
211

On Distributed, Probabilistic
Algorithms for Computer Graphics

Eugene Fiume
Marc Ouellette

Department of Computer Science
University of Toronto

10 King's College Road
Toronto, Ontario, Canada

M5S 1A4

Abstract

When attempting to solve a multi-variate opti
misation problem, it is often a wise strategy to sacri
fice a locally-optimal solution in the hope of finding a
better global solution. Algorithms that solve optimi
sation problems in this manner are sometimes called
hill climbing algorithms . Recently, several new hill
climbing approaches have been proposed and have
gained in popularity for solving special classes of
optimisation problems . These approaches are prob
abilistic in nature. We introduce one particular ap
proach called simulated annealing, and show how a
distributed version of it can be used to solve a basic
problem in computer graphics and image processing:
colour q uantisation.

Resume

Lorsqu 'on essaie de resoudre un probleme en fonc
tion de plusieurs variables, il est souvent necessaire
de sacrifier une solution localement optimale, de man
iere a. pouvoir trouver une meilleure solution glob
ale. On classifie parfois ce genre d 'algorithmes, ap
plique a. des problemes d'optimisation, comme etallt
de type hill climbing. Recemment, plusieurs metho
des d'hill climbing ont ete introduites pour resoudre
certains problemes d 'optimisation. Ces methodes,
dites aleatoires, ont connu un regain de popularite.
N ous introduisons ici une approche particuliere ap
pelee simulated annealing. Une application repartie
de cette technique sera utili see pour resoudre un pro
bleme de base en infographie, soit celui de colour
quantisation.

1 Hill-Climbing Algorithms

Not every problem has an efficient solution. Many prob
lems are provably intractable, or suspected of being so.
Consequently, there will always be room for approximate,
heuristic algorithms. A class of such algorithms based on
probabilistic "hill climbing" have recently been suggested
as being useful for solving a variety of optimisation prob
lems [KiGV83J. Probabilistic algorithms have been applied

to a number of problems in image processing, VLSI place
ment, partitioning, routing, and packing. Under the cir
cumstances, it would be worthwhile to consider the possible
applications of probabilistic approaches to the solution of
some difficult problems in computer graphics. In this pa
per, we shall motivate the use of probabilistic algorithms in
computer graphics, and discuss the application of one such
algorithm to a well-known problem in computer graphics,
colour quantisation. A probabilistic solution to the "re
verse iterated function system" problem has also recently
appeared [LeGa88J.

One particularly colourful probabilistic approach is called
simulated annealing, and is based on an appealing anal
ogy from statistical thermodynamics. Imagine that a sub
stance is in a liquid state at a high temperature, and that at
some sufficiently-low temperature, the liquid solidifies (i.e.,
freezes) into a crystal. As the substance in liquid form is
slowly cooled, the overall activity of its constituent atoms
follows suit. However, the energy level of any given atom
may be significantly higher or lower than the mean energy
level, and in fact the level of some atoms may even increase
as the liquid is cooled. This becomes increasingly improb
able as the temperature continues to diminish. If the tem
perature diminishes very slowly in a sequence of discrete
steps, an equilibrium will be achieved for each tempera
ture, and the substance will eventually crystallise at the
lowest possible energy level. This annealing process was
directly simulated by Metropolis et al. quite some time ago
[MRRT53J.

The metaphor of simulated annealing has attracted many
researchers interested in new approaches to solving opti
misation problems [Kirk84J. Suppose we have a function
E : Rn -+ R to minimise. Our goal will be to arrive at a
minimum value for E. To to so, we shall attempt to anneal
E, and the analogy to physical annealing will be obvious.
We begin the process at a fairly-high temperature T = To ,
and some initial configuration x E Rn for E . We compute a
new configuration Xl E Rn and look at 6.E = E(xl

) - E(x).
If 6.E ::; 0, we accept Xl as the new configuration. Oth
erwise, we accept Xl with probability P(T,6.E) . The oc
casional acceptance of X l when the value of E is increased

GraphiCS Interface '89

permits hill climbing to occur. This process iterates at a
given temperature T until it is felt that some equilibrium
has been reached, at which point, T is decreased. The
process then continues for the new value of T, until T falls
below a minimum threshold temperature TJ , upon which
we output the current configuration, x.

