voxels in the
line are (2,2,6),(3,3,6),(3,4,5),(4,5,5),(4,6,5),(5, 7,5),(6,8,4),
(6 ,9,4) ,(7,10,4),(7,11,3) ,(8,12,3) .

The second case is the digitization of a convex polygon
which is supposed to form part of the Boundary of a 3D
object. The edge digitization is followed by a filling by
quadrants [4] and a backprojection in order to produce
the output directly into octree form.

This approach uses well-known elementary techniques
[I, 17] . Let Vert (1),1 =l, ... m, m~3, be the vertices of the
p~lygo~ to ?e digitized, given in counterclockwise (clock­
wIse) dIrectIOn for external (internal) contours. Assume
that Vert(1), Vert(2) and Vert(3) are distinct. Let N=
(A,.B,C) be the outward normal to the plane F(j,i,k) on
whIch the polygon lies, evaluated as N = (2 - 1) x (3 - 2)
where ffi,m=l,2,3, is the vector representation of Vert(m)
" " d t h ' x eno es t e cross-product. F(j ,i,k) can then be ex-
pressed as

F(j,i ,k) = Aj + Bi + Ck + D = 0 (2)

where D is a constant.
. We now select a projection plane among the three prin­

CIpal ones according to the maximum of <I A I, I B I, I
C I>. If such a maximum is IAI ,I BI , or ICI , we select the
(i~),(jk),or (ji)-plane respectively. Without loss of gener­
alIty, let ICI be such a maximum, so the (ji) is the chosen
projection plane.

In order to express the area enclosed by the vertices
in terms of quaternary codes, we proceed by digitizing the.
edges and evaluating their adjacency information followed
by filling quadrants [4] . We then solve (2) with respect
to k , i.e. k = -(Aj + Bi + D)/C, to find the number of
units that a pixel should be backprojected. To obtain a
linear octree representation an inner merge operation must
be incorporated into the backprojection. In our implemen­
tation, backprojection and filling are carried out simulta­
neously in one pass through the Border elements.

Graphics Interface '89

5 Double Connectivity Filling

Two existing procedures , namely Filling by Octants [4]
and Connectivity Labeling [2, 3], are used to convert a
Boundary Representation into hierarchical structures such
as binary trees or octrees. Given a 3D border, Filling by
Octants proceeds from the border toward the interior of a
region by enclosing nodes of increasingly larger size: the
distinction between internal and external nodes is made
possible by maintaining adjacency information during the
filling process. Given the initial adjacency information for
the border elements, this procedure fills simply-connected,
multiply-connected and nested regions and even a set of
these in one pass through the input data. Connectivity
Labeling, on the other hand, applies the principle of sep­
arating maximally-connected subsets: the interior of a set
of 3D regions is determined by letting a part of the raster­
border (which is, of course, external) expand toward each
region, while suitably updating that part of the rasterbor­
der by means of active lists of visited nodes. The result is
the encapsulation of the regions' interior by the surround­
ing background. The corresponding algorithm fills objects
without holes.

The input to the above algorithms is the Border: the
latter is the subset of the black voxels in which each ele­
ment is either a Rasterborder voxel or is O(l)-adjacent to
a white voxel. Now a problem arises: how can we guaran­
tee that Border is determined exactly or, alternatively, how
can we guarantee that its voxels' adjacency with respect to
the background is determined correctly? In most practical
cases this cannot be guaranteed. In fact, some (hopefully
few) adjacency relations may not be determined or may be
determined incorrectly due to the ambiguities introduced
by sampling techniques incorporated into input devices or
by the digitization itself: an example of the latter occur­
rence is illustrated in Fig. 4, where for pixels (i,j) = (5,15)
and (i,j) = (8,12) the adjacency with the background can­
not be established.

