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Abstract 

When attempting to solve a multi-variate opti
misation problem, it is often a wise strategy to sacri
fice a locally-optimal solution in the hope of finding a 
better global solution. Algorithms that solve optimi
sation problems in this manner are sometimes called 
hill climbing algorithms . Recently, several new hill
climbing approaches have been proposed and have 
gained in popularity for solving special classes of 
optimisation problems . These approaches are prob
abilistic in nature. We introduce one particular ap
proach called simulated annealing, and show how a 
distributed version of it can be used to solve a basic 
problem in computer graphics and image processing: 
colour q uantisation. 

Resume 

Lorsqu 'on essaie de resoudre un probleme en fonc
tion de plusieurs variables, il est souvent necessaire 
de sacrifier une solution localement optimale, de man
iere a. pouvoir trouver une meilleure solution glob
ale. On classifie parfois ce genre d 'algorithmes, ap
plique a. des problemes d'optimisation, comme etallt 
de type hill climbing. Recemment, plusieurs metho
des d'hill climbing ont ete introduites pour resoudre 
certains problemes d 'optimisation. Ces methodes, 
dites aleatoires, ont connu un regain de popularite. 
N ous introduisons ici une approche particuliere ap
pelee simulated annealing. Une application repartie 
de cette technique sera utili see pour resoudre un pro
bleme de base en infographie, soit celui de colour 
quantisation. 

1 Hill-Climbing Algorithms 

Not every problem has an efficient solution. Many prob
lems are provably intractable, or suspected of being so. 
Consequently, there will always be room for approximate, 
heuristic algorithms. A class of such algorithms based on 
probabilistic "hill climbing" have recently been suggested 
as being useful for solving a variety of optimisation prob
lems [KiGV83J. Probabilistic algorithms have been applied 

to a number of problems in image processing, VLSI place
ment, partitioning, routing, and packing. Under the cir
cumstances, it would be worthwhile to consider the possible 
applications of probabilistic approaches to the solution of 
some difficult problems in computer graphics. In this pa
per, we shall motivate the use of probabilistic algorithms in 
computer graphics, and discuss the application of one such 
algorithm to a well-known problem in computer graphics, 
colour quantisation. A probabilistic solution to the "re
verse iterated function system" problem has also recently 
appeared [LeGa88J. 

One particularly colourful probabilistic approach is called 
simulated annealing, and is based on an appealing anal
ogy from statistical thermodynamics. Imagine that a sub
stance is in a liquid state at a high temperature, and that at 
some sufficiently-low temperature, the liquid solidifies (i.e., 
freezes) into a crystal. As the substance in liquid form is 
slowly cooled, the overall activity of its constituent atoms 
follows suit. However, the energy level of any given atom 
may be significantly higher or lower than the mean energy 
level, and in fact the level of some atoms may even increase 
as the liquid is cooled. This becomes increasingly improb
able as the temperature continues to diminish. If the tem
perature diminishes very slowly in a sequence of discrete 
steps, an equilibrium will be achieved for each tempera
ture, and the substance will eventually crystallise at the 
lowest possible energy level. This annealing process was 
directly simulated by Metropolis et al. quite some time ago 
[MRRT53J. 

The metaphor of simulated annealing has attracted many 
researchers interested in new approaches to solving opti
misation problems [Kirk84J. Suppose we have a function 
E : Rn -+ R to minimise. Our goal will be to arrive at a 
minimum value for E. To to so, we shall attempt to anneal 
E, and the analogy to physical annealing will be obvious. 
We begin the process at a fairly-high temperature T = To , 
and some initial configuration x E Rn for E . We compute a 
new configuration Xl E Rn and look at 6.E = E(xl

) - E(x). 
If 6.E ::; 0, we accept Xl as the new configuration. Oth
erwise, we accept Xl with probability P(T,6.E) . The oc
casional acceptance of X l when the value of E is increased 
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permits hill climbing to occur. This process iterates at a 
given temperature T until it is felt that some equilibrium 
has been reached, at which point, T is decreased. The 
process then continues for the new value of T, until T falls 
below a minimum threshold temperature TJ , upon which 
we output the current configuration, x. 

