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Abstract 

W~ develop phy~ically-ba~ed graphic~ model~ of nonrigid 
obJect& capable of heat conduction, thermoela&ticity, melt­
ing, and fluid. like behavior in the molten &tate. Theu de. 
formable model& feature nonrigid dynamic& governed by La. 
grangian equation& of motion and conductive heat tramfer 
governed by the heat equation for nonhomogeneou& non. 
i&otropic media. In it& &olid &tate, the di&eretized m~del i& 
an auembly of hezahedral finite element& in which ther­
moela&tic unit& interconnect particle& &ituated in a lattice. 
The &tiffneu of a thermoela&tic unit decrea&e& a& it& tem­
perature increa&e&, and the unit /u&e& when it& tempera­
ture eZ,ceed& the melting point. The molten &tate of the 
model mvolve& a molecular dynamic& ~imulation in which 
"fluid" particle& that have broken free from the lattice in­
teract ,through long. range attraction force& and &hort.range 
repul&lon force&. We pre&ent a phYlically-ba&ed animation 
of a thermoela&tic model in a &imulated phy&ical world pop­
ulated by hot con&traint &urfacel. 
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1. Introduction 

Methods for modeling nonrigid objects and their motions 
~re attracting considerable attention in computer graph­
ICS. Deformable models [20] are physically-based models 
of no~rigid c~rves, s~rfaces, and solids that are finding 
many mterestmg applIcations. The modeling and anima­
tion of cloth [26] saw the first successful application of elas­
tic surface models [8, 22, 13, 11, 20]. Deformable "char­
acters" have been animated in simulated physical worlds 
[23]. Physically-based constraint methods have been de­
veloped for controlling deformable model animations [18 
17]. "Muscle" actuators have been incorporated into de~ 
formable models to synthesize self-locomoting snakes and 
worms [14]. Inelastic models, a type of "computational 
modeling clay," appear promising as an interactive medium 
for.free-form shape design in CAD/CAM [21]. The appli­
catIOn of deformable models to the modeling of skin for 
human facial animation [25] is imminent. 

A general ' formulation of deformable models based 
on elasticity theory, was first proposed in [22] and ~.as ex­
panded subsequently to include inelastic behaviors, such 

1 Goop: A soft, sticky solid. Glop: A thick, gluey liquid. 
-With apologies to Webster's New World Dictionary. 

as plasticity [21, 18]. In this paper, we extend deformable 
models further to include the simulation of thermal phe­
nomena. In the real world, rigid and nonrigid objects ab­
sorb, radiate, and conduct heat. Heat causes solid materi­
als to soften and eventually melt into fluids. 

We construct thermoelastic models whose shapes and 
dynamics are governed not only by the Lagrange equa­
tion of nonrigid motion that underlie our prior deformable 
models, but also by the heat equation, a partial differen­
tial equation which describes an entire range of diffusive 
phenomena. Our thermoelastic models interact nonrigidly 
with their simulated physical environment, as do prior de­
formable models. As soon as they come into contact with 
"hot" graphics objects, however, the new models begin 
to conduct heat into their interiors. They exhibit ther­
moelastic effects-as their temperature rises, they become 
softer and more pliable. When the temperature exceeds 
the melting point, the solid models melt into simple molec­
ular fluids. Following Greenspan [10], we take a molecu­
lar dynamics approach [4] to simulating the fluid state, in 
which pairs of fluid particles interact through long-range 
attraction forces and short-range repulsion forces. 

The remainder of this paper is structured as follows: 
Section 2 reviews the equations of motion for elastically 
deformable solids, while Section 3 reviews the equation 
that governs conductive heat transfer in solids. In Sec­
tion 4 we incorporate both differential equations to cre­
ate a discrete heat-conducting deformable model. Section 
5 explains how we simulate thermoelasticity and melting 
effects. Section 6 describes the interaction forces under­
lying our discrete fluid models. Section 7 explains how 
we impose constraints and frictional forces to control and 
increase the realism of our physically-based animations. 
Section 8 specifies the numerical time integration scheme 
that we have employed to create the simulation presented 
in Section 9, which demonstrates constrained nonrigid dy­
namics, friction, heating, melting, and fluid behavior. Sec­
tion 10 concludes the paper with some remarks and sug­
gestions for future work. 