This is the motivation behind the introduction of our
heuristic approach, called Double Connectivity Filling: this
technique combines the principles of the two previously
mentioned methods, while being capable of res~lving most
of the Border's ambiguities. When pixels' or voxels' adja­
cencies (with respect to the background) cannot be ascer­
tained, different cases arise: sometimes the corresponding
uncertainty is of no consequence; sometimes it can be re­
solved by looking at the neighbouring leaves; however, if
neither previous case occurs, the undetermined adjacency
is flagged as such and sifted out one level up in the tree,
where a similar procedure is applied. At each level the cri­
teria contained in Filling by Octants and in Connectivity
Labeling are applied to determine the larger octant's adja­
cencies and to decide if neighbouring nodes can be aggre­
gated to the presently active objects, to the background, or

206

if they form the beginning of a new object. At the root level
either a majority vote (based on adjacency relations) can
be taken or regions of uncertain classification can be sim­
ply listed as "separate" or "undecided" components. The
authors [18] have adopted the second alternative, since the
absence of these components or their small size is an indi­
cation of the success of the algorithm.

Another way to intuitively describe our approach is by
the following example. Consider a polyhedron located in
the raster, without touching Rasterborder, and such that
each face carries the value of its inner normal - defined by
the ordered traversal of the face's vertices - pointing toward
the interior of the polyhedron. When Double Connectiv­
ity Filling starts, the polyhedron's interior is determined
by moving inwards - from all faces simultaneously - while
propagating the colour black. Cuncurrently a seed-vector,
determined by the voxels on the Rasterborder, starts a
flood-fill which eventually surrounds the polyhedron with
white nodes. In the digitized version of this example, we
deal with voxel-based faces whose normal information is
encoded into the corresponding Block-bits: the digitiza­
tion process may introduce inaccuracies, the most common
of which is represented by a missing voxel or by voxels
with conflicting adjacency information in the neighbour­
hood of a vertex. Because Double Connectivity Filling fills
the background by propagating the white colour and the
polyhedron's interior by propagating the black colour si­
multaneously, nodes whose colour cannot be determined
are, in general, restricted to a small set of voxels along
the polyhedron boundary. What to do with nodes can be
decided after the algorithm terminates, as indicated previ­
ously.

6 Experiments

A variety of tests have been performed both in 2D and
3D: of these, some have been planned to deal with com­
mon situations (such as vertices well separated in terms
of number of pixels or voxels), others with more unusual
configurations. The first experiment related to the 2D case
of Figs . 4 and 5. Filling by quadrants left one undeter­
mined component (formed of 2 pixels) while Connectivity
Labelling could not handle the inside region. Double Con­
nectivity Filling created the region of Fig. 6 out of the
contour given in Fig. 5.

The object shown in the North-West quadr"ant of Fig. 7
has been created out of 30 vertices, the one in the North­
East quadrant out of 54 vertices and that in the South-East
out of 40 vertices. The cube, in the South-West quadrant,
had cavities incorporated, as shown in Fig. 8, for a total of
27 vertices . In Table 2 some data related to the creation
of these objects is given. All objects were created in a
t ime between 18" and 48" on a PDP-lO machine. The

Graphics Interface '89

display was obtained on a Barco 5151 graphics monitor
via an in-house package, LINOCT [15 , 19], which allows,
among others, choice of resolution, selection of light-source
location, and the capability of setting the view-point inside
the object, in order to simulate an interior cut (see Fig. 8) .

Each of these objects has been created with n=6 and
displayed with one or two selected light sources: a simple
illumination model was used to give some 3D perception
without destroying the visibility of the octrees' structure.
For these configurations all missing or conflicting adjacen­
cies were resolved while building the final object's octreej
no undecided (separate) components were generated, as ex­
pected.

Two other experiments deserve mention: one was de­
signed to test how the method worked when vertices defin­
ing external surfaces were close to vertices defining inter­
nal surfaces: Fig. 9 illustrates this case, where n=8 and
the vertices are those of two tetrahedrons , one inside the
other. This object was created in 5 minutes, on a 68010-
minicomputer (MASSCOMP-500) with 42 ,207 Border vox­
eis, 243,806 object voxels and 34,485 nodes. In this case
too there were no undecided components.

