
14

Speed Adjustment for Key-Frame Interpolation

Richard H. Bartels
University of Waterloo

Department of Computer Science
Waterloo, Ontario N2L 3Gl

Canada

Ines Hardtke
National Film Board of Canada

Studio A, French Animation
Box 6100, Station A

Montreal, PQ H3C 3H5
Canada

Abstract

We present a method of speed adjustment as a means of
controlling motion in of key-frame animation. This method is
designed for key-point trajectories that are expressed as dif
ferentiable parametric curves. The animator is given a means
of influencing the speed of a trajectory 's traversal by the direct
manipulation of a speed-profile curve. Any adjustment of this
curve is translated into an adjustment of the differential rate of
the parametric sampling that produces inbetween frames from
the trajectory. The sampling rate is correlated with object
space distances along the trajectory. This results in intuitively
meaningful control over the motion of the animation.

KEYWORDS: Key-Frame Animation, Splines, Timing Con
trol, Kinematic Adjustment.

I. Introduction

This paper describes a method for controlling the temporal
aspects of motion, as distinct from its spatial aspects. The
method is adaptable for any key-frame animation system in
which the trajectories between key points are expressed as dif
ferentiable parametric curves.

In Section 2 we give a brief context in which this work is
being carried out. Section 3 reviews parametric trajectories.
Section 4 covers the speed-profile curve and its means of con
trol, and Section 5 describes how the speed-profile curve is
used to influence motion. Section 6 describes a prototype
line-test system prepared at the National Film Board of
Canada.

2. Context

Computer-aided animation can be divided roughly into two
classes: one is key-frame animation, in which motion is deter
mined from a sequence of arbitrarily set positions, and the
other is dynamic simulation, in which motion is determined
from physical laws. We are interested here in key-frame ani
mation, particularly in systems that provide automatic
inbetweening and include utilities for subjective timing con
trol; that is, kinematic adjustment.

Linear interpolation is the simplest approach to generating
in between frames automatically, and most early key-frame sys
tems used this method, for example the prototype system
developed in the late 1960's by Nestor Burtnyk and Marceli
Wein [Burtnyk71]. Linear interpolation, however, is not suffi
ciently smooth for high-quality animation. It is associated with
a number of objectionable artifacts [Kochanek84] . Subse
quently, Burtnyk and Wein [Burtnyk76] developed a key
position approach based upon skeletons in which motion was
defined using stick figures, which were then "fJ.!led out" with
polygons for the final rendering. The use of cubic interpola
tion resulted in smooth motion for the stick figures, but the
polygons "clothing" the skeletons still exhibited linear
artifacts. In 1977 Martin Tuori [Tuori77] described a way of
automatically smoothing out linearly defined motions by a
method of overlapping actions. This technique removed some
of the artifacts of linear interpolation, but it could result in tra
jectories that missed key positions entirely. In the early 1980's
Doris Kochanek, Richard Bartels, and Kellogg Booth produced
an automatic inbetweening method that was based upon the
cubic interpolation of key positions by Catmull-Rom splines
[Kochanek82]. Cubic trajectories have become a standard
method for defming the spatial aspects of motion in modem
key-frame systems.

A step toward providing a measure of kinematic control
came with the 2-D system GENSYS developed by Ron
Baecker [Baecker69]. Here the animator provided a combined
description of the path and timing of a motion by drawing
motion paths called P-curves on a digitizing tablet. The shape
of a P-curve defmed the inbetweening trajectory, and the speed
at which the curve was drawn dictated the temporal aspects of
the motion. Later, William Reeves [Reeves81] investigated
moving point constraints as a way of generalizing P-curves.
This added a further degree of control to the P-curve approach.
The requirement that the animator specify the trajectory, how
ever, has prevented the incorporation of the P-curve approach
in automatic key-framing systems.

lbis research wa~ supported by the Canadian Government through the
Natural Sciences and Engineering Research Council and the National
Film Board.

Graphics Interface '89

In 1984 the inbetweening technique of Kochanek, Bartels,
and Booth was modified to include three control parameters:
tension, continuity, and bias [Kochanek84]. To the automatic
defmition of a trajectory from key frames was added a limited
capacity to select aspects of motion kinematics. But selection
does not constitute control. No adjustment of the kinematic
aspects separate from the trajectory was provided.