The choice of probability function P (T, 6.E) is important.
It must be such that when T is large with respect to 6.E,
P is fairly close to 1, and that as T decreases, P decreases.
Intuitively this corresponds to the physical situation in that
when the temperature is high, a particle x could take on,
with non-negligible probability, a very large range of energy
values. As the temperature decreases, this range statisti
cally decreases. In keeping with the analogy, P is chosen
such that at early stages of the annealing process, it is quite
likely that a new configuration Xl will be chosen, even if it
increases the value of E j as the process continues, such
Xl will be rejected increasingly often. A particularly good
choice for P is

P(T,6.E) = e- ll E1T .

Many such functions are possible, but perhaps surprisingly,
this function appears to be superior in the sense that it
meets the above end conditions, and in that it allows the
system to converge more quickly than all other currently
known functions . Moreover, it happens to be the precise
analogue of the probability function describing the expected
behaviour of particles in real physical systems [Donn87j
NaSS85].

Another important issue is the choice of annealing schedule ,
that is, the rate at which to decrease the temperature, and
the amount of time to spend at each discrete temperature.
The choice of this schedule tends to be somewhat ad hoc.
What is important about the schedule, however , is to ensure
that the temperature does not decrease too quickly, for this
would tend to trap the simulation in a local minimum.

It has been observed by Donnett that simulated anneal
ing and its variants are useful for solving a particular class
of problems, namely those in which there exist many ac
ceptable nearly-optimal solutions, and that the difference
between nearly- and absolutely-optimal solutions is negli
gible. Even with these restrictions, the class of applicable
problems appears to be quite large, and several problems
in computer graphics fall into this category.

To reduce a problem to an instance of an annealing prob
lem, we must come up with a function E that , when min
imised, gives the solution for our original problem. Often
the choice of E is quite obvious, but the choice of annealing
schedule and initial and final temperatures is not.

A general annealing schema for minimising a function E is
as follows . Let To be the starting temperature, and let TJ
be the final temperature. The algorithm schema is given in
Figure 1. A useful reformulation of the schema is Donnett 's,
in which the program transformations given in Figure 2 are
made [Donn87] . The values ko , kJ , k2 are constants, cho
sen essentially by trial and error, depending on the specific
problem to be solved. This provides a useful set of parame
ters with which to customise the annealing schedule to the

212

problem at hand. We also found that an "V" in place of
the "/\" in "not at equilibrium" to be useful.

generate an initial configuration x

T <- To
accepts <- rejects <- 0
while (not frozen)

while (not at equilibrium)
generate new configuration Xl

6.E = E(x l
) - E(x)

if(6.E ~ 0)
x <- Xl

accepts <- accepts + 1
else

choose random E [0,1]
if (random < e- llE1T)

x <- Xl

accepts <- accepts + 1
else

rejects <- rejects + 1
accepts <- rejects <- 0
update T

Figure 1: Simulated Annealing Schema.

not frozen == T ~ TJ
not at equilibrium == attempts < ko

/\ rejects < kJ
update T == T <- T X k2

Figure 2: R efinement of annealing schema.

One final observation worth making at this juncture is that
simulated annealing is not likely to be a particularly fast
way of finding an optimum. However , it lends itself quite
nicely to some kinds of parallel implementations. As a con
crete example of the approach we shall show how the prob
lem of colour quantisation can be cast into an instance of
an annealing problem, and we shall describe a parallel im
plementation of it.

