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Abstract 

TREE-MAKER was designed as a tool for generating and 
rendering realistic images of trees. Each tree is created from a 
tree template that specifies simple branching rules and leaf 
definitions. Many different types of trees may be created by 
varying the parameters of the template. The flexibility provided 
by this approach makes it suitable for users who are not 
familiar with programming techniques for modeling natural 
objects by still allowing them creative control of the image. 
Users are free, then, to concentrate on the design of trees, not 
the programming of special techniques. 
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I. Introduction 

Graphic models of natural phenomena such as clouds, 
plants, coastlines, ocean waves, or mountains must reproduce 
an overwhelming amount of variety and detail. Methods used 
to model natural objects usually rely on some type of recursive 
self-similarity to construct complex objects from a relatively 
small amount of information. These methods can be based 
upon fractals, grammars, iterated function systems, or particle 
systems [4,10]. 

In this paper we describe a program for generating and 
rendering images of trees . Several different techniques have 
been described in the computer graphics literature during the 
past five years to model trees. These techniques can be adapted 
from mathematical theory, or can be based on a model of the 
biological or geometric characteristics of trees. For example, 
Oppenheimer has created trees with spiraling branches, a 
characteristic of many fractal plants [6] . Barnsley, et. al. 
encodes and models shapes and textures of two-dimensional 
images of trees and leaves using iterated function systems[2]. 
Another adapted mathematical theory used to model plants is 
L-systems, such as in Prusinkiewicz, Lindenmayer, and 
Hanan's attempt to capture the developmental process as a key 
to realism [7]. 

These mathematical methods, as well as the biological 
models, usually use some type of branching rule to specify the 
angles of the branches for a particular species of tree. Aono 
and Kunii have used a set of botanical rules in a grammatical 
form to generate natural looking branches that model real trees 
[1]. The branching rules are based on the true biological 
characteristics of the tree. This approach has been expanded by 
de Reffye, et. al. to model a richer variety of plants and trees 
[5]. These models also include the effects of wind and gravity. 

Regardless of the method of modeling, a realistic image 
must be created from the tree model. With this task in mind, it 
is advantageous to base the model on what a tree looks like. 
Bloomenthal uses this approach in modeling the maple tree [3]. 
The limb surface, leaves, and shadows are calculated exactly, 
including a bump map from real bark, creating a very realistic 
looking maple tree. However, when close up views are 
unimportant and a large number of trees must be generated, as 
in a forest, it is necessary to use stochastic modeling and more 
approximate rendering. This method reduces the work of the 
user describing the tree and of the computer rendering the 
image. Bill Reeves' forests are a splendid example of this 
method using structured particle systems [8]. The shading and 
visible surface elimination are approximations, but this has no 
noticeable effect because of the richness in detail. 

Because of its efficiency and richness in detail we chose 
to follow a particle system approach with probabilistic 
branching while developing TREE-MAKER. Our goal was to 
create a tool which could be used by anyone with a basic 
knowledge of computers (Le., how to use the editor and 
execute a program on the host system). This approach allows 
the user to concentrate on the design of trees, not the 
programming of special techniques . This freedom is 
accomplished through the use of a tree template to specify 
simple branching rules and leaf definitions. The information in 
the template describes the lighting model, rules for growth, and 
leaves (or flowers) of a particular tree. Many different types of 
trees may be created by varying the parameters of the template. 

II. Growth of the Tree 

The growth of the tree is much like a particle system 
described by Reeves [9]. A system of particles is repeatedly 
updated with growth vectors, and new particles are added using 
the branching rules from the template. At each iteration, the 
current position of all particles is stored, and the paths of the 
particles define the limbs. 

The branching rule defines the range for the number of 
branches off a limb and specifies an acceptable range for the 
direction and angle of the branch. These two angles are shown 
in figure l. All ranges given in the tree template are uniformly 
distributed random variables. Another parameter in the rule 
specifies how much to reduce the growth rate of the current 
branch compared to that of the parent branch. A set of these 
three parameters, augmented with a probability of occurrence 
for each triplet, constitutes a branching rule in the tree template. 
The format of a branching rule is shown in figure 6. This 
time-invariant stochastic branching rule suffices for those trees 
with random branching. For trees with more systematic 
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Figure 1. Branching Angles 

branching, such as alternating or spiral patterns, a time varying 
set of probabilities would have to be implemented, where the 
probabilities are varied according to previous branching 
selections. 