One of the important things animators leam is that it is sub
tle variations in temporal aspects that give personality to
motion [Lasseter87] . Thus, in the computer interpolation pro
cess it is desirable that the temporal element be isolated from
the spatial, to be available to the animator under separate con
trol. In 1985 Scon Steketee and Norman Badler [Steketee85]
addressed the problem of separating the kinematic from the
spatial aspects of key-frame animation through the use of two
functions employed in composition, one to incorporate frame
numbers and the other to specify frame times. The function for
frame times was available for the animator to modify.

In 1987, Bartels and Hardtke [Bartels87] investigated two
methods of controlling the kinematics of a key-frame anima
tion. One of these offered control over frame times, much like
the method of Steketee and Badler, and the other provided a
means of directly influencing the relative speed over which
portions of the trajectory are traversed. We report on the
method of speed control here. Unlike the method of Badler
and Steketee, or methods used in the commercial systems
known to the authors, the proposals presented here provide the
animator a direct manipulative grasp on object-space speed
rather than the indirect control of speed that is achieved
through modification of frame times or of ad hoc adjusbnents
to the sampling rate on a parametric trajectory curve. Anima
tors will have need of various tools to achieve their goals. For
certain purposes, control over frame times may be less desir
able than direct control over motion velocity. With this in
mind, speed control was provided to animators at the National
Film Board of Canada in a prototype line-test system which
was used in conjunction with the WaveFront animation system
to produce a trial animated sequence. Response from the ani
mators has been favorable.

3. Trajectory

Ideally, key frames should be able to define a continuous
spatial path for the motion to follow. The frames recording
that motion should be interpolated from the spatial path
according to some temporal sampling pattern provided in an
intuitive fashion by the animator. Changing the sampling pat
tern should not change the spatial path defined by the key posi
tions.

Let Po , PI , ... , Pn be the position of a single key point

throughout a key-frame sequence. We assume that an
inbetweening system has produced a parametric trajectory

P(S) = (x(s) ,y(s»

joining the locations Pi,

Pi = (Xi ,Yi) = (X(Si) ,Y(Si» = P(Si) .

We shall present the discussion here in terms of trajectories
that are 2-D curves in X-Y space. The discussion is equally
applicable to 3-D curves, and it can be modified to handle tra-

15

jectories in other coordinates of motion; e.g., angles of rota
tion. All we will need to require is that the trajectory be
parametric, that it be differentiable, and that appearance of
motion be directly related to some measure of spatial progress
along the trajectory, such as arc length.

The parameter S satisfies So ~ S ~ sn for the trajectory, with

S = Si for the i th key frame. The parameter S need not have

any physical significance, and its relation to the amount of
motion over any portion of the trajectory is often arbitrary and
varys from location to location. A simple animation system
would compute the inbetween frames from Pi to Pi+1 by sam-

pling S at uniformly spaced values over the interval from Si to

Si+!. The resulting appearance of motion is often unsatisfying

due to the arbitrary association of values, s, in parameter space
with points, P, in object space along the trajectory. The
motion can be adjusted by modifying the sampling of S in
some fashion. Commercial systems known to the authors
arrange to do this by providing access to S through some form
of "sampling function," S =s(t), that the animator can control.
System-defined steps in t provide parameter values in s that
are nonuniformly spaced, but this leaves the animator with a
trial-and-error process of manipulating the sampling function
until the desired appearance of motion is attained. The method
of Steketee and Badler [Steketee85], on the other hand, splits
the description of motion into a "position component," giving
location in terms of frame number, and a "kinetic com
ponent," giving frame number in terms of time. The two com
ponent functions are composed to give the fmal motion. The
animator has precise timing control and, indirectly through the
frame times, control over such aspects of motion as speed.

The adjustment we shall be discussing is a method to alter
the default sanlpling to use nonuniformly spaced of values of s.
But the method of achieving this will be done with a mechan
ism that relates directly to speed of progress along the trajec
tory. It provides a method that works directly in the object
space of the animation scene. This is intended to complement
the method of Steketee and Badler.

The effect of non uniform parametric sampling can be
understood in either of two ways. From one point of view, the
playback of an animation sequence is locked into a fixed
number of frames per second (e.g., 24 for mm or 30 for video),
and a nonuniform sampling rate acts as a variable-speed shutter
on a camera. Assuming that the sampling density in the
parameter s is coupled with the arc length along the trajectory;
that is, with the actual distance covered by the motion, dense
sampling expands the detail of the trajectory, providing a
slow-motion version of the action, and sparse sampling
compresses the detail, providing a time-lapse version of the
action. The playback has an exactly predictable timing based
upon the number of frames in the sequence (this is of impor
tance in planning an aninlation), but the kinematic effect of the
action will be determined by the sampling density. The motion
will seem to pick up speed where the differential between
shutter clicks is high (a slow shutter) and will seem to lose
speed where the differential between shutter clicks is low (a
fast shutter). From the other point of view, the shutter is
regarded as recording the motion at a fixed rate, and dense
sampling occurs at points of the trajectory where motion is
slow while sparse sampling occurs where motion is fast . A

Graphics Interface '89

fIXed number of shutter clicks is allocated to the sequence of
motion, and the sampling rate reflects an orchestration of the
speeds along the path of motion required to complete the
sequence in the number of frames given. This orchestration of
speedups and slowdowns constitutes the kinematic adjustment.

