
235

TREE-MAKER: A User Tool

William Kenneth Neighbors ill
Department of Aeronautics and Astronautics

Stanford University
Stanford, California 94305

Larry F. Hodges
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, GA 30332

Abstract

TREE-MAKER was designed as a tool for generating and
rendering realistic images of trees. Each tree is created from a
tree template that specifies simple branching rules and leaf
definitions. Many different types of trees may be created by
varying the parameters of the template. The flexibility provided
by this approach makes it suitable for users who are not
familiar with programming techniques for modeling natural
objects by still allowing them creative control of the image.
Users are free, then, to concentrate on the design of trees, not
the programming of special techniques.

Key Words: Particle System, Fractal, Self-Similarity, Tree
Template.

I. Introduction

Graphic models of natural phenomena such as clouds,
plants, coastlines, ocean waves, or mountains must reproduce
an overwhelming amount of variety and detail. Methods used
to model natural objects usually rely on some type of recursive
self-similarity to construct complex objects from a relatively
small amount of information. These methods can be based
upon fractals, grammars, iterated function systems, or particle
systems [4,10].

In this paper we describe a program for generating and
rendering images of trees . Several different techniques have
been described in the computer graphics literature during the
past five years to model trees. These techniques can be adapted
from mathematical theory, or can be based on a model of the
biological or geometric characteristics of trees. For example,
Oppenheimer has created trees with spiraling branches, a
characteristic of many fractal plants [6] . Barnsley, et. al.
encodes and models shapes and textures of two-dimensional
images of trees and leaves using iterated function systems[2].
Another adapted mathematical theory used to model plants is
L-systems, such as in Prusinkiewicz, Lindenmayer, and
Hanan's attempt to capture the developmental process as a key
to realism [7].

These mathematical methods, as well as the biological
models, usually use some type of branching rule to specify the
angles of the branches for a particular species of tree. Aono
and Kunii have used a set of botanical rules in a grammatical
form to generate natural looking branches that model real trees
[1]. The branching rules are based on the true biological
characteristics of the tree. This approach has been expanded by
de Reffye, et. al. to model a richer variety of plants and trees
[5]. These models also include the effects of wind and gravity.

Regardless of the method of modeling, a realistic image
must be created from the tree model. With this task in mind, it
is advantageous to base the model on what a tree looks like.
Bloomenthal uses this approach in modeling the maple tree [3].
The limb surface, leaves, and shadows are calculated exactly,
including a bump map from real bark, creating a very realistic
looking maple tree. However, when close up views are
unimportant and a large number of trees must be generated, as
in a forest, it is necessary to use stochastic modeling and more
approximate rendering. This method reduces the work of the
user describing the tree and of the computer rendering the
image. Bill Reeves' forests are a splendid example of this
method using structured particle systems [8]. The shading and
visible surface elimination are approximations, but this has no
noticeable effect because of the richness in detail.

Because of its efficiency and richness in detail we chose
to follow a particle system approach with probabilistic
branching while developing TREE-MAKER. Our goal was to
create a tool which could be used by anyone with a basic
knowledge of computers (Le., how to use the editor and
execute a program on the host system). This approach allows
the user to concentrate on the design of trees, not the
programming of special techniques . This freedom is
accomplished through the use of a tree template to specify
simple branching rules and leaf definitions. The information in
the template describes the lighting model, rules for growth, and
leaves (or flowers) of a particular tree. Many different types of
trees may be created by varying the parameters of the template.

II. Growth of the Tree

The growth of the tree is much like a particle system
described by Reeves [9]. A system of particles is repeatedly
updated with growth vectors, and new particles are added using
the branching rules from the template. At each iteration, the
current position of all particles is stored, and the paths of the
particles define the limbs.

