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Abstract 

We present a method of speed adjustment as a means of 
controlling motion in of key-frame animation. This method is 
designed for key-point trajectories that are expressed as dif
ferentiable parametric curves. The animator is given a means 
of influencing the speed of a trajectory 's traversal by the direct 
manipulation of a speed-profile curve. Any adjustment of this 
curve is translated into an adjustment of the differential rate of 
the parametric sampling that produces inbetween frames from 
the trajectory. The sampling rate is correlated with object
space distances along the trajectory. This results in intuitively 
meaningful control over the motion of the animation. 

KEYWORDS: Key-Frame Animation, Splines, Timing Con
trol, Kinematic Adjustment. 

I. Introduction 

This paper describes a method for controlling the temporal 
aspects of motion, as distinct from its spatial aspects. The 
method is adaptable for any key-frame animation system in 
which the trajectories between key points are expressed as dif
ferentiable parametric curves. 

In Section 2 we give a brief context in which this work is 
being carried out. Section 3 reviews parametric trajectories. 
Section 4 covers the speed-profile curve and its means of con
trol, and Section 5 describes how the speed-profile curve is 
used to influence motion. Section 6 describes a prototype 
line-test system prepared at the National Film Board of 
Canada. 

2. Context 

Computer-aided animation can be divided roughly into two 
classes: one is key-frame animation, in which motion is deter
mined from a sequence of arbitrarily set positions, and the 
other is dynamic simulation, in which motion is determined 
from physical laws. We are interested here in key-frame ani
mation, particularly in systems that provide automatic 
inbetweening and include utilities for subjective timing con
trol; that is, kinematic adjustment. 

Linear interpolation is the simplest approach to generating 
in between frames automatically, and most early key-frame sys
tems used this method, for example the prototype system 
developed in the late 1960's by Nestor Burtnyk and Marceli 
Wein [Burtnyk71]. Linear interpolation, however, is not suffi
ciently smooth for high-quality animation. It is associated with 
a number of objectionable artifacts [Kochanek84] . Subse
quently, Burtnyk and Wein [Burtnyk76] developed a key
position approach based upon skeletons in which motion was 
defined using stick figures, which were then "fJ.!led out" with 
polygons for the final rendering. The use of cubic interpola
tion resulted in smooth motion for the stick figures, but the 
polygons "clothing" the skeletons still exhibited linear 
artifacts. In 1977 Martin Tuori [Tuori77] described a way of 
automatically smoothing out linearly defined motions by a 
method of overlapping actions. This technique removed some 
of the artifacts of linear interpolation, but it could result in tra
jectories that missed key positions entirely. In the early 1980's 
Doris Kochanek, Richard Bartels, and Kellogg Booth produced 
an automatic inbetweening method that was based upon the 
cubic interpolation of key positions by Catmull-Rom splines 
[Kochanek82]. Cubic trajectories have become a standard 
method for defming the spatial aspects of motion in modem 
key-frame systems. 

A step toward providing a measure of kinematic control 
came with the 2-D system GENSYS developed by Ron 
Baecker [Baecker69]. Here the animator provided a combined 
description of the path and timing of a motion by drawing 
motion paths called P-curves on a digitizing tablet. The shape 
of a P-curve defmed the inbetweening trajectory, and the speed 
at which the curve was drawn dictated the temporal aspects of 
the motion. Later, William Reeves [Reeves81] investigated 
moving point constraints as a way of generalizing P-curves. 
This added a further degree of control to the P-curve approach. 
The requirement that the animator specify the trajectory, how
ever, has prevented the incorporation of the P-curve approach 
in automatic key-framing systems. 
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In 1984 the inbetweening technique of Kochanek, Bartels, 
and Booth was modified to include three control parameters: 
tension, continuity, and bias [Kochanek84]. To the automatic 
defmition of a trajectory from key frames was added a limited 
capacity to select aspects of motion kinematics. But selection 
does not constitute control. No adjustment of the kinematic 
aspects separate from the trajectory was provided. 