To build a tree, the program starts with a single particle 
on the ground with a growth vector pointing up, as specified in 
the tree template. The current position of this particle is stored, 
and then the next position is calculated by adding the growth 
vector to the current position. The program shortens the 
growth vector to make subsequent branches close~ tog.ether, 
using an aging factor from the tree template. The direcnon of 
the vector is also changed slightly toward the ground by 
subtracting a gravity acceleration from the z-component (up), 
and re-normalizing to keep the magnitude the same. This 
gravity acceleration is calculated from a gravity parameter in the 
tree template and the cosine of the the angle between the growth 
vector and the horiwntal. 

The program then checks the branching rules to decide 
how many branches will occur and in which direction they will 
grow. A particle is added to the system at the current position 
for every new branch, with its own growth vector determined 
from the branching rule and the parent branch's growth vector. 
A width is stored for each of the particle's past positions, and 
these widths are incremented by an amount specified in the tree 
template. This procedure is repeated until all limbs have been 
generated as shown in figure 2. 

After the tree has grown through the number of iterations 
specified in the tree template, the program adds a leaf to the end 
of every branch. The user defines these leaves in the template 
as a set of triangles and lines. Flowers and fruits can also be 
defined in the same way, and the user states the probability of 
each different type of leaf in the template. The program 
transforms this set of points to place the leaf on the end of each 
branch in a random orientation limited by the constraints in the 
template. 

• 
• Particle 

o Stored Position (11mb nodes) 

Figure 2. Growth of the Tree 
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nI. Shading and Rendering 

Shading of each element of the tree depends on its 
position in the tree as well as its orientation with respec~ to the 
sun. Five parameters specified in the te!?plat~ d~termme .the 
relative weight to give to each of five shading cntena. AmbIent 
light and Lambert's cosine law, as well as height, radius, and 
angle factors affect the amount of shade to give an element. 
For example, leaves that are closer to the ground, closer to the 
trunk, or on the backside of the tree relative to the sun are 
shaded darker to simulate the shadowing of leaves upon 
themselves. Figure 3 illustrates these shading techniques. 

When calculating a normal, N, for leaf line elements and 
limbs, the ambiguity in direction is resolved by calculating .the 
normal that lies in the plane with the light source. The radius, 
ro, and height, hO, of the tree is stored as the tree is growing, 
where the radius is the largest horiwntal distance of any particle 
from the fIrst particle's position. The height factor, h/hO, is a 
ratio of the height of the element over the height of the tree, and 
the radius factor, rlro, is a ratio of the element's distance from a 
vertical trunk over the radius of the tree. The angle, q, is 
measured relative to the trunk and the light source. 

To add more realism to the image, the program generates 
a shadow of the tree by copying the final tree representation 
completely, and then casting all the points .onto the ground, 
using a vector from the sun. The colors of thIS shadow tree are 
then changed to the shadow color of the ground. 

After shading, the program renders the tree by performing 
the viewing transformation and then adding the elements to a 
z-buffer. Three graphics primitives are used: lines and 
triangles for the leaves, and 4-sided polygons for the limbs. To 
reduce computation, each primitive is added to the z-buffer as a 
whole instead of calculating the z-position of each pixel in the 
primitive. This approximation is not very noticeable since the 
elements are many and their sizes are small. 

IV. Data Structures 

The tree is represented in memory as a multiple linked 
list. Figure 5 shows the major nodes and links in this 
representation. The branching rules are linked together in order 
of their levels. Level 1 branches occur off the trunk; level 2 
branches occur off these; etc. It is not necessary to have a 
branching rule for each level because the program will use the 
nearest level less than the current level. Each branching rule 
consists of three randomized branching parameters that 
determine the characteristics of new particles added to the 
system: angle and direction of branch and growth reduction 
factor. 