The branching rule defines the range for the number of
branches off a limb and specifies an acceptable range for the
direction and angle of the branch. These two angles are shown
in figure l. All ranges given in the tree template are uniformly
distributed random variables. Another parameter in the rule
specifies how much to reduce the growth rate of the current
branch compared to that of the parent branch. A set of these
three parameters, augmented with a probability of occurrence
for each triplet, constitutes a branching rule in the tree template.
The format of a branching rule is shown in figure 6. This
time-invariant stochastic branching rule suffices for those trees
with random branching. For trees with more systematic

Graphics Interface '89

rear view

daughter

t\
A

side view

Figure 1. Branching Angles

branching, such as alternating or spiral patterns, a time varying
set of probabilities would have to be implemented, where the
probabilities are varied according to previous branching
selections.

To build a tree, the program starts with a single particle
on the ground with a growth vector pointing up, as specified in
the tree template. The current position of this particle is stored,
and then the next position is calculated by adding the growth
vector to the current position. The program shortens the
growth vector to make subsequent branches close~ tog.ether,
using an aging factor from the tree template. The direcnon of
the vector is also changed slightly toward the ground by
subtracting a gravity acceleration from the z-component (up),
and re-normalizing to keep the magnitude the same. This
gravity acceleration is calculated from a gravity parameter in the
tree template and the cosine of the the angle between the growth
vector and the horiwntal.

The program then checks the branching rules to decide
how many branches will occur and in which direction they will
grow. A particle is added to the system at the current position
for every new branch, with its own growth vector determined
from the branching rule and the parent branch's growth vector.
A width is stored for each of the particle's past positions, and
these widths are incremented by an amount specified in the tree
template. This procedure is repeated until all limbs have been
generated as shown in figure 2.

After the tree has grown through the number of iterations
specified in the tree template, the program adds a leaf to the end
of every branch. The user defines these leaves in the template
as a set of triangles and lines. Flowers and fruits can also be
defined in the same way, and the user states the probability of
each different type of leaf in the template. The program
transforms this set of points to place the leaf on the end of each
branch in a random orientation limited by the constraints in the
template.

•
• Particle

o Stored Position (11mb nodes)

Figure 2. Growth of the Tree

236

nI. Shading and Rendering

Shading of each element of the tree depends on its
position in the tree as well as its orientation with respec~ to the
sun. Five parameters specified in the te!?plat~ d~termme .the
relative weight to give to each of five shading cntena. AmbIent
light and Lambert's cosine law, as well as height, radius, and
angle factors affect the amount of shade to give an element.
For example, leaves that are closer to the ground, closer to the
trunk, or on the backside of the tree relative to the sun are
shaded darker to simulate the shadowing of leaves upon
themselves. Figure 3 illustrates these shading techniques.

When calculating a normal, N, for leaf line elements and
limbs, the ambiguity in direction is resolved by calculating .the
normal that lies in the plane with the light source. The radius,
ro, and height, hO, of the tree is stored as the tree is growing,
where the radius is the largest horiwntal distance of any particle
from the fIrst particle's position. The height factor, h/hO, is a
ratio of the height of the element over the height of the tree, and
the radius factor, rlro, is a ratio of the element's distance from a
vertical trunk over the radius of the tree. The angle, q, is
measured relative to the trunk and the light source.

To add more realism to the image, the program generates
a shadow of the tree by copying the final tree representation
completely, and then casting all the points .onto the ground,
using a vector from the sun. The colors of thIS shadow tree are
then changed to the shadow color of the ground.

After shading, the program renders the tree by performing
the viewing transformation and then adding the elements to a
z-buffer. Three graphics primitives are used: lines and
triangles for the leaves, and 4-sided polygons for the limbs. To
reduce computation, each primitive is added to the z-buffer as a
whole instead of calculating the z-position of each pixel in the
primitive. This approximation is not very noticeable since the
elements are many and their sizes are small.

IV. Data Structures

The tree is represented in memory as a multiple linked
list. Figure 5 shows the major nodes and links in this
representation. The branching rules are linked together in order
of their levels. Level 1 branches occur off the trunk; level 2
branches occur off these; etc. It is not necessary to have a
branching rule for each level because the program will use the
nearest level less than the current level. Each branching rule
consists of three randomized branching parameters that
determine the characteristics of new particles added to the
system: angle and direction of branch and growth reduction
factor.