2. Deformable Solids 

A general formulation of deformable curve, surface, and 
solid models was proposed in [20, 21]. We review the for­
mulation of deformable solid models in this section. 

Let u = (Ul' U2, U3) be the material coordinates of 
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points in the solid model's material domain 0 = [0,1)3. 
Let the time-varying positions of material points be 

x(u, t) = [Zl(U, t), Z2(U, t), Z3(U, t))', (1) 

where subscripts 1, 2, and 3 denote the X, Y, and Z axes 
in space. The position x(u, t), velocity fJx/8t, and accel­
eration 82x/at2 specify the model's motion as a function 
of u and time t. 

The deformable model is governed by the Lagrange 
equation of motion 

82x fJx 
P. at2 +, at + bx£ = f. (2) 

This hyperbolic-parabolic partial differential equation dy­
namically balances the net external forces f( u, t) against (i) 
the inertial force due to the mass density p.( u) of the model, 
(ii) the velocity-dependent damping force with damping 
density ,(u), and (iii) the model's internal elastic force 
bx£ which attempts to restore a deformed elastic model to 
its natural, undeformed shape. 

The elastic force is expressed as a variational deriva­
tive with respect to x of a nonnegative deformation energy 
functional £(x) . For nonhomogeneous, nonisotropic de­
formable solids, we proposed the functional 

£(x) = 10 IIG - GO II~ dUl dU2 dU3, (3) 

where 1I·lIw is a weighted matrix norm; i.e. , IIAII~ = 
L:i,; Wija~j' where aij are the entries of matrix A and 
Wij(U) are nonnegative weighting functions. Here G and 
GO denote the metric tensor of the solid in its deformed 
and undeformed state, respectively. G is a 3 x 3 symmetric 
matrix with entries [7] 

fJx 8x 
Gij(x) = Bui· Bu/ (4) 

The functional £ is designed to be invariant with respect 
to rigid-body motions of the model in space, since such 
motions impart no deformation. £ is zero for the model in 
its natural shape and grows with increasing deformation 
away from the natural shape. The weighting functions Wij 
control the rate of growth of the deformation energy and, 
hence, the strength of the elastic restoring forces. 

Animating the deformable solid model amounts to 
solving an initial-boundary-value problem for (2) with (3), 
given appropriate conditions for x on the boundary an of 
the material domain, and given the initial position x( u, 0) 
and velocity 8x/atl(u.o). 

3. Conductive Heat Transfer 

Heat is thermal energy. The associated potential function 
is temperature 9. The basic (macroscopic) conductive heat 
transfer phenomena are: 

1. The amount of heat required to raise the temperature 
of a small material sample !l.9 degrees is proportional 
to !l.9 and the mass of the sample. The proportional­
ity factor u is called the specific heat and is a property 
of the material. 

2. Heat is conducted from high temperature to low tem­
perature. More specifically, the rate of heat conduc­
tion per unit area is inversely proportional to the gra­
dient of the temperature. The proportionality factor 
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c, known as the thermal conductivity, is another prop­
erty of the material. 

3.1. The Heat Equation 

The heat equation describes the diffusion of heat in materi­
als. In the case of solids, the equation governs the temper­
ature distribution 9(u, t). Assuming mass density p.(u) and 
specific heat u, and introducing the gradient operator in 
material coordinates V = [8/Bul,8/8u2,8/8u3)', we can 
write the general heat equation as 

8 
at (p.u9) - V· (CV9) = q, (5) 

where q( u, t) is the rate of heat generation (or loss) per 
unit volume in the solid and C is a 3 x 3 symmetric matrix 
known as the thermal conductivity matrix. 