One of the important things animators leam is that it is sub
tle variations in temporal aspects that give personality to 
motion [Lasseter87] . Thus, in the computer interpolation pro
cess it is desirable that the temporal element be isolated from 
the spatial, to be available to the animator under separate con
trol. In 1985 Scon Steketee and Norman Badler [Steketee85] 
addressed the problem of separating the kinematic from the 
spatial aspects of key-frame animation through the use of two 
functions employed in composition, one to incorporate frame 
numbers and the other to specify frame times. The function for 
frame times was available for the animator to modify. 

In 1987, Bartels and Hardtke [Bartels87] investigated two 
methods of controlling the kinematics of a key-frame anima
tion. One of these offered control over frame times, much like 
the method of Steketee and Badler, and the other provided a 
means of directly influencing the relative speed over which 
portions of the trajectory are traversed. We report on the 
method of speed control here. Unlike the method of Badler 
and Steketee, or methods used in the commercial systems 
known to the authors, the proposals presented here provide the 
animator a direct manipulative grasp on object-space speed 
rather than the indirect control of speed that is achieved 
through modification of frame times or of ad hoc adjusbnents 
to the sampling rate on a parametric trajectory curve. Anima
tors will have need of various tools to achieve their goals. For 
certain purposes, control over frame times may be less desir
able than direct control over motion velocity. With this in 
mind, speed control was provided to animators at the National 
Film Board of Canada in a prototype line-test system which 
was used in conjunction with the WaveFront animation system 
to produce a trial animated sequence. Response from the ani
mators has been favorable. 

3. Trajectory 

Ideally, key frames should be able to define a continuous 
spatial path for the motion to follow. The frames recording 
that motion should be interpolated from the spatial path 
according to some temporal sampling pattern provided in an 
intuitive fashion by the animator. Changing the sampling pat
tern should not change the spatial path defined by the key posi
tions. 

Let Po , PI , ... , Pn be the position of a single key point 

throughout a key-frame sequence. We assume that an 
inbetweening system has produced a parametric trajectory 

P(S) = (x(s) ,y(s» 

joining the locations Pi, 

Pi = (Xi ,Yi) = (X(Si) ,Y(Si» = P(Si) . 

We shall present the discussion here in terms of trajectories 
that are 2-D curves in X-Y space. The discussion is equally 
applicable to 3-D curves, and it can be modified to handle tra-
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jectories in other coordinates of motion; e.g., angles of rota
tion. All we will need to require is that the trajectory be 
parametric, that it be differentiable, and that appearance of 
motion be directly related to some measure of spatial progress 
along the trajectory, such as arc length. 

The parameter S satisfies So ~ S ~ sn for the trajectory, with 

S = Si for the i th key frame. The parameter S need not have 

any physical significance, and its relation to the amount of 
motion over any portion of the trajectory is often arbitrary and 
varys from location to location. A simple animation system 
would compute the inbetween frames from Pi to Pi+1 by sam-

pling S at uniformly spaced values over the interval from Si to 

Si+!. The resulting appearance of motion is often unsatisfying 

due to the arbitrary association of values, s, in parameter space 
with points, P, in object space along the trajectory. The 
motion can be adjusted by modifying the sampling of S in 
some fashion. Commercial systems known to the authors 
arrange to do this by providing access to S through some form 
of "sampling function," S =s(t), that the animator can control. 
System-defined steps in t provide parameter values in s that 
are nonuniformly spaced, but this leaves the animator with a 
trial-and-error process of manipulating the sampling function 
until the desired appearance of motion is attained. The method 
of Steketee and Badler [Steketee85], on the other hand, splits 
the description of motion into a "position component," giving 
location in terms of frame number, and a "kinetic com
ponent," giving frame number in terms of time. The two com
ponent functions are composed to give the fmal motion. The 
animator has precise timing control and, indirectly through the 
frame times, control over such aspects of motion as speed. 