2 Colour Quantisation

The colour quantisation problem can be defined as follows.
We are given an input image of dimensions m x n pixels
such that each pixel Pij E [0, KJ, Pi; E N encodes an (r, g, b)
colour value, and we are given a value k ~ K . In a typical
case, K = 22\ encoding 8-bit values for each of red, green,
and blue, and k = 256. The output of the algorithm is a
k-element set C c [0, K] and an m x n pixel image such
that each output pixel Qi; E C . The set C, which is often
called a colour map, is chosen such that the function

Graphics Interface '89

is minimised, where E is an error metric on a colour space.
As is often noted (but rarely implemented) , the best choice
for E would be one that takes perceptual considerations into
account. Most often, it is simply the euclidean distance
metric on the red, green, and blue components of the colour.
That is, if Pij denotes colour (ro, go, bo) and Qij denotes
(ri, gl, bl), then

All algorithms using this metric are therefore heuristic to
some degree. The square root operation is of course not
essential in practice. In effect, the colour map induces k
volumes or partitions of the colour space such that each
volume i encloses the points in the colour space that are
closest, with respect to E, to a specific colour map entry
Ci E C.

213

Observe that the solution to the above problem is, in gen
eral, very difficult . Several effective heuristic algorithms
have been devised to give an approximate solution to this
problem [Heck82; GePu88; WaWP88]. These algorithms
typically approximate a local minimum in the solution space,
subject to several reasonable criteria. It is natural to at
tempt to find the best minimum possible, within reason.
One line of attack would be to solve something resembling
a large least-squares problem in order to find the appro
priate set C , although formulation of the problem in this
manner is not easy. This is moreover likely to be unbear
ably slow. On the other hand, the problem is clearly a
good candidate for simulated annealing, and it would be
instructive to consider solving it in this manner. In fact,
it is sufficiently straightforward to derive a good parallel
implementation of it from the outset. We now present an
outline of our approach .

Clearly, the objective function to be minimised by anneal
ing is the cost function E given above in terms of an error
metric E. Suppose we have a set of N ~ 1 processors with
which to work and with an n x m input image I as described
above. We also allow an initial colour map C to be given
as input if desired. If not, a default initial colour map is
chosen (the default being either the 3-3-2 or popularity par
titions [Heck82]) . We first determine the set or histogram H
of distinct colours in I , and give each processor i a distinct
partition Hi C H consisting of h = IHI/N colours . The
processors co-operate by evaluating E for their respective
image partitions with respect to the current colour map.
The algorithm is depicted in Figure 3. The manner in which
parallelism is exploited was deliberately kept as simple as
possible, for reasons discussed below.

The data structures we employed were extremely basic,
since our goal was simply to determine whether or not a
probabilistic approach would work at all . A "production"
version of the implementation should make use of more ad
vanced search structures such as those described in [Heck82;
GePu88; WaWP88]. Each histogram entry (i.e., unique
colour in the original image) records the original colour a,
its multiplicity in the image, the index of the colour map
entry denoting colour b that is currently closest to a , and

basic set up, get input image, create H
set up or get initial colour map C
partition H into N parts HI ,"', HN
distribute C, Hi to client i
for each colour c E H i each client i

finds closest c' E C

T +- To
accepts +- rejects +- 0
while (not frozen)

while (not at equilibrium)
determine c E C to be replaced
choose a new colour c'
C' = C - {c} U {c'}
client i computes t::.Ei(C' , C)
cost change t::.E +- Li t::.Ei(C', C)
if (t::.E ::; 0)

else

C +- C' for all clients
each client i updates H i
accepts +- accepts + 1

choose random E [0 , 1]
if (random < e-l>E/T)

else

C +- C' for all clients
each client i updates H i
accepts +- accepts + 1

rejects +- rejects + 1
accepts +- rejects +- 0
update T

Figure 3: Distributed colour quantisation algorithm.

Graphics Interface '89

the error between a and b. Each colour map entry con
tains the current colour it represents, the number of pixels,
h, in H which are currently being mapped to it, and the
cumulative error, e. The statement

determine c E C to be replaced

in the algorithm above amounts to choosing the colour map
entry that has maximal average cumulative error, a = r. If
h is zero, then a is deemed arbitrarily large (as would be
expected).

The statement

choose a new colour c'

involves "jittering" each of the red, green, and blue compo
nents of c by a signed, uniformly-distributed random vari
able.