The choice of probability function P (T, 6.E) is important. 
It must be such that when T is large with respect to 6.E, 
P is fairly close to 1, and that as T decreases, P decreases. 
Intuitively this corresponds to the physical situation in that 
when the temperature is high, a particle x could take on, 
with non-negligible probability, a very large range of energy 
values. As the temperature decreases, this range statisti
cally decreases. In keeping with the analogy, P is chosen 
such that at early stages of the annealing process, it is quite 
likely that a new configuration Xl will be chosen, even if it 
increases the value of E j as the process continues, such 
Xl will be rejected increasingly often. A particularly good 
choice for P is 

P(T,6.E) = e- ll E1T . 

Many such functions are possible, but perhaps surprisingly, 
this function appears to be superior in the sense that it 
meets the above end conditions, and in that it allows the 
system to converge more quickly than all other currently
known functions . Moreover, it happens to be the precise 
analogue of the probability function describing the expected 
behaviour of particles in real physical systems [Donn87j 
NaSS85]. 

Another important issue is the choice of annealing schedule , 
that is, the rate at which to decrease the temperature, and 
the amount of time to spend at each discrete temperature. 
The choice of this schedule tends to be somewhat ad hoc. 
What is important about the schedule, however , is to ensure 
that the temperature does not decrease too quickly, for this 
would tend to trap the simulation in a local minimum. 

It has been observed by Donnett that simulated anneal
ing and its variants are useful for solving a particular class 
of problems, namely those in which there exist many ac
ceptable nearly-optimal solutions, and that the difference 
between nearly- and absolutely-optimal solutions is negli
gible. Even with these restrictions, the class of applicable 
problems appears to be quite large, and several problems 
in computer graphics fall into this category. 

To reduce a problem to an instance of an annealing prob
lem, we must come up with a function E that , when min
imised, gives the solution for our original problem. Often 
the choice of E is quite obvious, but the choice of annealing 
schedule and initial and final temperatures is not. 

A general annealing schema for minimising a function E is 
as follows . Let To be the starting temperature, and let TJ 
be the final temperature. The algorithm schema is given in 
Figure 1. A useful reformulation of the schema is Donnett 's, 
in which the program transformations given in Figure 2 are 
made [Donn87] . The values ko , kJ , k2 are constants, cho
sen essentially by trial and error, depending on the specific 
problem to be solved. This provides a useful set of parame
ters with which to customise the annealing schedule to the 
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problem at hand. We also found that an "V" in place of 
the "/\" in "not at equilibrium" to be useful. 

generate an initial configuration x 

T <- To 
accepts <- rejects <- 0 
while (not frozen) 

while (not at equilibrium) 
generate new configuration Xl 

6.E = E(x l
) - E(x) 

if(6.E ~ 0) 
x <- Xl 

accepts <- accepts + 1 
else 

choose random E [0,1] 
if (random < e- llE1T ) 

x <- Xl 

accepts <- accepts + 1 
else 

rejects <- rejects + 1 
accepts <- rejects <- 0 
update T 

Figure 1: Simulated Annealing Schema. 

not frozen == T ~ TJ 
not at equilibrium == attempts < ko 

/\ rejects < kJ 
update T == T <- T X k2 

Figure 2: R efinement of annealing schema. 

One final observation worth making at this juncture is that 
simulated annealing is not likely to be a particularly fast 
way of finding an optimum. However , it lends itself quite 
nicely to some kinds of parallel implementations. As a con
crete example of the approach we shall show how the prob
lem of colour quantisation can be cast into an instance of 
an annealing problem, and we shall describe a parallel im
plementation of it. 

2 Colour Quantisation 

The colour quantisation problem can be defined as follows. 
We are given an input image of dimensions m x n pixels 
such that each pixel Pij E [0, KJ, Pi; E N encodes an (r, g, b) 
colour value, and we are given a value k ~ K . In a typical 
case, K = 22\ encoding 8-bit values for each of red, green, 
and blue, and k = 256. The output of the algorithm is a 
k-element set C c [0, K] and an m x n pixel image such 
that each output pixel Qi; E C . The set C, which is often 
called a colour map, is chosen such that the function 
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is minimised, where E is an error metric on a colour space. 
As is often noted (but rarely implemented) , the best choice 
for E would be one that takes perceptual considerations into 
account. Most often, it is simply the euclidean distance 
metric on the red, green, and blue components of the colour. 
That is, if Pij denotes colour (ro, go, bo) and Qij denotes 
(ri, gl, bl ), then 