The adjustment we shall be discussing is a method to alter 
the default sanlpling to use nonuniformly spaced of values of s. 
But the method of achieving this will be done with a mechan
ism that relates directly to speed of progress along the trajec
tory. It provides a method that works directly in the object 
space of the animation scene. This is intended to complement 
the method of Steketee and Badler. 

The effect of non uniform parametric sampling can be 
understood in either of two ways. From one point of view, the 
playback of an animation sequence is locked into a fixed 
number of frames per second (e.g., 24 for mm or 30 for video), 
and a nonuniform sampling rate acts as a variable-speed shutter 
on a camera. Assuming that the sampling density in the 
parameter s is coupled with the arc length along the trajectory; 
that is, with the actual distance covered by the motion, dense 
sampling expands the detail of the trajectory, providing a 
slow-motion version of the action, and sparse sampling 
compresses the detail, providing a time-lapse version of the 
action. The playback has an exactly predictable timing based 
upon the number of frames in the sequence (this is of impor
tance in planning an aninlation), but the kinematic effect of the 
action will be determined by the sampling density. The motion 
will seem to pick up speed where the differential between 
shutter clicks is high (a slow shutter) and will seem to lose 
speed where the differential between shutter clicks is low (a 
fast shutter). From the other point of view, the shutter is 
regarded as recording the motion at a fixed rate, and dense 
sampling occurs at points of the trajectory where motion is 
slow while sparse sampling occurs where motion is fast . A 
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fIXed number of shutter clicks is allocated to the sequence of 
motion, and the sampling rate reflects an orchestration of the 
speeds along the path of motion required to complete the 
sequence in the number of frames given. This orchestration of 
speedups and slowdowns constitutes the kinematic adjustment. 

4. Speed-Profile Curve 

The technical background for this approach comes from 
[Mastin86J, where similar methods are used to sample 
parametric curves and surfaces nonuniformly, using reparame
terization, for the purposes of creating finite-element grids. In 
the case of finite elements, the reparameterization of a curve is 
made to be sensitive to some physical property such as local 
curvature, causing it to act as a "proming function" governing 
the sampling of the curve. In our case we wish to construct the 
reparameterization according to relative variations in speed 
that an animator can set interactively. To do this we must 
represent the parameter s as a function of another parameter, a, 
s = s(a), and create a function cp(a) that, in a way to be 
explained in the next section, forces equally spaced values of a 
to produce values of s spaced along some desired pattern of 
points on the trajectory P(s). We will call cp(a) the speed
profile curve. Peaks in the curve cp(a) should yield widely 
spaced points on the trajectory, producing accelerated motion, 
and valleys in the curve cp(a) should yield closely spaced 
points on the trajectory, producing slowed motion, where 
closeness of spacing is measured in Euc1idian distance along 
the arc of the trajectory. This attention to arc-length, object
space distance is required to provide a direct linkage between 
the input of the animator and the effect on the speed of motion. 

In the prototype system, cp(a) is presented as a B-spline 
curve defmed by control values Vo ' . .. , VI that the animator 

can insert, delete, raise, and lower. The range of values that 
each Vj can take on dictates the shape of the speed-pro me 

curve and the influence that the curve will have over some por
tion of the sampling process. The nature of a B-spline curve is 
such that the maximum and minimum values of the v's will 
contain the maximum and minimum values of cp(a). (This con
vex hull property B-splines is established and described in 
[Bartels87bJ, together with other properties.) Some tuning will 
be necessary to suit the desires of the individual animator, but 
it is unlikely that a range greater than 0 < cp(a) < lOO will be 
needed. Figures 4, 5, and 6, for example, were produced for 
cp(a) between I and 25. 