A leaf definition consists of the leaf elements (triangles
and lines), coordinate system (leaf or limb), and allowable
rotation and deviation in direction. The limb coordinate system
is used for trees when the direction of the major axis of the leaf
is determined from the way the branch is pointing. The leaf
coordinate system is used when the major axis of the leaf
depends on the horizontal , such as when a heavy leaf is
hanging toward the ground. These coordinate systems are
shown in figure 4.

Graphics Interface '89

237

N = normal to tree element

trunk

tree element
to be shaded

L = vector to light source from element

shade = MAX_INTENSITY - (ambient-parameter +

lambert-parameter - (N-L) +

height-parameter - hlho +

radius-parameter - r/r 0 +

angle-parameter - sin ~)

Figure 3. Shading Techniques

The actual structure of the tree is made up of linked lists
of branches , limbs, and particles. The branch node has
pointers to the appropriate branching rule for its level, to the
flrst limb node, and to the particle at the end of the branch. It
also has a level number and base calor for the limbs. The limb
nodes consist of its position, width, lateral growth rate and
aging factor, calor, and pointer to the next limb node. The
particle node is at the end of the limb list. This node consists of
its position, longitudinal growth vector and aging factor, as
well as pointers to the last limb in the list for adding new limbs,
and to the flrst leaf element when the leaves are added. This
structure is also shown in flgure 5.

V. A Tree Template

The tree template contains the characteristics to direct the
program in creating a tree. At least one branching rule, one
particle, and a leaf definition are absolutely necessary. The
general format of the template is shown in figure 6. As a
particular example we present a template for generating a
dogwood tree.

iterations { i= 13 }

gravity

light

color
color
color

branch

{ g= 0.08 }

{ambient=O.1 lambert=O.4 height=O.4 radius=O.3
angle=O.2 }

{ green= 0,1,0 }
{ brown= 1,0.9,0.2 }
{ white= 1,1,1 }

{ level= 1 number= 2.0 to 3.0
(p=1 angle= 40 to 80 dir= 0 to 360 factor= a.5 to
0.7)
}

branch

branch

branch

branch

particle

leaf

{ level= 2 number= 0.4 to 1.6
(p=O.5 angle= 40 to 60 dir= 0 to 20 factor= 0.8 to
1.0)
(p=O.5 angle= 40 to 60 dir= 160 to 180 factor= 0.8
to 1.0)
}
{ level= 3 number = 0.4 to 1.6
(p=O.45 angle= 40 to 60 dir= 0 to 20 factor= 0.8 to
1.0)
(p=0.45 angle= 40 to 60 dir= 160 to 180 factor=
0.8 to 1.0)
(p=O.lO angle= 40 to 80 dir= 0 to 180 factor= 0.1
to 0.2)
}
{ level= 7 number= 0.4 to 1.5
(p=O.5 angle= 30 to 90 dir= 0 to 50 factor= 0.6 to
1.0)
(p=O.5 angle= 30 to 90 dir= 130 to 180 factor= 0.6
to 1.0)
}
{ level= 9 number= 0.4 to 1.5
(p=1 angle= 50 to 110 dir= 0 to 180 factor= 1.0 to
1.0)
}
{
pos=O,O,O mag= 15 to 25 dir= 0,0,1:10 acc= -0.8
growth= 0.4 age= 0 color= brown brightness= 0.2
to 0.5
}
{ p=0.6
coord= leaf out= 30 up= 10
color= green brightness= 0.4 to 0.8
tri= 0,0,0 0,-9,3 -3,-3,4 tri= 0,0,0 0,-9,33,-3,4
}