All algorithms using this metric are therefore heuristic to 
some degree. The square root operation is of course not 
essential in practice. In effect, the colour map induces k 
volumes or partitions of the colour space such that each 
volume i encloses the points in the colour space that are 
closest, with respect to E, to a specific colour map entry 
Ci E C. 
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Observe that the solution to the above problem is, in gen
eral, very difficult . Several effective heuristic algorithms 
have been devised to give an approximate solution to this 
problem [Heck82; GePu88; WaWP88]. These algorithms 
typically approximate a local minimum in the solution space, 
subject to several reasonable criteria. It is natural to at
tempt to find the best minimum possible, within reason. 
One line of attack would be to solve something resembling 
a large least-squares problem in order to find the appro
priate set C , although formulation of the problem in this 
manner is not easy. This is moreover likely to be unbear
ably slow. On the other hand, the problem is clearly a 
good candidate for simulated annealing, and it would be 
instructive to consider solving it in this manner. In fact, 
it is sufficiently straightforward to derive a good parallel 
implementation of it from the outset. We now present an 
outline of our approach . 

Clearly, the objective function to be minimised by anneal
ing is the cost function E given above in terms of an error 
metric E. Suppose we have a set of N ~ 1 processors with 
which to work and with an n x m input image I as described 
above. We also allow an initial colour map C to be given 
as input if desired. If not, a default initial colour map is 
chosen (the default being either the 3-3-2 or popularity par
titions [Heck82]) . We first determine the set or histogram H 
of distinct colours in I , and give each processor i a distinct 
partition Hi C H consisting of h = IHI/N colours . The 
processors co-operate by evaluating E for their respective 
image partitions with respect to the current colour map. 
The algorithm is depicted in Figure 3. The manner in which 
parallelism is exploited was deliberately kept as simple as 
possible, for reasons discussed below. 

The data structures we employed were extremely basic, 
since our goal was simply to determine whether or not a 
probabilistic approach would work at all . A "production" 
version of the implementation should make use of more ad
vanced search structures such as those described in [Heck82; 
GePu88; WaWP88]. Each histogram entry (i.e., unique 
colour in the original image) records the original colour a, 
its multiplicity in the image, the index of the colour map 
entry denoting colour b that is currently closest to a , and 

basic set up, get input image, create H 
set up or get initial colour map C 
partition H into N parts HI ,"', HN 
distribute C, Hi to client i 
for each colour c E H i each client i 

finds closest c' E C 

T +- To 
accepts +- rejects +- 0 
while (not frozen) 

while (not at equilibrium) 
determine c E C to be replaced 
choose a new colour c' 
C' = C - {c} U {c'} 
client i computes t::.Ei(C' , C) 
cost change t::.E +- Li t::.Ei( C', C) 
if (t::.E ::; 0) 

else 

C +- C' for all clients 
each client i updates H i 
accepts +- accepts + 1 

choose random E [0 , 1] 
if (random < e-l>E/T) 

else 

C +- C' for all clients 
each client i updates H i 
accepts +- accepts + 1 

rejects +- rejects + 1 
accepts +- rejects +- 0 
update T 

Figure 3: Distributed colour quantisation algorithm. 
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the error between a and b. Each colour map entry con
tains the current colour it represents, the number of pixels, 
h, in H which are currently being mapped to it, and the 
cumulative error, e. The statement 

determine c E C to be replaced 

in the algorithm above amounts to choosing the colour map 
entry that has maximal average cumulative error, a = r. If 
h is zero, then a is deemed arbitrarily large (as would be 
expected). 

The statement 

choose a new colour c' 

involves "jittering" each of the red, green, and blue compo
nents of c by a signed, uniformly-distributed random vari
able. 

3 Implementation 

3.1 Environment and Parameters 

As with the other approaches to colour quantisation, the 
colours in the input image were prequantised to five bits of 
precision. This allowed us to focus on perceptually notice
able changes when choosing new colour map entries. The 
jitter range for each colour component was chosen to be 
±[O,7J. Since each colour component has a value of [O,31J 
after prequantisation, a jittered colour may deviate from 
the original colour by about 25%. 

We have successfully implemented the above algorithm in 
the C programming language on a network of Sun 3 work
stations running UNIX.! The communication mechanism 
among processors was via sockets. 

The values we used for most of the parameters are debat
able, and we relied on trial and error to set them. This, we 
feel, is one shortcoming of the approach, in that it is diffi
cult to devise scientific ways of determining good values for 
these parameters. Nevertheless, the default values that we 
shall now discuss worked fairly well. Of course, a user can 
override default values at run time. 