4. Speed-Profile Curve

The technical background for this approach comes from
[Mastin86J, where similar methods are used to sample
parametric curves and surfaces nonuniformly, using reparame
terization, for the purposes of creating finite-element grids. In
the case of finite elements, the reparameterization of a curve is
made to be sensitive to some physical property such as local
curvature, causing it to act as a "proming function" governing
the sampling of the curve. In our case we wish to construct the
reparameterization according to relative variations in speed
that an animator can set interactively. To do this we must
represent the parameter s as a function of another parameter, a,
s = s(a), and create a function cp(a) that, in a way to be
explained in the next section, forces equally spaced values of a
to produce values of s spaced along some desired pattern of
points on the trajectory P(s). We will call cp(a) the speed
profile curve. Peaks in the curve cp(a) should yield widely
spaced points on the trajectory, producing accelerated motion,
and valleys in the curve cp(a) should yield closely spaced
points on the trajectory, producing slowed motion, where
closeness of spacing is measured in Euc1idian distance along
the arc of the trajectory. This attention to arc-length, object
space distance is required to provide a direct linkage between
the input of the animator and the effect on the speed of motion.

In the prototype system, cp(a) is presented as a B-spline
curve defmed by control values Vo ' . .. , VI that the animator

can insert, delete, raise, and lower. The range of values that
each Vj can take on dictates the shape of the speed-pro me

curve and the influence that the curve will have over some por
tion of the sampling process. The nature of a B-spline curve is
such that the maximum and minimum values of the v's will
contain the maximum and minimum values of cp(a). (This con
vex hull property B-splines is established and described in
[Bartels87bJ, together with other properties.) Some tuning will
be necessary to suit the desires of the individual animator, but
it is unlikely that a range greater than 0 < cp(a) < lOO will be
needed. Figures 4, 5, and 6, for example, were produced for
cp(a) between I and 25.

An example of a B-spline speed-pro me curve is shown in
Figure I, and Figure 2 shows the curve after the control value
V4 has been lowered.

o
Vo

V2

o

o
v3

Figure 1. A B-spline curve.

16

o
Vo

V2

o

~ v ci
~ ~

o
v3

Figure 2. An adjusted B-spline curve.

5. Sampling

The trajectory forms a locus of points in 2-D, (x(s) ,y(s».
and we are assuming that we can express s as a function of
some more deeply underlying parameter a. The arc-length
derivative with respect to a along the trajectory is given by

(!!!...) A / (dx f + (dY)2 .
da "ds ds

An interpretation of this formula is that, if we wish to maintain
a constant change in arc length (a constant speed) by taking
constant steps in a, then we must take steps in s at a rate (per
unit a) proportional to

I

that is, we must arrange for s to satisfy the differential equation

ds K
- = -,=:::::;:==::r.==
da

where K is the constant speed to be imposed. In fact. we wish
to vary the speed throughout the trajectory, increasing or
decreasing K by a factor at each a as we go along. Letting the
function cp(a) give the scale of increase or decrease. this means
that we are interested in making s satisfy the more general dif
ferential equation

ds
da =F(a,s) ,

where

(5.1)

The basic speed, K, is free to be set so that the range of a
corresponds to the range of s. We are only interested in the
relative increase or decrease of speed over the extent of the
action. The total time of the action is traditionally set by the
animator in terms of the number of frames to be produced from
Po to P n' and we must not violate that timing. Our aim is

merely to adjust the appearance of local speedups and slow
downs. The variation in a depends upon the number of control
values. For f+ I control values, vo, ... , VI' the range of a will

be OSaSf. To fIX the traversal time of the trajectory so that
all of the frames fit within the time, we require that

s(O) = So (5.2)

Graphics Interface '89

and that

(5.3)

Equation (5.2) represents the initial value of the fIrst-order,
ordinary differential equation (5.1), and it can be satisfied by
setting s to So when a is set to 0 at the start of the integration

process. Equation (5.3) implicitly defUles the choice of K , to
be explained below.