A leaf definition consists of the leaf elements (triangles 
and lines), coordinate system (leaf or limb), and allowable 
rotation and deviation in direction. The limb coordinate system 
is used for trees when the direction of the major axis of the leaf 
is determined from the way the branch is pointing. The leaf 
coordinate system is used when the major axis of the leaf 
depends on the horizontal , such as when a heavy leaf is 
hanging toward the ground. These coordinate systems are 
shown in figure 4. 
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N = normal to tree element 

trunk 

tree element 
to be shaded 

L = vector to light source from element 

shade = MAX_INTENSITY - ( ambient-parameter + 

lambert-parameter - (N-L) + 

height-parameter - hlho + 

radius-parameter - r/r 0 + 

angle-parameter - sin ~) 

Figure 3. Shading Techniques 

The actual structure of the tree is made up of linked lists 
of branches , limbs, and particles. The branch node has 
pointers to the appropriate branching rule for its level, to the 
flrst limb node, and to the particle at the end of the branch. It 
also has a level number and base calor for the limbs. The limb 
nodes consist of its position, width, lateral growth rate and 
aging factor, calor, and pointer to the next limb node. The 
particle node is at the end of the limb list. This node consists of 
its position, longitudinal growth vector and aging factor, as 
well as pointers to the last limb in the list for adding new limbs, 
and to the flrst leaf element when the leaves are added. This 
structure is also shown in flgure 5. 

V. A Tree Template 

The tree template contains the characteristics to direct the 
program in creating a tree. At least one branching rule, one 
particle, and a leaf definition are absolutely necessary. The 
general format of the template is shown in figure 6. As a 
particular example we present a template for generating a 
dogwood tree. 

iterations { i= 13 } 

gravity 

light 

color 
color 
color 

branch 

{ g= 0.08 } 

{ambient=O.1 lambert=O.4 height=O.4 radius=O.3 
angle=O.2 } 

{ green= 0,1,0 } 
{ brown= 1,0.9,0.2 } 
{ white= 1,1,1 } 

{ level= 1 number= 2.0 to 3.0 
(p=1 angle= 40 to 80 dir= 0 to 360 factor= a.5 to 
0.7) 
} 

branch 

branch 

branch 

branch 

particle 

leaf 

{ level= 2 number= 0.4 to 1.6 
(p=O.5 angle= 40 to 60 dir= 0 to 20 factor= 0.8 to 
1.0) 
(p=O.5 angle= 40 to 60 dir= 160 to 180 factor= 0.8 
to 1.0) 
} 
{ level= 3 number = 0.4 to 1.6 
(p=O.45 angle= 40 to 60 dir= 0 to 20 factor= 0.8 to 
1.0) 
(p=0.45 angle= 40 to 60 dir= 160 to 180 factor= 
0.8 to 1.0) 
(p=O.lO angle= 40 to 80 dir= 0 to 180 factor= 0.1 
to 0.2) 
} 
{ level= 7 number= 0.4 to 1.5 
(p=O.5 angle= 30 to 90 dir= 0 to 50 factor= 0.6 to 
1.0) 
(p=O.5 angle= 30 to 90 dir= 130 to 180 factor= 0.6 
to 1.0) 
} 
{ level= 9 number= 0.4 to 1.5 
(p=1 angle= 50 to 110 dir= 0 to 180 factor= 1.0 to 
1.0) 
} 
{ 
pos=O,O,O mag= 15 to 25 dir= 0,0,1:10 acc= -0.8 
growth= 0.4 age= 0 color= brown brightness= 0.2 
to 0.5 
} 
{ p=0.6 
coord= leaf out= 30 up= 10 
color= green brightness= 0.4 to 0.8 
tri= 0,0,0 0,-9,3 -3,-3,4 tri= 0,0,0 0,-9,33,-3,4 
} 
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Figure 4. Coordinate Systems 

Figure 5. Data Structures 
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leaf { p= 0.4 
coord= leaf out= 40 up= 40 
color= white brightness= 0.9 to 1.0 
tri= 0,0,0 3,1 ,-1 3,1,1 tri= 0,0,0 -3,1,-1 -3,1,1 
tri= 0,0,01,1,3 -1,1 ,3 tri= 0,0,01,1,-3 -1,1,-3 
color= green brightness= 0.5 to 0.8 
tri= -1,1,-1 1,1,-10,1,2 
} 

Explanations of each section are as follows : 

iterations {i= 13 } 
Specifies the number of iterations to grow the tree. There will 
be 13 segments in the trunk. 

gravity { g= 0.08 } . . . 
Simulates the effect that gravity has on the hmbs. This factor IS 
multiplied by the cosine of th~ angle be!-Ween the growth vector 
and the horizontal, then thiS value IS subtracted from the 
z-component of the growth vector. 