It is always possible to determine locally a principal 
coordinate system wherein C becomes a diagonal matrix 
with the three principal thermal conductivities Cl! C2, C3 
along the main diagonal. If the principal axes happen to 
coincide globally with the material coordinates, the heat 
equation simplifies to 

8 
at (p.u9)+ 

~ (Cl!!"") + ~ (C2!!"") + ~ (c3!!....) = q. Bul Bul Bu2 Bu2 Bu3 Bu3 
(6) 

For a homogeneous and isotropic material, C = cl, 
where I is the identity matrix, and the heat equation re­
duces to its most familiar form 

(7) 

where V 2 = 82 /8u~ + 82/8ui + 82 /Bu~ is the Laplacian. 

3.2. Boundary Conditions 

The heat equation is a parabolic partial differential equa­
tion. Its solution in the material domain 0 of a deformable 
solid requires conditions on the domain's boundary 80. 
Through boundary conditions we can describe the gain 
(loss) of heat by our model from (to) the outside world. 
The following boundary conditions are useful: 

1. Dirichlet condition; i.e., specified temperature: 

9 = "8 on 80, (8) 

where "8 is the given boundary temperature function. 
2. Newton condition; i.e., specified normal component of 

heat flow 1] = -(CV9) . n and radiative heat loss on 
the boundary: 

-(CV9) . n - p9 = Tj on 80, (9) 

where n is the unit normal function on the boundary, 
Tj is the specified normal component of flow, and p 
is a specified (nonnegative) radiation coefficient. We 
obtain the Neumann condition for the special case p = 
o. 

3. Mized condition$; Dirichlet , Neumann, or Newton con­
ditions may be applied on different portions of 80. 

Graphics Interface ' 89 



4. The Discrete Model 

The Lagrange equation (2) together with the heat equation 
(5) govern the continuous deformable model. To simulate 
the equations in the material domain, we must discretize 
!l. We can apply local discretization techniques, such as 
the finite-element or finite-difference methods [1] . 

We divide the domain into finite-element subdomains. 
A convenient approach is to tessellate !l into hexahedra 
whose vertices are occupied by nodes which represent point 
masses or particles. The deformation of each hexahedron 
is dictated by a discrete approximation to the deformation 
potential energy (3). 

According to (4), the diagonal terms of the metric 
tensor, Gii , i = 1,2,3, dictate lengths in the solid along 
the coordinate directions Ui, while the off-diagonal terms, 
Gij , i -I j, express angles between directions U i and Uj. 

Within an infinitesimal material volume dUI dU2 dU3, the 
integrand in (3) aims to restore the distances and angles to 
their reference values, as measured by GO. The magnitude 
of the Wij(U) within the volume determine the strength of 
the restoring forces. 

We assemble finite-length, nonlinear spring units along 
the twelve edges and diagonally across the six faces of the 
hexahedral element in order to restore the distances and 
angles expressed in G (Fig. 1). Spring I will have its own 
natural length L!, set according to GO , to determine the 
natural shape of the element, as well as stiffness K" dic­
tated by the Wij, to determine its deformation properties. 

mass.l~~~----~~' 
point 

Figure 1. A hexahedral assembly of particles and springs . 

Next, we assemble the hexahedral elements to cover 
!l, such that adjacent elements share nodes and springs on 
common faces. We index the nodes in the resulting 3D 
lattice by k . The nodal position variables Xk specify the 3-
space locations of the particles, and the variables Vk , their 
velocities. 

We also associate a temperature variable Ok with each 
node. The nodal temperature variables are governed by 
the heat equation for the case of a nonhomogeneous, non­
isotropic conductive medium. A convenient approach to 
discretizing the partial derivatives with respect to Ui in the 
V .(eVO) term in (5), given our finite-element model, is to 
associate a particular value of heat resistance RI per unit 
length to each spring. Assuming spring I connects node 
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i to node j, its conductance is Cl = (Rlllxi - Xjll)-l. A 
conducting spring will tend to equalize the temperatures 
of the two nodes it connects. The finite-element assem­
bly approximates the general heat equation (5) over the 
discrete lattice. 