In the prototype system a simple Runge-Kutta integrator is
used to obtain the values of s corresponding to the frames.
(The Runge-Kutta integration process is described in [For
sythe77] and [Stoer80], for example.) Assuming that N+I
frames are to be produced from Po (corresponding to frame 0

with 0.=0) to p" , (corresponding to frame N with 0.= f) , then

the integrator is responsible for producing values of s
corresponding to

a=0,a=~ ,a=2~ • ... • a=N~=f

where ~= fIN . Such integrators usually demand, for
accuracy's sake, that these values of a be obtained from
a-steps of size h equal to some fraction of ~; i.e., h =llIk.
(k= 10 is often a reasonable choice.) The Runge-Kutta integra
tor and the sampling process is shown in Figure 3. The value
of slack is positive. It represents the amount we may let the
integration process overshoot the end of the trajectory.

The intermediate key positions, PI •. .. • P"_I will appear

in frames only by chance. While the path of motion is
guaranteed to go through the key positions, this sampling

(set a value of K I
0. :=0
s :=so

h :=fl(kxN)
i :=0
while (a <f and s < s" + slack) do

FI :=F(a ,s)x h

F2 :=F(a+hI2,s+FI/2)xh

F3 := F(a+hI2 , s+F2/2) x h

F4 :=F(a+h ,s+F3)xh

s :=s+(FI +F2+F3+F4)/6

a :=a+h
i := i+l
if (i = k) then

i :=0
(sample Pat s I

endif
endwhile

Figure 3. 1be Runge-Kutta integration process.

process does not necessarily result in the "shutter being open"
at the "times" corresponding to s=Sj, the values of s

representing the key positions. Animators have not found this
a negative aspect of the method. But, in the event that a key
position must be captured in a frame, the animation can be bro
ken into portions in which that key serves as the final key for
one part and as the initial key for the next.

17

K must be chosen so that equation (5.3) is satisfied; that is,
so that the integration will end at 0.= f with s(f) = s" . This is a

root-finding problem that we can solve using the ZEROIN ver
sion of the secant method given in [Forsythe77]. Briefly, s is
regarded as a "function" of the "variable" K (in addition to
being a function of a), and ZEROIN is used with the s
obtained at the end of the integration as the "function value"
corresponding to K. To find the value of K which forces s to
equal s" at the end of the integration; that is, the "root" of the

equation s = s" ' two bounding values of K , K 10w and Khigh, are

first found by trial integrations so that K 10w yields s(f) < s" and

Khigh yields s" + slack > s(f) > s". This "brackets" the root
(i.e. the value of K in the interval [K1ow , K high] for which

s(f)=s"). The ZEROIN process continually refUles

[Klow,Khigh] , as well as a trial value of the root KtriaJ within

this interval, reducing the width of the interval until a preset
tolerance is attained. Each iteration of ZEROIN costs a
Runge-Kutta integration from 0.=0 to 0.= f with a trial value
of K . The Runge-Kutta process and ZEROIN are both fast
enough, however, that a complete revision of the sampling of a
trajectory can be accomplished in a few seconds on the proto
type system described in the next section.

Three examples of the effect the speed profIle has on the
sampling of a trajectory are presented in Figures 4, 5, and 6.

cp(a)

P(s)

Figure 4. A low speed in the central portion of !he trajectory.

P(s)

Figure S. A low speed at the ends of !he trajectory.

Graphics Interface '89

P(s)

Figure 6. Mild variations of speed throughout the trajectory.

6. Prototype System

These ideas have been implemented in C on a Silicon
Graphics 2400 Turbo IRIS workstation. The overall screen
layout for the method of speed-proftle adjustment is indicated
in Figure 7.

DDDDDDDDI
IIIIIIITIII I IIII

I

Figure 7. Layout of the prototype system's screen.

The display is divided into three regions: a key-frame
scripting area, a timing control area and a preview port. The
top portion of the screen contains the key-frame scripting area.
In this region keys can be moved around, copied, deleted and
added. The area underneath the scripting portion, on the right,
provides a line-test preview of the sequence. To control pre
viewing, at the bottom right of the screen is a control panel
whose form and function resemble that of a videotape player.
It provides a frame counter and buttons for single stepping or
24-frame-per-second cycling in either forward or backward
directions. The left side of the screen is the timing control
area, which is divided into rectangular sub-areas for the display
of timing information. The bottom sub-area is for kinematic
"fine tuning" and displays the speed-proftle curve . Opera
tions to move, add, or delete control points are invoked from a
menu at the bottom left. Above the speed-proftle area is
another rectangular sub-area containing a stripe for each frame,
with the frame stripes spaced in proportion to their distance
along the trajectory . The animator may interpret this as

18

representing time of display. This manner of showing the tim
ing of a script is analogous to the time bars animators tradition
ally draw and use [Whitaker81]. For coarse changes to the
timing of the script, the animator is permitted to change the
actual time of any selected key frame. To do this, arrow
shaped buttons are provided in the time-bar area that shift any
selected key one frame forward or backward in the sequence of
frames .