light { ambient=O.1 lambert=O.4 height=O.4 radius=O.3 
angle=O.2 } 

These parameters are the five shading factors use~ when 
calculating the color of the t~ee elemen~s. In thiS tree, 
Lambert's law and the relative height and radIUS of the element 
in the tree are most influential. 

color { green= 0,1,0 } 
color { brown= 1,0.9,0.2 } 
color ( white= 1,1,1 ) 
These values define the colors used in the tree. Each triplet of 
numbers represents the weighting to give to r~d, green, and 
blue. Only the ratios are important h~re; magn.iludes ~ave no 
affect, since the shade of the color IS determm~~ usmg the 
allowable range given in the particle and leaf defimtlons. 

branch { level= I number= 2.0 to 3.0 
(p= 1 angle= 40 to 80 dir: 0 to 360 factor: 0.5 to 

0.7) 

This is the ~ranching rule for particles that are spawned off the 
trunk the level 1 branches. At each segment of the trunk, there 
will be 2 or 3 branches. The angle from the trunk will be 
between 40 and 80 degrees, and these branches will grow from 
any direction around the tree (0 to 360. degrees). The growth 
reduction factor for these branches Will be between 0.5 and 
0.7 , which will reduce the width and length of these limbs as 
compared to the segments in the trunk. 

branch { level= 2 number= 0.4 to 1.6 
(p=O.5 angle= 40 to 60 dir= 0 to 20 factor: 0.8 to 
1.0) 

(p=0.5 angle= 40 to 60 dir= 160 to 180 factor= 
0.8 to 1.0) 

This rule g~vems the growth of branches off the si~e of those 
off the trunk. There will be 0 to 1 branches growmg off the 
parent at each segment, since the random. nu~ber. ge~erated 
between 0.4 and 1.6 is truncated. This speclficatlon IS different 
from "0 to 1" because of the uniformly distributed random 
variable. The mean of "0 to 1" is 0.5, while the mean of "0.4 
to 1.6" is 1, which will produce more branches. There a.r~ two 
possible rules for these branches, ~ach with equB:l proba~lht~ of 
occurrence. The only difference m these rules IS the directIOn 
angles. The branch can either grow 0 to 20 degrees ab?ve the 
horizontal on one side, or 0 to 20 degrees above the honzontal 
on the other side (specified as 160 to 180). It will be at an 
angle between 40 and 60 degrees from the parent limb, and its 
growth will be a factor of 0.8 to 1.0 less than its parent's. 
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branch { level= 3 number= 0.4 to 1.6 
(p=0.45 angle= 40 to 60 dir= 0 to 20 factor: 0.8 
to 1.0) 

(p=0.45 angle= 40 to 60 dir= 160 to 180 factor: 
0.8 to 1.0) 

(p=O.lO angle= 40 to 80 dir= 0 to 180 factor: 0.1 
to 0.2) 
} 

This branching rule will apply for all branches from .leve! 3 to 
level 6. The difference between this rule and the preVIous IS the 
addition of a new parameter triplet. This ~ast triplet ha.s a small 
probability of occurrence, but its purpose IS t.o spaw~ lunbs that 
will grow in any up~ard directi~n . These hmbs Will be small 
and short, since thelT growth IS reduced by a large factor. 
These limbs are useful for increasing the number of leaves on 
the tree, since a leaf will be added at the end of every branch. 

branch { level= 7 number= 0.4 to 1.5 
(p=O.5 angle= 30 to 90 dir= 0 to 50 factor: 0.6 to 
1.0) 

(p=O.5 angle= 30 to 90 dir= 130 to 180 factor: 
0.6 to 1.0) 
} 

branch { level= 9 number= 0.4 to 1.5 
(p=1 angle= 50 to 110 dir= 0 to 180 factor= 1.0 
to 1.0) 

} . b' h These branching rules are similar to the prevIous ones, ut Wit 
more relaxed constraints. The branches of level 9 through 13 
are allowed to grow in any upward direction, without any 
further reduction in their growth as compared to the parent. Of 
course, the aging factor is in effect to continual~y re~u~e the 
growth vector, as specified by the parameter, acc, m the 
particle defmition. 