Graphics Interface '89

238

~z
z

x

Figure 4. Coordinate Systems

Figure 5. Data Structures

Graphics Interface '89

leaf { p= 0.4
coord= leaf out= 40 up= 40
color= white brightness= 0.9 to 1.0
tri= 0,0,0 3,1 ,-1 3,1,1 tri= 0,0,0 -3,1,-1 -3,1,1
tri= 0,0,01,1,3 -1,1 ,3 tri= 0,0,01,1,-3 -1,1,-3
color= green brightness= 0.5 to 0.8
tri= -1,1,-1 1,1,-10,1,2
}

Explanations of each section are as follows :

iterations {i= 13 }
Specifies the number of iterations to grow the tree. There will
be 13 segments in the trunk.

gravity { g= 0.08 } . . .
Simulates the effect that gravity has on the hmbs. This factor IS
multiplied by the cosine of th~ angle be!-Ween the growth vector
and the horizontal, then thiS value IS subtracted from the
z-component of the growth vector.

light { ambient=O.1 lambert=O.4 height=O.4 radius=O.3
angle=O.2 }

These parameters are the five shading factors use~ when
calculating the color of the t~ee elemen~s. In thiS tree,
Lambert's law and the relative height and radIUS of the element
in the tree are most influential.

color { green= 0,1,0 }
color { brown= 1,0.9,0.2 }
color (white= 1,1,1)
These values define the colors used in the tree. Each triplet of
numbers represents the weighting to give to r~d, green, and
blue. Only the ratios are important h~re; magn.iludes ~ave no
affect, since the shade of the color IS determm~~ usmg the
allowable range given in the particle and leaf defimtlons.

branch { level= I number= 2.0 to 3.0
(p= 1 angle= 40 to 80 dir: 0 to 360 factor: 0.5 to

0.7)

This is the ~ranching rule for particles that are spawned off the
trunk the level 1 branches. At each segment of the trunk, there
will be 2 or 3 branches. The angle from the trunk will be
between 40 and 80 degrees, and these branches will grow from
any direction around the tree (0 to 360. degrees). The growth
reduction factor for these branches Will be between 0.5 and
0.7 , which will reduce the width and length of these limbs as
compared to the segments in the trunk.

branch { level= 2 number= 0.4 to 1.6
(p=O.5 angle= 40 to 60 dir= 0 to 20 factor: 0.8 to
1.0)

(p=0.5 angle= 40 to 60 dir= 160 to 180 factor=
0.8 to 1.0)

This rule g~vems the growth of branches off the si~e of those
off the trunk. There will be 0 to 1 branches growmg off the
parent at each segment, since the random. nu~ber. ge~erated
between 0.4 and 1.6 is truncated. This speclficatlon IS different
from "0 to 1" because of the uniformly distributed random
variable. The mean of "0 to 1" is 0.5, while the mean of "0.4
to 1.6" is 1, which will produce more branches. There a.r~ two
possible rules for these branches, ~ach with equB:l proba~lht~ of
occurrence. The only difference m these rules IS the directIOn
angles. The branch can either grow 0 to 20 degrees ab?ve the
horizontal on one side, or 0 to 20 degrees above the honzontal
on the other side (specified as 160 to 180). It will be at an
angle between 40 and 60 degrees from the parent limb, and its
growth will be a factor of 0.8 to 1.0 less than its parent's.

239

branch { level= 3 number= 0.4 to 1.6
(p=0.45 angle= 40 to 60 dir= 0 to 20 factor: 0.8
to 1.0)

(p=0.45 angle= 40 to 60 dir= 160 to 180 factor:
0.8 to 1.0)

(p=O.lO angle= 40 to 80 dir= 0 to 180 factor: 0.1
to 0.2)
}

This branching rule will apply for all branches from .leve! 3 to
level 6. The difference between this rule and the preVIous IS the
addition of a new parameter triplet. This ~ast triplet ha.s a small
probability of occurrence, but its purpose IS t.o spaw~ lunbs that
will grow in any up~ard directi~n . These hmbs Will be small
and short, since thelT growth IS reduced by a large factor.
These limbs are useful for increasing the number of leaves on
the tree, since a leaf will be added at the end of every branch.