3 Implementation

3.1 Environment and Parameters

As with the other approaches to colour quantisation, the
colours in the input image were prequantised to five bits of
precision. This allowed us to focus on perceptually notice
able changes when choosing new colour map entries. The
jitter range for each colour component was chosen to be
±[O,7J. Since each colour component has a value of [O,31J
after prequantisation, a jittered colour may deviate from
the original colour by about 25%.

We have successfully implemented the above algorithm in
the C programming language on a network of Sun 3 work
stations running UNIX.! The communication mechanism
among processors was via sockets.

The values we used for most of the parameters are debat
able, and we relied on trial and error to set them. This, we
feel, is one shortcoming of the approach, in that it is diffi
cult to devise scientific ways of determining good values for
these parameters. Nevertheless, the default values that we
shall now discuss worked fairly well. Of course, a user can
override default values at run time.

The initial temperature is the most difficult value to de
termine. Our criterion was that, since we wished to allow
arbitrary colour maps to be given as input, the initial tem
perature should reflect some level of "excitation" of the
system with respect to the input map. For this reason,
we set the initial temperature to the average cost per red,
green, or blue component of the colour map entry. That
is, if the initial colour map is C = {Cl , C2 , ••. , cd , then the
initial global cost is

ISun is a trademark of Sun Microsystems. UNIX is a trademark of
AT&T Bell Laboratories.

214

where closest(P, C) is the closest colour map entry in C to
colour P. The initial starting temperature is then set to

To = g/k/3.

Other parameters were set as follows.

final temperature: TI = 1.0.
equilibrium acceptance threshold: ko = 20.
equilibrium rejection threshold: kl = 50.
temperature scale: k2 = 0.8.

For other applications, the ratio ko/kl is usually smaller,
but we found that the system tended to cool too quickly
if ko was too small, especially if the "v" formulation of
equilibrium was used- see above).

3.2 Results

The results are in several ways surprising, and may in time
lead to a deeper understanding of the nature of the problem
(read: the authors aren't sure why the algorithm works as
well as it does) . The graphs given below are with respect to
one particularly tricky image to quantise (Figure la). It is
a good test case because it contains a large number of dis
tinct colours after prequantisation (on the order of 6,000), it
contains several transparent objects which act as coloured
filters for the refracted texture, it contains several regions
of nearly constant shade, and it contains our old friend and
primate, the mandrill, as a subcase. We tested the algo
rithm out on many images, with similar results.

Many of the papers discussing probabilistic methods men
tion that the running time of the programs is quite high.
Our results did not entirely support this. We found that
the approach converged to a decent local minimum quite
quickly. Convergence occurred regardless of the starting
colour map. The program was tested using four different
input colour maps:

1. the popularity partition: the 256 most commonly
occurring colours in the image.

2. the colours arising from retaining only the 3 most sig
nificant bits of the red and green components, and the
2 most significant bits of the blue component. This
provides a fairly uniform scattering of colour map en
tries throughout the colour space.

3. a completely red colour map (ignoring green and blue).

4. the output of the "variance-based" colour quantisa
tion algorithm of Wan et al. [Wa WP88J (courtesy of
Craig Kolb, Yale University via USENET) .

Figures 4-7 depict the current global cost as a function of
the number of iterations (i.e., potentially new choices for
the colour map). Figure 4 uses initial colour map 1, Fig
ure 5 uses colour map 2, and Figures 6-7 use colour map
4. The test image was of resolution 256 x 256 for Figures

Graphics Interface '89

4-6, and of resolution 900 x 900 in Figure 7. The result of
using colourmap 3 is, apart from scale, almost identical to
colour map 1, and is omitted. The global cost (and there
fore initial starting temperature) is much different for each
of the test cases, the initial cost being highest for the 3-3-2
partition and lowest for the variance-based partition. Also
note that the scale is different for each figure. The cost
is essentially halved in Figures 4 and 5, but the improve
ment in Figures 6-7 is a hard-earned but noticeable 6-9%.
Moreover, in Figures 4 and 5, the greatest improvement in
cost occurs in the first quarter of the program's execution.
Also notice the remarkable amount of hill-climbing evident
in the early stages of Figures 6-7. As expected, the fre
quency of hill-climbing quickly falls off as the system cools.
The amount of hill-climbing is less pronounced in the other
figures. This is probably because the system cooled too
quickly to allow substantial hill climbing; the results, how
ever, were quite acceptable at this stage. We found that the
popularity partition was often a better initial map than the
minimum-variance partition, in that the system converged
more quickly.