If we permit heat conduction only along the mate­
rial coordinate axes (by zeroing the conductivities of the 
springs running diagonally across element faces), then the 
finite-element assembly will approximate equation (6). In 
this case, one can show that the resulting discrete equa­
tions consist of central finite difference expressions. for the 
terms involving partial derivatives with respect to material 
coordinates in (6). 

5. Thermoelasticity and Melting 

Real materials typically soften when heated, a phenomenon 
known as thermoelasticity. Eventually, materials melt as 
the temperature increases. It is straightforward to simu­
late thermoelasticity and melting in our heat-conducting 
deformable models-we establish a relationship between 
the temperature variables Ok and the stiffnesses KI of the 
spring units in the discrete model (Fig. 2). 

spring 

Xi t thermoelasticity 
~ ~ 

Lc __ ~ 
conduction element 

Figure 2. A thermoelastic unit. 

To simulate softening, we make a thermoelastic unit 
whose stiffness varies inversely with the temperature av­
eraged over the two nodes it connects: oa = (Oi + OJ)/2. 
The variation may be nonlinear; e.g., we can initiate ther­
moelastic behavior when oa exceeds a specified threshold 
0" . 

To simulate melting, we fuse the thermoelastic unit 
whose average temperature exceeds the melting point om, 
by setting its stiffness KI to zero. 

We incorporate the following thermoelasticity /melting 
law: 

if oa ~ 0"; 
if 0" < oa < om; 
if oa 2 om, 

(10) 

where K? is the zero-degree stiffness and v is a positive 
constant . The second case in (10) defines the thermoelastic 
region, which states that the elastic force will be linearly 
related to the displacement minus a component which is 
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proportional to the temperature. This is known as the 
Duhamel-Neumann law of thermoelasticity [24]. 

6. A Discrete Fluid Model 

When all the thermoelastic units that bond a particle to 
other particles in the lattice have fused, the particle breaks 
free from the deformable solid. It can then interact freely 
with other particles, as do molecules in a fluid at the mi­
croscopic level [19]. 

Greenspan [10] investigated various N-body systems 
of this sort as discrete models of solid, liquid, and gaseous 
media. Recent computer animations of "fluids," due to 
Miller, are apparently based on similar ideas [15]. Over the 
years, much attention has been given in the physics and 
chemistry literature to the development of discrete fluid 
models involving aggregate molecular dynamics in which 
the molecules are subject to various interaction potentials 
[4]. A basic technique is to model long-range attraction 
and short-range repulsion forces between pairs of particles 
according to potentials of the Lennard-Jones type, which 
lead to forces involving inverse powers of particle separa­
tion distance d [19]. Following [10], we choose a force which 
has a component of attraction that behaves like ad-a and 
a component of repulsion that behaves like f3d- b , where a, 
and bare nonnegative parameters with 0 ~ a ~ b (Fig. 3). 

Figure 3. Fluid particles both attract and repel each other. 

Specifically, let particle i have mass rn, and be located 
at x,(t) at time t. Let particle j have mass rnj and be 
located at Xj(t) at time t. Let d,j(t) = IIx, - Xjll be the 
separation of the two particles. Then we define the force 
on particle i exerted by particle j as 

g'j(t) = rn,rnj(x, - Xj) ( - (d'j : ()a + (:)b)' (11) 

where a and f3 are nonnegative parameters that determine 
the strength of the attraction and repulsion components 
of the force, and ( is a positive measure of how close the 
particles are allowed to be. 