branch { level= 7 number= 0.4 to 1.5
(p=O.5 angle= 30 to 90 dir= 0 to 50 factor: 0.6 to
1.0)

(p=O.5 angle= 30 to 90 dir= 130 to 180 factor:
0.6 to 1.0)
}

branch { level= 9 number= 0.4 to 1.5
(p=1 angle= 50 to 110 dir= 0 to 180 factor= 1.0
to 1.0)

} . b' h These branching rules are similar to the prevIous ones, ut Wit
more relaxed constraints. The branches of level 9 through 13
are allowed to grow in any upward direction, without any
further reduction in their growth as compared to the parent. Of
course, the aging factor is in effect to continual~y re~u~e the
growth vector, as specified by the parameter, acc, m the
particle defmition.

particle {
pos= 0,0,0 mag= 15 to 25 dir= 0,0,1 :10 acc=
-0.8

growth= 0.4 age= 0 color= brown brightness=
0.2 to 0.5

There is only one particle to start this dogwood tree, which is
located at the base of the trunk. At each iteration, the growth
vector, which has a magnitude varying between 15 and 25, and
a direction up varying by 10 degrees, will be added to this
position. The acceleration is also added to the magnitude,
which will reduce each limit of the range by 0.8 at each
iteration. The width of these limbs will be incremented by 0.4
each time, and the aging factor, 0, is added to the growth value.
This age parameter can be used to slow the lateral growth of the
limb as it gets older. The limbs will be colored brown, with a
brightness ranging between 0.2 and 0.5 of the maximum.

leaf { p= 0.6
coord= leaf out= 30 up= 10
color: green brightness= 0.4 to 0.8
tri= 0,0,0 0,-9,3 -3,-3,4 tri= 0,0,0 0,-9,3 3,-3,4
}

This leaf definition is for the green leaves of the dogwood tree,
which are composed of two triangles. Since the probability is
0.6, there will be approximately 60% leaves and 40% flowers
on the tree. The leaf coordinate system is used to define the
triangles, since dogwood leaves usually hang down, no matter
which way the branch is pointing. The out vector for this leaf,
which is the z-axis in this coordinate system, can vary by 30
degrees. The up vector, y-axis, for this leaf can vary by 10
degrees. Of course, the leaves of a flowering dogwood are
usually green, here with a brightness ranging from 0.4 to 0.8
of maximum.

Graphics Interface '89

iterations
gravity

color
light

branch

branch

particle

leaf

Notes:

{ i= number of iterations }
{ g= gravity Jactor }

240

{color name = red, green, blue}
{ ambient=ambient yarameter lambert=lambert yarameter

height=heig ht yarameter radius=radius yarameter
angle=angle yarameter }

{level = level_number number= low to high
(p=probability angle=low to high

dir= low to high factor= low to high)
}
{level = level_number number= low to high
(p=probability angle= low to high

dir= low to high factor= low to high)
(p=probability angle= low to high

dir= low to high factor= low to high)
}
{
pos=x,y,z mag= low to high dir= Vx,Vy,vz:maxdev _angle
acc:acceleration
growth= growthJeductionJactor age= ageJactor
color= color _name brightness= low to high
}
{ p= probability
coord= limb or leaf out= our_angle up= up_angle
color= color name brightness= low to high
In= x j,y j,z j -x2,y2,z2
color= color name brightness= low to high
tri=xj,yj,Zj-X2,y2,Z2 x3,y3,z3
}

1. Words in bold are section tags or keywords that must be typed as is.
2. Words and numbers in italics are the parameters of arguments.
3. Any kind of spacing is allowed, as long as the curly braces, parentheses, and equal signs are

correct.
4. The branching rules must occur before the particle(s).
5. The probabilities in the branching rules and leaf specifications must add up to one.
6. The to keyword signifies a range from minimum to maximum allowed values.