It is very difficult to devise ways of visualising the differ
ences between algorithms and among images, particularly
since a great deal of noise is added in the photographic
and reproduction stages of publication. For this reason,
we have devised a less-direct visualisation scheme. Figure
8 is a black and white representation of a test input im
age. The remaining figures represent quantisation error.
The error displayed for each pixel constitutes the scaled,
euclidean distance between the (r, g, b) component of the
original and mapped images. Thus the whiter the image
appears, the greater the error. Figures 9 and 10 illustrate
the error under the popularity mapping and the 3-3-2 map
ping, respectively. Figures 11 and 12 depict the error after
using the colour-variance algorithm of Wan et al. and after
annealing, respectively. The output of the annealing algo
rithm was similar with each initial partition. In each case,
we ran the program until its overall error was significantly
less than that produced by the colour-variance algorithm.
For a 900 x 900 image, this required about one hour of
CPU time on a single Sun 3/280 when started with the
popularity partition; when started with the output of the
colour-variance algorithm, about one hour was required for
a 5% change, and three hours were needed for a 9% change.
This suggests, of course, that the colour-variance algorithm
is quite good. The differences between the colour-variance
pictures and those produced by simulated annealing were
small but noticeable (on a monitor, but not in a photo
graph). About two hours of CPU time were required when
started with the red colour map or 3-3-2 partition. These
CPU figures are given only as ballpark figures , since our
(linear) data structures are quite primitive, and these tim
ing results could certainly be improved.

It is interesting to compare Figures 11 and 12. Although
from these figures it is not possible to tell which has done a
better job of quantisation (to do so is impossible from the
colour photographs we produced, but as stated earlier, it is
certainly possible when staring at a monitor) , the aims of

215

the algorithms are decidedly different. The colour-variance
algorithm is willing to admit some fairly large discrepancies,
whereas our algorithm focussed on minimising global error
by minimising average error per partition. Consequently,
there are fewer completely dark areas in Figure 12, but
there are also fewer very bright areas (note particularly the
errors in the mandrills' eyes).

The results of parallelism are not particularly interesting.
The algorithm demonstrates an almost perfect speed up as
the number of processors increase. After about 4 proces
sors, communication overhead overwhelms the additional
processing gains. This suggests that either communica
tion bandwidths be increased, or that a solution based on
tightly-coupled parallel processors be found. We are cur
rently examining the latter possibility.

4 Discussion

Several phenomona have shown up in our results which bear
discussion. First, the choice of initial colour map strongly
affects the rate of convergence. To some extent this is to
be expected. We were surprised, however, by how much
more slowly the system converged when given the 3-3-2
partition over the popularity partition. (The slow rate of
convergence when given an already good colour map was of
course entirely unsurprising.) A possible explanation is that
a uniform scattering of colour map entries tends to isolate
many of them (i.e., the cardinality of many partitions is
quite small). Random jitter, in this case, would not be
sufficiently "directed" toward a single solution (or several
closely-related ones).

Second, the initial rate of convergence for the popularity
and 3-3-2 partitions is, in absolute terms, quite high, the
comment above notwithstanding. Presumably, the expla
nation is that there is much room for improvement with
these initial partitions.

Third, our naive use of parallelism was not as fruitful as
expected. The main difficulty with this global optimisation
problem (and one that might indeed be generally true) is
that it is resistant to true divide-and-conquer approaches.
We were not able develop a parallel algorithm which syn
thesises a global solution from several smaller subproblems.
We were thus forced to cast the algorithm into a simple
client/server scheme. An ongoing problem of interest is to
develop more creative approaches to the parallel decompo
sition of this problem.