particle { 
pos= 0,0,0 mag= 15 to 25 dir= 0,0,1 :10 acc= 
-0.8 

growth= 0.4 age= 0 color= brown brightness= 
0.2 to 0.5 

There is only one particle to start this dogwood tree, which is 
located at the base of the trunk. At each iteration, the growth 
vector, which has a magnitude varying between 15 and 25, and 
a direction up varying by 10 degrees, will be added to this 
position. The acceleration is also added to the magnitude, 
which will reduce each limit of the range by 0.8 at each 
iteration. The width of these limbs will be incremented by 0.4 
each time, and the aging factor, 0, is added to the growth value. 
This age parameter can be used to slow the lateral growth of the 
limb as it gets older. The limbs will be colored brown, with a 
brightness ranging between 0.2 and 0.5 of the maximum. 

leaf { p= 0.6 
coord= leaf out= 30 up= 10 
color: green brightness= 0.4 to 0.8 
tri= 0,0,0 0,-9,3 -3,-3,4 tri= 0,0,0 0,-9,3 3,-3,4 
} 

This leaf definition is for the green leaves of the dogwood tree, 
which are composed of two triangles. Since the probability is 
0.6, there will be approximately 60% leaves and 40% flowers 
on the tree. The leaf coordinate system is used to define the 
triangles, since dogwood leaves usually hang down, no matter 
which way the branch is pointing. The out vector for this leaf, 
which is the z-axis in this coordinate system, can vary by 30 
degrees. The up vector, y-axis, for this leaf can vary by 10 
degrees. Of course, the leaves of a flowering dogwood are 
usually green, here with a brightness ranging from 0.4 to 0.8 
of maximum. 
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Notes: 

{ i= number of iterations } 
{ g= gravity Jactor } 
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{color name = red, green, blue} 
{ ambient=ambient yarameter lambert=lambert yarameter 

height=heig ht yarameter radius=radius yarameter 
angle=angle yarameter } 

{level = level_number number= low to high 
(p=probability angle=low to high 

dir= low to high factor= low to high) 
} 
{level = level_number number= low to high 
(p=probability angle= low to high 

dir= low to high factor= low to high) 
(p=probability angle= low to high 

dir= low to high factor= low to high) 
} 
{ 
pos=x,y,z mag= low to high dir= Vx,Vy,vz:maxdev _angle 
acc:acceleration 
growth= growthJeductionJactor age= ageJactor 
color= color _name brightness= low to high 
} 
{ p= probability 
coord= limb or leaf out= our_angle up= up_angle 
color= color name brightness= low to high 
In= x j,y j,z j -x2,y2,z2 
color= color name brightness= low to high 
tri=xj,yj,Zj-X2,y2,Z2 x3,y3,z3 
} 

1. Words in bold are section tags or keywords that must be typed as is. 
2. Words and numbers in italics are the parameters of arguments. 
3. Any kind of spacing is allowed, as long as the curly braces, parentheses, and equal signs are 

correct. 
4. The branching rules must occur before the particle(s). 
5. The probabilities in the branching rules and leaf specifications must add up to one. 
6. The to keyword signifies a range from minimum to maximum allowed values. 

Figure 6. General Format of the Tree Template 

leaf ( P = 0.6 VI. Summary and Future Directions 
coord= leaf out= 40 up= 40 
color= white brightness= 0.9 to 1.0 
tri= 0,0,0 3,1,-1 3,1,1 tri= 0,0,0 -3,1,-1 -3,1,1 
tri= 0,0,0 1,1,3 -1,1,3 tri= 0,0,0 1,1,-3 -1,1,-3 
color= green brightness= 0.5 to 0.8 
tri= -1,1,-1 1,1,-1 0,1,2 
) 

This leaf defmition specifies the flowers, which are made from 
4 white triangles and 1 green triangle in the center. The z-axis 
can vary by 40 degrees and the y-axis can vary by 40 degrees, 
which gives the flowers more freedom of orientation than the 
leaves. 

The flexibility provided by the tree template makes this 
program suitable for users who are not familiar with 
programming techniques for modeling natural objects by still 
allowing them creative control of the image. We feel that 
TREE-MAKER is suitable for applications such as 
landscaping, art, and adding surface features to digital terrain 
data. The simple shading and shadowing methods allow the 
program to execute in less time than more exact methods, so the 
user can make changes in position and study the effect of other 
parameters. Future plans for TREE-MAKER are to include it 
in a package of tools for modeling natural objects for use by 
students and researchers at Georgia Tech. 
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