To model inter-particle collisions, we can define 

(12) 

where f3' is a nonnegative repulsion strength, T, is the non­
negative collision radius of particle i, and 

{ 
> 0 when d .. < T·· 

p = - 'J" o otherwise 
(13) 

is the collision exponent, whose effect is to increase the 
repulsion force during collision. 
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The total force on particle i due to all other particles 
is 

(14) 
i#' 

Then, the discrete version of the Lagrange equation (2) 
gives the equations of motion for the ensemble of particles 

{)lx, &X, 
rn, 1Jt2 + I'm + g, = f,; i = 1, - . . , N. (15) 

7. Constraints and Friction 

The various parameters of our physically-based model af­
ford control over its animation, as do the initial condi­
tions of the simulation. Moreover, it is possible to control 
the animation through physically-based constraints. We 
have applied several constraint mechanisms to our non­
rigid models, just as Barzel and Barr [3] have done for the 
animation of rigid and articulated models. 

We use reaction constraints [18, 17] to expel the parti­
cles of an evolving solid or fluid model out of any impene­
trable obstacles in the scene (Fig. 4). Reaction constraints 
cancel force components normal to the surface of an ob­
stacle that would take particles into an obstacle, and sub­
stitute forces which induce critically damped motion that 
converts penetration into mere contact. 

path of point 

Figure 4. Reaction constraints expel particles from impene­
trable obstacles . 

It is simple to express reaction constraints for ob­
jects constructed of planar polygonal patches. Let P(x) = 
az + 1Yy + ez + d be the plane equation of a polygon and 
let Q(v) = avz + bvll + CV z • If a particle with mass rn, 
has penetrated the obstacle through a patch, then the re­
action force on the point acts normal to the polygon and 
is proportional to 

fR = rn, (P(X) + 2Q(V») ft, (16) 
T2 T 

where T is the time constant of the critically damped mo­
tion and where ft = [a, b, elllla, b, ell is the unit inward 
normal. In the absence of friction, the component of force 
tangent to the polygon remains unchanged. 

Friction effects lend a greater degree of realism to the 
animation of physically-based models [16]. A simple treat­
ment of friction involves adding a force which opposes the 
velocity of a particle. More realistically, however, a par­
ticle will stick to a surface until the force on the particle 
exceeds a threshold known as the static friction. Static fric­
tion will, for instance, prevent a thick liquid from spreading 
out completely on a horizontal flat surface. 
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We use a standard friction model (see also [17]). Con­
sider a particle in contact with a polygon and experiencing 
a net force f (before modification by reaction constraints). 
The normal force is fN = (f. n)n. The tangential force 
prior to applying friction is 

fT = f- fN. (17) 
If the tangential force is less than the static friction, then 
the particle begins to stick and quickly comes to a halt 
(VT = fT = 0), otherwise a kinetic frictional force acts 
tangentially to the surface to retard sliding. The static and 
kinetic frictions are proportional to the magnitude of the 
normal force into the surface. The coefficient of static fric­
tion e is always larger than the coefficient of kinetic friction 
K.. The tangential force modified by friction is therefore 

( _ { -~VT if IIfTII < e IIfNllj (18) 
- fT - K. IIfNl1 VT otherwise, 

where VT = v - (v . n)n is the tangential velocity, and T 

is the time constant for halting the motion in the static 
friction case. 

8. Numerical Time-Integration 

To simulate the dynamics of our models we provide the 
initial positions x? and velocities v? of particle i for i = 
1, . . . , N. At each subsequent time step, Ilt , 2Ilt, ... , t , t + 
Ilt, . . . , we evaluate the current accelerations, new veloci-
ties, and new positions using the explicit Euler time-integra­
tion procedure: 

t f; 
a i = ;;; 

v!+6. t = v! + Ilt a!j 

x!+6.t = x! + Ilt v~+6.t. 