The initial temperature is the most difficult value to de
termine. Our criterion was that, since we wished to allow 
arbitrary colour maps to be given as input, the initial tem
perature should reflect some level of "excitation" of the 
system with respect to the input map. For this reason, 
we set the initial temperature to the average cost per red, 
green, or blue component of the colour map entry. That 
is, if the initial colour map is C = {Cl , C2 , ••. , cd , then the 
initial global cost is 

ISun is a trademark of Sun Microsystems. UNIX is a trademark of 
AT&T Bell Laboratories. 
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where closest(P, C) is the closest colour map entry in C to 
colour P. The initial starting temperature is then set to 

To = g/k/3. 

Other parameters were set as follows. 

final temperature: TI = 1.0. 
equilibrium acceptance threshold: ko = 20. 
equilibrium rejection threshold: kl = 50. 
temperature scale: k2 = 0.8. 

For other applications, the ratio ko/kl is usually smaller, 
but we found that the system tended to cool too quickly 
if ko was too small, especially if the "v" formulation of 
equilibrium was used- see above). 

3.2 Results 

The results are in several ways surprising, and may in time 
lead to a deeper understanding of the nature of the problem 
(read: the authors aren't sure why the algorithm works as 
well as it does) . The graphs given below are with respect to 
one particularly tricky image to quantise (Figure la). It is 
a good test case because it contains a large number of dis
tinct colours after prequantisation (on the order of 6,000), it 
contains several transparent objects which act as coloured 
filters for the refracted texture, it contains several regions 
of nearly constant shade, and it contains our old friend and 
primate, the mandrill, as a subcase. We tested the algo
rithm out on many images, with similar results. 

Many of the papers discussing probabilistic methods men
tion that the running time of the programs is quite high. 
Our results did not entirely support this. We found that 
the approach converged to a decent local minimum quite 
quickly. Convergence occurred regardless of the starting 
colour map. The program was tested using four different 
input colour maps: 

1. the popularity partition: the 256 most commonly
occurring colours in the image. 

2. the colours arising from retaining only the 3 most sig
nificant bits of the red and green components, and the 
2 most significant bits of the blue component. This 
provides a fairly uniform scattering of colour map en
tries throughout the colour space. 

3. a completely red colour map (ignoring green and blue). 

4. the output of the "variance-based" colour quantisa
tion algorithm of Wan et al. [Wa WP88J (courtesy of 
Craig Kolb, Yale University via USENET) . 

Figures 4-7 depict the current global cost as a function of 
the number of iterations (i.e., potentially new choices for 
the colour map). Figure 4 uses initial colour map 1, Fig
ure 5 uses colour map 2, and Figures 6-7 use colour map 
4. The test image was of resolution 256 x 256 for Figures 
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4-6, and of resolution 900 x 900 in Figure 7. The result of 
using colourmap 3 is, apart from scale, almost identical to 
colour map 1, and is omitted. The global cost (and there
fore initial starting temperature) is much different for each 
of the test cases, the initial cost being highest for the 3-3-2 
partition and lowest for the variance-based partition. Also 
note that the scale is different for each figure. The cost 
is essentially halved in Figures 4 and 5, but the improve
ment in Figures 6-7 is a hard-earned but noticeable 6-9%. 
Moreover, in Figures 4 and 5, the greatest improvement in 
cost occurs in the first quarter of the program's execution. 
Also notice the remarkable amount of hill-climbing evident 
in the early stages of Figures 6-7. As expected, the fre
quency of hill-climbing quickly falls off as the system cools. 
The amount of hill-climbing is less pronounced in the other 
figures. This is probably because the system cooled too 
quickly to allow substantial hill climbing; the results, how
ever, were quite acceptable at this stage. We found that the 
popularity partition was often a better initial map than the 
minimum-variance partition, in that the system converged 
more quickly. 