We have demonstrated the use of a distributed, probabilis
tic algorithm for a nontrivial problem in computer graphics.
We now hope to further refine our approach to this problem,
and to attack several other problems in computer graphics,
including colour gamut mappi~g, and global illumination,
using probabilistic techniques.

Acknow ledgements
The comments by the reviewers of this paper are much
appreciated. We wish to acknowledge the financial support

Graphics Interface '89

of NSERC in the form of a operating grant and University
Research Fellowship for the first author, and a postgraduate
scholarship for the second author. We are also grateful to
the Province of Ontario's Information Technology Research
Centre for additional funding.

References

[Donn87]

[GePu88]

[Heck82]

Donnett, J .G ., "Simulated annealing and code
partitioning for distributed multimicroproces
sors", Technical Report 87-194, Department of
Computing and Information Science, Queen's
University, Kingston, Ontario, Canada.

Gervautz, M., and W. Purgathofer, "A simple
method for colour quantization: octree quanti
zation" Proceeding3 of Computer Graphic3 In
ternational '88 (May 1988), Springer-Veriag,
219-231.

Heckbert, P., "Colour image quantization for
frame buffer display", ACM SIGGRAPH '82
Proceeding3, also published as ACM Computer
Graphic3 16, 3 (July 1982), 297-307.

[KiGV83] Kirkpatrick, S., C.D. Gelatt, and M .P. Vecchi,
"Optimization by simulated annealing", Sci
ence 220" 13 (May 1983), 671-680.

[Kirk84] Kirkpatrick, S., "Optimization by simulated
annealing: quantitative studies", Journal of
Stati3tical PhY3ic3 34, 5/6 (March 1984), 975-
986.

[LeGa88] Levy-Vehel, J., and A. Gagalowicz, "Fractal
approximation of 2-D objects", Proceeding3 of
EUROGRAPHICS '88 (Sept. 1988), Elsevier
Science Publishers (North-Holland, Amster
dam), 297-311.

[MRRT53] Metropolis, N., A. Rosenbluth, M. Rosent
bluth, A. Teller, and E. Teller, "Equa
tions of state calculations by fast computing
machines" , Journal of Chemical PhY3ic3 21
(1953), 1087-1091.

[NaSS85] Nahar, S., S. Sahni, and E . Shragowitz, "Ex
periments with simulated annealing" , Proceed
ing3 of the 22nd D e3ign Automation Confer
ence (1985), 748-752.

[WaWP88] Wan, S.J., K.M. Wong, and P. Prusinkiewicz,
"An algorithm for multidimensional data clus
tering", A CM Tran3action3 on Mathematical
Software 14, 2, (June 1988) , 153-162.

216

650000

600000

Cost
550000

5()()()()()

o 500 1000
Iterations

1500

Figure 4: C03t plot. Initial map: popularity.
1.6e+06~---------------------'

1.4e+06

1.2e+06

Cost

1e+06

8()()()()()

o 500 1000 1500 2000 2500
lLerations

Figure 5: C03t plot. Initial map: 3-3-2.
525000-.----------------------,

520000

515000

Cost

510000

505000

5()()()()()

o 1000 2000 3000

lLerations
Figure 6: Cost plot. Ini tial map: output of variance algo
rithm.

Graphics Interface '89

7e+06

6.8e+06
Cost

6.6e+06

6.4e+06

o

217

2000 4000
Iterations

Minimum-Variance Partition

6000

Figure 7: C03t plot. Initial map: output of variance algo
rithm. 900 x 900 image.

Figure 8: Black and white ver3ion of te3t image.

Graphics Interface '89

218

Figure 9: Quanti3ation error of popularity partition.

Figure 10: Quanti3ation error of 9-9-2 partition.

Figure 11: Quanti3ation error made by variance algorithm.

Figure 12: Quanti3ation error made by annealing algo
rithm.

Graphics Interface '89