(19) 

The quantity fi is the total force acting on particle i. This 
includes a sum of the damping force -,iV!, the elastic 
forces from the (discretized) third term in (2), the fluid 
interaction forces from the third term in (15), the external 
forces on the right hand sides of these equations, as well 
as all modifications made to these forces in order to apply 
constraints and friction as was described in the previous 
section. 

9. A Goop-to-Glop Simulation 

Fig. 5 presents a selection of frames from an animation in­
volving the physically-based techniques developed in this 
paper. The scenario is to drop a thermoelastic solid into 
a "funnel," and by heating the funnel to first soften the 
solid, then to melt it until it dribbles onto the hot floor 
underneath. The model simulated in Fig. 5 consists of only 
250 particles. While large enough to yield an interesting 
animation, this model is much too coarse to match the ac­
curacy of sophisticated physical models intended for the 
analysis of specific real-world solids and fluids. We there­
fore refer affectionately to our coarse, simulated solids as 
"goop" and the simulated fluids into which they melt as 
"glop." However, by using more particles in our models 
(and consequently with increased computational cost) we 
may achieve increasingly accurate approximations to real­
world solids and fluids under certain physical conditions. 
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Fig. 5a is a bird's eye view of three planes in a funnel­
like arrangement over a ground plane. The planes present 
obstacles to the deformable models, and contact with their 
surfaces produces friction. We applied the techniques de­
scribed in Section 7 to produce these planar, physically­
based constraints. The bluish-green color of the planes 
indicates that they are cold (0°). 

Fig. 5b is a frame early in the simulation which shows 
a frontal view of a white piece of goop dropping, due to 
gravity, into the mouth of the funnel. The goop is a heat­
conducting deformable model discretized on a 5 x 5 x 10 
lattice of nodes. The nodes in the model were rendered 
as "blobbies" [5] . The blobby rendering technique asso­
ciates an exponential potential function with each node 
and efficiently ray traces an isopotential surface of the re­
sulting field. We chose an exponential decay rate such that 
neighboring nodes of the model fuse together into a plump, 
continuous form. 

Fig. 5c-d shows the goop colliding first with the left 
surface, and finally coming to rest in the funnel. We used 
significant static friction to make the walls of the funnel 
quite sticky, as indicated by the deformation in Fig. 5a. 
Up to the simulation time of Fig. 5e, the goop was cold 
W)· 

Next, the funnel surfaces were heated to a tempera­
ture of 5° (Fig. 5e) . Figs. 5e-f show the goop conducting 
heat. The temperature begins to rise at the corners of 
the goop where it comes in contact with the hot surfaces , 
then spreads throughout the interior. The heat diffuses 
into the solid through Dirichlet boundary conditions (Sec­
tion 3.2) which are automatically introduced at nodes in 
contact with the funnel. To visualize the temperature dis­
tribution, the larger Oi , the more intensely red we color the 
surrounding blobby. 

Next, in Fig. 5g, the temperature of the funnel has 
been set to 7°, entering the thermoelastic regime of the 
goop (0' = 6° in (10)). We see the goop softening and 
sagging deeper into the funnel under its own weight . 

Figs. 5h-1 shows what happens after we have set the 
temperature of the surfaces to 10°, exceeding the goop's 
melting point (om = 8° in equation (10)) . First the goop 
collapses (Fig. 5h), then melts into glop as the thermoelas­
tic units connecting nodes near hot surfaces begin to fuse 
(Fig. 5i). As more and more of the goop melts, "gloplets" 
dribble through the funnel opening onto the hot floor be­
low. We used a = 2, b = 4, ex = 1.0, and f3 = 1.0 X 104 in 
(11) (and p = 0 in (12)), which makes the gloplets spread 
viscously on the floor (Fig. 51). Increasing ex would thicken 
the consistency of the fluid, while increasing f3 would in­
crease its incompressibility. 

10. D iscussion and Extensions 

This paper developed deformable models that conduct heat, 
exhibit thermoelastic phenomena, and melt into molecular 
fluids. We conclude by placing our approach into perspec­
tive and suggesting possible extensions and variations. 