The other experiment was designed to test how inte­
grating Volume Representations and Boundary Represen­
tations would work in order to generate a new, more com­
plex object directly in octree form. Two cones were gen­
erated with n=7 (31,735 nodes and 426 ,143 voxels) and
stored as a picture file. A set of 20 points along the two
cones' cross-sections were calculated and triangular patches
entered to bridge the gap between the two previously cre­
ated cones. Fig. 1 shows the two cones and the tiling sur­
face displayed in a back-to-front fashion. This object was
created in 8 minutes (MASSCOMP-500) with a total of
14,821 tiling (green) nodes.

The final experiment, illustrated in Fig. 10 , deals with
the graphics simulation of grafted bone tissues. A medical
object acquired with 99 Computerized Tomography scans
produced the object shown on the left, with n=9, 13,778
nodes and 62,785 voxels. In the experiment a segment,
roughly equivalent to one eight of the total volume, was
removed and graphically reconstructed via lateral triangu­
lar tiles. The gap encapsulated between the original solid
object and the user's defined patches was filled back: the
picture on the right shows the integrated object, with the
red part showing the reconstructed segment.

1 Conclusions

The paper reports on the development of graphics tools to
convert a Boundary Representation into octrees and to in­
tegrate previously created or acquired objects in volumetric
form with objects partially defined in Boundary Represen­
tation. To achieve this , several problems have been iden-

207

object No. of No. of No. of
III Border object object

quadrant voxels nodes voxels

° 8,114 5,102 26 ,648
1 6,114 3,214 12,790
2 21,934 11,814 52,113
3 10,960 6,944 20,930

Table 2: Data for pictures of Fig. 7

tified, some solved. The two major problems encountered
deal with: (i) finite - sometime inadequate - numerical ac­
curacy with which points in space are entered via inter­
active devicesj (ii) lack of full-proven algorithms to deter­
mine if a solid is indeed a bounded, closed subset of the
three-dimensional Euclidean space. To which extent and
in which cases can we then answer the question: how much
numerical inaccuracy (introduced by a finite representa­
tion of real numbers) can we incorporate into the border
definition, and still be 'capable of identifying an interior?

In the absence of theoretical results in this field, the
authors have tackled these problems from a heuristic point
of view and addressed them in a restricted environment,
i.e. (i) 'in the case which local - hopefully small - bound­
ary modifications are required, and (ii) in the case the 3D
object is in octree form. The heuristic described in this pa­
per deals with conversion of boundary representation into
octreesj filling digitized surfaces in space with blobs of suc­
cessively increasing sizej counteracting the presence of nu­
merical inaccuracies in user-defined vertices by combining
the previous filling with a labelling component technique.
Several examples illustrate the approach proposed by the
authors.

Acknowledgement
The authors wish to thank Mr. H.H. Atkinson for the

creation of some of the pictures .

References

[1] MORTENSON, M.E., Geometric Modeling. J.Wiley,
New York, 1985.

[2] TAMMINEN, M., and SAMET, H., Efficient octree
conversion by connectivity labelling. ACM Computer
Graphics, Vo!. 18, No.3 (July 1984), New York, 43-51.

[3] SAMET, H. and TAMMINEN, M., Efficient Com­
ponent Labeling of Images of Arbitrary Dimension
Represented by Linear Bintrees. IEEE Trans. Pattern
Analysis and Machine Intelligence, Vo!. 10, No. 4 (July
1988) , 579-586.

Graphics Interface '89

[4] ATKINSON, H.H., GARGANTIN1. 1., and WALSH,
T .R.S ., Filling by quadrants or octants. Comput. Vi­
sion Graph. Image Proc. 33 (1986), 138-155.