Figure 6. General Format of the Tree Template

leaf (P = 0.6 VI. Summary and Future Directions
coord= leaf out= 40 up= 40
color= white brightness= 0.9 to 1.0
tri= 0,0,0 3,1,-1 3,1,1 tri= 0,0,0 -3,1,-1 -3,1,1
tri= 0,0,0 1,1,3 -1,1,3 tri= 0,0,0 1,1,-3 -1,1,-3
color= green brightness= 0.5 to 0.8
tri= -1,1,-1 1,1,-1 0,1,2
)

This leaf defmition specifies the flowers, which are made from
4 white triangles and 1 green triangle in the center. The z-axis
can vary by 40 degrees and the y-axis can vary by 40 degrees,
which gives the flowers more freedom of orientation than the
leaves.

The flexibility provided by the tree template makes this
program suitable for users who are not familiar with
programming techniques for modeling natural objects by still
allowing them creative control of the image. We feel that
TREE-MAKER is suitable for applications such as
landscaping, art, and adding surface features to digital terrain
data. The simple shading and shadowing methods allow the
program to execute in less time than more exact methods, so the
user can make changes in position and study the effect of other
parameters. Future plans for TREE-MAKER are to include it
in a package of tools for modeling natural objects for use by
students and researchers at Georgia Tech.

Graphics Interface '89

VU. Acknowledgment

The authors wish to thank Mike Williarns, a graduate student at
Georgia Tech, for porting TREE-MAKER to run on both Sun
and Silicon Graphics workstations.

VIU. References

1. Aono, M. and T.L. Kunii, "Botanical Tree Image
Generation" in IEEE Computer Graphics and
Applications 4,5 (May 1984) 10-33.

2. Barnsley, M.F., et. aI., "Harnessing Chaos for Image
Synthesis," Proc. of SIGGRAPH '88 (Atlanta, August
1-5, 1988) in Computer Graphics 22, 3 (August 1988)
131-140.

3 . Bloomenthal, J., "Modeling the Mighty Maple," Proc. of
SIGGRAPH 85 (San Francisco, July 22-26, 1985) in
Computer Graphics 19, 3 (July 1985) 305-311.

4 . Demko, S., L. Hodges, B. Naylor, "Construction of
Fractal Objects with Iterated Function Systems,," Proc.
of SIGGRAPH '85 (San Francisco, July 22-26) in
Computer Graphics 19, 3 (July 1985) 271 -278.

5. de Reffye, P., et. al., "Plant Models Faithful to Botanical
Structure and Development," Proc. of SIGGRAPH '88
(Atlanta, August 1-5, 1988) in Computer Graphics 22, 3
(August 1988) 151-158.

6 . Oppenheimer, P., "Real Time Design and Animation of
Fractal Plants and Trees," Proc. SIGGRAPH 86 (Dallas,
August 18-22, 1985), in Computer Graphics 20, 4
(August 1986) 55-64.

7 . Prusinkiewicz, P., et. aI. , "Developmental Models of
Herbaceous Plants for Computer Imagery Purposes,"
Proc. of SIGGRAPH '88 (Atlanta, August 1-5, 1988) in
Computer Graphics 22, 3 (August 1988) 141-148.

8 . Reeves, W.T. and R. Blau, "Approximate and
Probabilistic Algorithms For Shading and Rendering
Structured Particle Systems," Proc. of SIGGRAPH '85
(San Francisco, July 22-26, 1985) in Computer Graphics
19,3 (July 1985) 313-322.

9 . Reeves, B., "Particle Systems - A Technique for
Modeling a Class of Fuzzy Objects" in ACM Transactions
on Graphics 2 (April 1983) 91-108.

10. Smith, A.R., "Plants, Fractals, and Formal Languages,"
Proc. of SIGGRAPH '84 (Minneapolis, July 23-27,
1984) in Computer Graphics 18,3 (July 1984) 1-10.

241

Graphics Interface '89