On the subject of separating the the temporal element of
motion from the spatial, the reactions of animators and of peo
ple otherwise familiar with computer animation have been
overwhelmingly positive. On the whole, animators appear to
feel quite comfortable with the notion of a speed-proftle curve
and with the ability to directly manipulate the curve itself. In
particular, the freedom to defme a curve that can but doesn't
have to be anchored to key-frames seems to be quite attractive.

7. Acknowledgements

We have benefited from discussions, support, encourage
ment, and opinions provided by many people. We would par
ticularly like to thank Marc Aubry, Kelly Booth, Robert For
get, Michel Hebert, Terry Higgins, Doris Kochanek, Daniel
Langlois, Dave Martindale, Richard Mercille, and Bruno Teze
nas du Montcel.

Graphics Interface '89

8. References

Baecker69.
Ron Baecker, "Interactive Computer-Mediated Anima
tion," MAC-TR-61 , PhD Thesis, Massachusetts Insti
tute of Technology (1969).

Bartels87a.
Richard Bartels and Ines Hardtke, "Kinetics for Key
Frame Interpolation," CS-87 -07, Computer Graphics
Laboratory, Computer Science Department, University of
Waterloo (1987).

Bartels87b
Richard Bartels, John Beatty, and Brian Barsky, An
Introduction to Splines for Use in Computer Graphics
and Geometric Modeling, Morgan Kaufmarm Publishers,
Palo Alto, California (1987).

Burtnyk71 .
Nestor Burtnyk and Marceli Wein, "Computer Generated
Key Frame Animation," Journal of the SMPTE, 80, pp.
149-153 (1971).

Burtnyk76.
Nestor Burtnyk and Marceli Wein, "Interactive Skeleton
Techniques for Enhancing Motion Dynamics in Key
Frame Animation," Communications of the ACM, 10, pp.
564-569 (1976).

Forsythe77.
George Forsythe, Michae1 Malcolm, and Cleve Moler,
Computer Methods for Mathematical Computations,
Prentice-HaIl (1977).

Kochanek82.
Doris Kochanek, Richard Bartels, and Kellogg Booth, "A
Computer System for Smooth Keyframe Animation,"
CS-82-42, Computer Graphics Laboratory, Computer
Science Department, University of Waterloo (1982).

Kochanek84.
Doris Kochanek and Richard Barte1s, " Interpolating
Splines with Local Tension, Continuity and Bias Con
trol," Computer Graphics, 18 (3), pp. 33-41 (1984)
[proceedings of the SIGGRAPH '84 Conference].

Lasseter87.
John Lasseter, "Principles of Traditional Animation
Applied to 3D Computer Animation, " Computer Graph
ics, 21 (4), pp. 35-44 (1987) [proceedings of the SIG
GRAPH '87 Conference].

19

Mastin86.
C. Wayne Mastin, "Parameterization in Grid Generation,"
Computer-Aided Design, 18 (1) , pp. 22-24 (1986).

Reeves81.
William T. Reeves, " Inbetweening for Computer Anima
tion Utilizing Moving Point Constraints," Computer
Graphics, 15 (3), pp. 263-269 (1981) [Proceedings of the
SIGGRAPH '81 Conference].

Steketee85.
Scott Steketee and Norman Badler, "Parametric
Keyframe Interpolation Incorporating Kinetic Adjustment
and Phrasing Control," Computer Graphics, 19 (3), pp.
255-262 (1985) [proceedings of the SIGGRAPH '85
Conference] .

Stoer80.
Josef Stoer and Roland Bulirsch, Introduction to Numeri
cal Analysis, Springer Verlag (1980).

Tuori77 .
Martin I. Tuori, • 'Tools and Techniques for Computer
aided Animation," Master 's Thesis, Computer Science
Department, University of Toronto (1977).

Whitaker81 .
Harold Whitaker and John Halas, Timing for Animation,
Focal Press Limited, London, England (1981) .

Graphics Interface '89