Greenspan [10] suggests discrete solid models which 
are based on molecular dynamics that are conceptually 
similar to his fluid models. Instead of incorporating the 
heat equation, a macroscopic law involving the thermody­
namic quantity temperature, his models regress to the mi-
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Figure 5. Selected frames from a goop-to-glop anima tion. (a) Funnel geometry. (b) Goop falls in gravity. 
(c) Collision with left funnel wall. (d) At rest in cold funnel. (e) Funnel hot; goop conducts heat through 
its interior. (f) Temperature distribution at equilibrium. 
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Figure 5. (continued) (g) Funnel temperature increases; goop softens and sags. (h) Funnel temperature 
at melting point; goop collapses. (i) Goop begins melting into glop. (j) (k) Gloplets dribble to hot floor. 
(I) Glop spread out on hot floor (note gloplet sticking to back funnel wall). 
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croscopic level, treating heat as the kinetic energy of ran­
dom molecular vibration of particles and temperature as 
the time-average of this kinetic energy. A different class of 
discrete models are the cellular automaton fluids proposed 
by Wolfram [27]. These are discrete analogues of molecu­
lar dynamics, in which ensembles of particles with discrete 
velocities populate the links of a fixed array of sites that 
subdivide the space occupied by the fluid . Greenspan's 
approach is a discrete version of the Lagrange formulation 
of fluid dynamics, whereas Wolfram's is a discrete version 
of the Euler formulation [1]. 

Our model is a convenient blend of elasticity and heat 
transfer in solids and the molecular dynamics of fluids . 
Because of the lattice infrastructure, the elastic forces in 
a solid model are computable in O(N) time, where N 
is the number of nodes. However, computing the fluid 
forces brute-force takes O(N2) time. It is fairly easy to 
reduce this to O( N log N) by clustering particles hierar­
chically [2]. The problem of further reducing the complex­
ity of force computations in N-body systems has recently 
attracted attention with the development of O(N) algo­
rithms for Coulombic field interactions [9, 28]. It remains 
to be seen whether this linear-time approach generalizes to 
non-Coulombic fields of the type used in our fluid model. 

The work in this paper can be extended in various 
interesting directions. By incorporating the heat equation 
into the inelastic models described in [20, 21, 18], we may 
straightforwardly generalize our techniques to include in­
elastic behavior, such as thermoplasticity. 

Another straightforward extension to our models would 
be to simulate heat generation through deformation, a phe­
nomenon evident in many real world materials (e .g., a 
quickly stretched rubber band becomes warm). In the heat 
equation (5), q(u, t) represents the rate of internal heat 
generation. In our discrete model, we assign to each node 
a heat-generation nodal variable qi(t) whose value depends 
on the average deformation rate of the thermoelastic units 
connected to that node. The heat equation will diffuse 
the deformation-induced heat through the model, along 
with any heat transferred from the outside world though 
boundary conditions. This paper treated contact with hot 
objects, but another obvious extension is to transfer into 
a thermoelastic model the heat generated by friction as it 
slides against other objects. 

If we introduce a boiling point, a mechanism for mod­
eling evaporation into a gaseous state would be virtually 
in place. When the specified boiling point is exceeded by 
a fluid particle, we can alter the parameters of its inter­
action force to model a gas particle; i.e., in (11) we make 
Cl: = ° and increase f3, so that the particles will tend to fill 
the available space like a gas. Such a molecular gas may 
be used directly to model the convection of heat from the 
surfaces of hot models . 

The modeling of radiative heat transfer would be an­
other natural extension to the work presented in this pa­
per. We can apply the Newton boundary condition given 
in Section 3.2 and treat the emitted heat as infrared radi­
ation. The amount of heat which would be transmitted to 
nearby heat-conducting models is specified by the render­
ing equation [12]. Efficient radiosity algorithms [6] would 
come in handy for such computations. 
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