[5] JACKINS, C.L. , and TANIMOTO, S.L., Oct-trees
and their use in representing three-dimensional ob­
jects. Comput. Graph. Image Proc. 14 (1980), 249-
270.

[6] MEAGHER, D., Geometric modeling using octree en­
coding. Comput. Graph. Image Proc. 19, 2 (June
1982), 129-147.

[7] HUNTER, G.M., and STEIGLITZ, K. , Operations on
images using quad trees. IEEE Trans . Pattern Analysis
and Machine Intelligence, 1, 2 (April 1979), 145-153.

[8] SAMET, H., Region representation: quadtrees from
boundary codes. CACM 23, 3 (March 1980), 163-170.

[9] SAMET, H. and WEBBER, R.E. Hierarchical Data
Structures and Algorithms for Computer Graphics,
Part I, Computer Graphics and Appls., Vol. 8 , No. 3
(1988), 48-68.

[10] SAMET, H. and WEBBER, R.E. Hierarchical Data
Structures and Algorithms for Computer Graphics,
Part Il, Computer Graphics and Appls ., Vol. 8 , No.
4 (1988), 59-75.

[H] SHAFFER, C.A. and SAMET, H., Optimal quad tree
construction algorithm. Comput. Vision, Graphics ,
and Image Proc. 37,3 (March 1987) , 402-419.

[12] GARGANTINI, 1., Linear octrees for fast processing
of three-dimensional object. Comput. Graph. Image
Proc. 20 (1982), 365-374.

[13] ABEL, D.J., A B+ -tree structure for large quadtrees,
Comput. Vision, Graphics, and Image Proc. 27, H
(July 1984), 19-3l.

[14] WALSH, T.R.S., On the size of quad trees general­
ized to d-dimensional binary pictures. Math. Comput.
Appl. H (1985), 1089-1097.

[15] GARGANTINI, 1., WALSH, T.R.S., and WU, O.L. ,
Viewing transformations for voxel-based regions via
linear octrees. IEEE Comput. Graph. Image Proc. 14
(1986), 249-270.

[16] ATKINSON, H.H., GARGANTINI, 1. , and WALSH,
T.R.S., Counting regions, holes , and their level of nest­
ing in time proportional to the border. Comput. Vision
Graph, Image Proc. 29 (1985), 196-214.

[17] FOLEY, J.D., and VAN DAM, A., Fundamentals
of Interactive Computer Graphics. Addison-Wesley,
Reading, MA, 1982.

208

[18] CHAN, T.K., GARGANTINI, 1. , and WALSH,
T .R.S ., Double connectivity filling for 3D modeling.
Tech. Report #155, 1986, Department of Computer
Science, University of Western Ontario, London, Onto
N6A 5B7, Canada.

[19] ATKINSON, H.H., GARGANTINI, 1., and WU, O.L .,
LINOCT2.0. Tech. Report #176 (1987), Department
of Computer Science, University of Western Ontario,
London, Onto N6A 5B7, Canada.

K

o

2

3

Fig. 2. Representation of an object with n=2

NW.

Fig . 3. Octree for the object of Fig . 2

Graphics Interface '89

J
j ~ 5 6 7 5 9 le l' 12 tJ ·4 '5

.,

Fig. 4 . A 2D Border to be digitized with n=4

I
I'JO ><>~,
I
I r-

!

I
I
I r-

-> blockec cireci:lon

10XX

. n.<.nowr blocr<i'lg ;nfcrmC"on

Fig. 5. The Border pixels for Fig. 4

209

Fig. 6 . The created region for the Border
of Fig. 4

Graphics Interface '89

Fig . 1. Two sol id cones tiled with digitized
triangular patches

Fig. 8. Internal view of the cube of Fig. 8

21 0

Fig. 7. Objects created by Double Connectivity
Fi 11 i ng

Fig. 9. Two tetrahedrons, one inside the other

Fig. 10. Simulation o f g rafted bone tissue

Graphics Interface '89