An example of a B-spline speed-pro me curve is shown in 
Figure I, and Figure 2 shows the curve after the control value 
V4 has been lowered. 

o 
Vo 

V2 

o 

o 
v3 

Figure 1. A B-spline curve. 
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Figure 2. An adjusted B-spline curve. 

5. Sampling 

The trajectory forms a locus of points in 2-D, (x(s) ,y(s». 
and we are assuming that we can express s as a function of 
some more deeply underlying parameter a. The arc-length 
derivative with respect to a along the trajectory is given by 

( !!!... ) A / ( dx f + ( dY)2 . 
da "ds ds 

An interpretation of this formula is that, if we wish to maintain 
a constant change in arc length (a constant speed) by taking 
constant steps in a, then we must take steps in s at a rate (per 
unit a) proportional to 

I 

that is, we must arrange for s to satisfy the differential equation 

ds K 
- = -,=:::::;:==::r.== 
da 

where K is the constant speed to be imposed. In fact. we wish 
to vary the speed throughout the trajectory, increasing or 
decreasing K by a factor at each a as we go along. Letting the 
function cp(a) give the scale of increase or decrease. this means 
that we are interested in making s satisfy the more general dif
ferential equation 

ds 
da =F(a,s) , 

where 

(5.1) 

The basic speed, K, is free to be set so that the range of a 
corresponds to the range of s. We are only interested in the 
relative increase or decrease of speed over the extent of the 
action. The total time of the action is traditionally set by the 
animator in terms of the number of frames to be produced from 
Po to P n' and we must not violate that timing. Our aim is 

merely to adjust the appearance of local speedups and slow
downs. The variation in a depends upon the number of control 
values. For f+ I control values, vo, ... , VI' the range of a will 

be OSaSf. To fIX the traversal time of the trajectory so that 
all of the frames fit within the time, we require that 

s(O) = So (5.2) 
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and that 

(5.3) 

Equation (5.2) represents the initial value of the fIrst-order, 
ordinary differential equation (5.1), and it can be satisfied by 
setting s to So when a is set to 0 at the start of the integration 

process. Equation (5.3) implicitly defUles the choice of K , to 
be explained below. 

In the prototype system a simple Runge-Kutta integrator is 
used to obtain the values of s corresponding to the frames. 
(The Runge-Kutta integration process is described in [For
sythe77] and [Stoer80], for example.) Assuming that N+I 
frames are to be produced from Po (corresponding to frame 0 

with 0.=0) to p" , (corresponding to frame N with 0.= f) , then 

the integrator is responsible for producing values of s 
corresponding to 

a=0,a=~ ,a=2~ • ... • a=N~=f 

where ~= fIN . Such integrators usually demand, for 
accuracy's sake, that these values of a be obtained from 
a-steps of size h equal to some fraction of ~; i.e., h =llIk. 
(k= 10 is often a reasonable choice.) The Runge-Kutta integra
tor and the sampling process is shown in Figure 3. The value 
of slack is positive. It represents the amount we may let the 
integration process overshoot the end of the trajectory. 

The intermediate key positions, PI •. .. • P"_I will appear 

in frames only by chance. While the path of motion is 
guaranteed to go through the key positions, this sampling 

(set a value of K I 
0. :=0 
s :=so 

h :=fl(kxN) 
i :=0 
while (a <f and s < s" + slack ) do 

FI :=F(a ,s)x h 

F2 :=F(a+hI2,s+FI/2)xh 

F3 := F( a+hI2 , s+F2/2) x h 

F4 :=F(a+h ,s+F3)xh 

s :=s+(FI +F2+F3+F4 )/6 

a :=a+h 
i := i+l 
if ( i = k ) then 

i :=0 
(sample Pat s I 

endif 
endwhile 

Figure 3. 1be Runge-Kutta integration process. 