It is very difficult to devise ways of visualising the differ
ences between algorithms and among images, particularly 
since a great deal of noise is added in the photographic 
and reproduction stages of publication. For this reason, 
we have devised a less-direct visualisation scheme. Figure 
8 is a black and white representation of a test input im
age. The remaining figures represent quantisation error. 
The error displayed for each pixel constitutes the scaled, 
euclidean distance between the (r, g, b) component of the 
original and mapped images. Thus the whiter the image 
appears, the greater the error. Figures 9 and 10 illustrate 
the error under the popularity mapping and the 3-3-2 map
ping, respectively. Figures 11 and 12 depict the error after 
using the colour-variance algorithm of Wan et al. and after 
annealing, respectively. The output of the annealing algo
rithm was similar with each initial partition. In each case, 
we ran the program until its overall error was significantly 
less than that produced by the colour-variance algorithm. 
For a 900 x 900 image, this required about one hour of 
CPU time on a single Sun 3/280 when started with the 
popularity partition; when started with the output of the 
colour-variance algorithm, about one hour was required for 
a 5% change, and three hours were needed for a 9% change. 
This suggests, of course, that the colour-variance algorithm 
is quite good. The differences between the colour-variance 
pictures and those produced by simulated annealing were 
small but noticeable (on a monitor, but not in a photo
graph). About two hours of CPU time were required when 
started with the red colour map or 3-3-2 partition. These 
CPU figures are given only as ballpark figures , since our 
(linear) data structures are quite primitive, and these tim
ing results could certainly be improved. 

It is interesting to compare Figures 11 and 12. Although 
from these figures it is not possible to tell which has done a 
better job of quantisation (to do so is impossible from the 
colour photographs we produced, but as stated earlier, it is 
certainly possible when staring at a monitor) , the aims of 

215 

the algorithms are decidedly different. The colour-variance 
algorithm is willing to admit some fairly large discrepancies, 
whereas our algorithm focussed on minimising global error 
by minimising average error per partition. Consequently, 
there are fewer completely dark areas in Figure 12, but 
there are also fewer very bright areas (note particularly the 
errors in the mandrills' eyes). 

The results of parallelism are not particularly interesting. 
The algorithm demonstrates an almost perfect speed up as 
the number of processors increase. After about 4 proces
sors, communication overhead overwhelms the additional 
processing gains. This suggests that either communica
tion bandwidths be increased, or that a solution based on 
tightly-coupled parallel processors be found. We are cur
rently examining the latter possibility. 

4 Discussion 

Several phenomona have shown up in our results which bear 
discussion. First, the choice of initial colour map strongly 
affects the rate of convergence. To some extent this is to 
be expected. We were surprised, however, by how much 
more slowly the system converged when given the 3-3-2 
partition over the popularity partition. (The slow rate of 
convergence when given an already good colour map was of 
course entirely unsurprising.) A possible explanation is that 
a uniform scattering of colour map entries tends to isolate 
many of them (i.e., the cardinality of many partitions is 
quite small). Random jitter, in this case, would not be 
sufficiently "directed" toward a single solution (or several 
closely-related ones). 

Second, the initial rate of convergence for the popularity 
and 3-3-2 partitions is, in absolute terms, quite high, the 
comment above notwithstanding. Presumably, the expla
nation is that there is much room for improvement with 
these initial partitions. 

Third, our naive use of parallelism was not as fruitful as 
expected. The main difficulty with this global optimisation 
problem (and one that might indeed be generally true) is 
that it is resistant to true divide-and-conquer approaches. 
We were not able develop a parallel algorithm which syn
thesises a global solution from several smaller subproblems. 
We were thus forced to cast the algorithm into a simple 
client/server scheme. An ongoing problem of interest is to 
develop more creative approaches to the parallel decompo
sition of this problem. 

We have demonstrated the use of a distributed, probabilis
tic algorithm for a nontrivial problem in computer graphics. 
We now hope to further refine our approach to this problem, 
and to attack several other problems in computer graphics, 
including colour gamut mappi~g, and global illumination, 
using probabilistic techniques. 
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Figure 4: C03t plot. Initial map: popularity. 
1.6e+06~---------------------' 

1.4e+06 

1.2e+06 

Cost 

1e+06 

8()()()()() 

o 500 1000 1500 2000 2500 
lLerations 

Figure 5: C03t plot. Initial map: 3-3-2. 
525000-.----------------------, 

520000 

515000 

Cost 

510000 

505000 

5()()()()() 

o 1000 2000 3000 

lLerations 
Figure 6: Cost plot. Ini tial map: output of variance algo
rithm. 
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Figure 7: C03t plot. Initial map: output of variance algo
rithm. 900 x 900 image. 

Figure 8: Black and white ver3ion of te3t image. 
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Figure 9: Quanti3ation error of popularity partition. 

Figure 10: Quanti3ation error of 9-9-2 partition. 

Figure 11: Quanti3ation error made by variance algorithm. 

Figure 12: Quanti3ation error made by annealing algo
rithm. 
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