process does not necessarily result in the "shutter being open" 
at the "times" corresponding to s=Sj, the values of s 

representing the key positions. Animators have not found this 
a negative aspect of the method. But, in the event that a key 
position must be captured in a frame, the animation can be bro
ken into portions in which that key serves as the final key for 
one part and as the initial key for the next. 
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K must be chosen so that equation (5.3) is satisfied; that is, 
so that the integration will end at 0.= f with s(f) = s" . This is a 

root-finding problem that we can solve using the ZEROIN ver
sion of the secant method given in [Forsythe77]. Briefly, s is 
regarded as a "function" of the "variable" K (in addition to 
being a function of a), and ZEROIN is used with the s 
obtained at the end of the integration as the "function value" 
corresponding to K. To find the value of K which forces s to 
equal s" at the end of the integration; that is, the "root" of the 

equation s = s" ' two bounding values of K , K 10w and Khigh, are 

first found by trial integrations so that K 10w yields s(f) < s" and 

Khigh yields s" + slack > s(f) > s". This "brackets" the root 
(i.e. the value of K in the interval [K1ow , K high ] for which 

s(f)=s"). The ZEROIN process continually refUles 

[Klow,Khigh] , as well as a trial value of the root KtriaJ within 

this interval, reducing the width of the interval until a preset 
tolerance is attained. Each iteration of ZEROIN costs a 
Runge-Kutta integration from 0.=0 to 0.= f with a trial value 
of K . The Runge-Kutta process and ZEROIN are both fast 
enough, however, that a complete revision of the sampling of a 
trajectory can be accomplished in a few seconds on the proto
type system described in the next section. 

Three examples of the effect the speed profIle has on the 
sampling of a trajectory are presented in Figures 4, 5, and 6. 

cp(a) 

P(s) 

Figure 4. A low speed in the central portion of !he trajectory. 

P(s) 

Figure S. A low speed at the ends of !he trajectory. 
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P(s) 

Figure 6. Mild variations of speed throughout the trajectory. 

6. Prototype System 

These ideas have been implemented in C on a Silicon 
Graphics 2400 Turbo IRIS workstation. The overall screen 
layout for the method of speed-proftle adjustment is indicated 
in Figure 7. 

DDDDDDDDI 
IIIIIIITIII I IIII 

I 

Figure 7. Layout of the prototype system's screen. 

The display is divided into three regions: a key-frame 
scripting area, a timing control area and a preview port. The 
top portion of the screen contains the key-frame scripting area. 
In this region keys can be moved around, copied, deleted and 
added. The area underneath the scripting portion, on the right, 
provides a line-test preview of the sequence. To control pre
viewing, at the bottom right of the screen is a control panel 
whose form and function resemble that of a videotape player. 
It provides a frame counter and buttons for single stepping or 
24-frame-per-second cycling in either forward or backward 
directions. The left side of the screen is the timing control 
area, which is divided into rectangular sub-areas for the display 
of timing information. The bottom sub-area is for kinematic 
"fine tuning" and displays the speed-proftle curve . Opera
tions to move, add, or delete control points are invoked from a 
menu at the bottom left. Above the speed-proftle area is 
another rectangular sub-area containing a stripe for each frame, 
with the frame stripes spaced in proportion to their distance 
along the trajectory . The animator may interpret this as 
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representing time of display. This manner of showing the tim
ing of a script is analogous to the time bars animators tradition
ally draw and use [Whitaker81]. For coarse changes to the 
timing of the script, the animator is permitted to change the 
actual time of any selected key frame. To do this, arrow
shaped buttons are provided in the time-bar area that shift any 
selected key one frame forward or backward in the sequence of 
frames . 

On the subject of separating the the temporal element of 
motion from the spatial, the reactions of animators and of peo
ple otherwise familiar with computer animation have been 
overwhelmingly positive. On the whole, animators appear to 
feel quite comfortable with the notion of a speed-proftle curve 
and with the ability to directly manipulate the curve itself. In 
particular, the freedom to defme a curve that can but doesn't 
have to be anchored to key-frames seems to be quite attractive. 
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