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Abstract : This paper describes a new method for 
the generation of fractal objects like mountains and clouds. It 
is based on the superposition of n-dimensional meshes. It is 
shown that with meshes of dimension higher than 2, it allows 
the animation of fractal objects, and for example the 
simulation of cloud dynamics and earthquakes. 

Resume : Ce papier decrit une nouvelle methode de 
generation d'objets fractals, tels des montagnes ou des 
nuages. Elle repose sur la superposition de maillages 
n-dimensionnels. Il est montre que, pour des dimensions 
superieures a 2, elle permet l'animation de ces objets, et par 
exemple la simulation de la dynamique des nuages ou encore 
celle des tremblements de terre. 

Key words : animation, clouds, cloud dynamics, 
earthquakes, fractal objects, mountains. 

I-INTRODUCTION : 

1.1-The recursive subdivision algorithm : to 
generate, for example, mountains surfaces using fractal 
techniques, they are well known methods like Fourier 
transform of white noise and recursive subdivision [1][2]. 
The first one is slow, and the second one shows artifacts. 
Let's recall it. This algorithm starts with a triangle or a 
quadrilateral: for this last case, let VI V 2 V 3 V 4 be the initial 
two-dimensional quadrilateral; on each side VYi+1 let's 
choose (deterministically or randomly) a point Pi i+I' and 
inside of V 1 V 2 V 3 V 4 a fifth point P. Then the five points P, 
P12, P23 , P34 and P41 are randomly moved along the third 
dimension, thus giving birth 'to four new "three-dimensional" 
quadrilaterals VIPI2PP41Vp P12V2P23PPI2' P23V3P34PP23 
and P34 V 4P 41PP34 (see the figure 1). Then the process is 
iterated recursively for each new quadrilateral; at the end, we 
obtain an irregular surface. This process frequently shows 
artefacts (like creases of slope discontinuities [2]) and cannot 
model easily smooth terrains. 
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Figure 1 : the subdivision algorithm. 

1.2-The superposition of two-dimensional 
meshes : We propose a new method based on the 
super position of n-dimensional meshes. To be clear, 
let's describe it with a two-dimensional example. We shall use 

a set of square meshes {:M.1.:M.2.··· .:M.m} of decreasing sizes 
(the smallest one is on the order of the pixel size). We never 
require coincidences between nodes belonging to various 
meshes, unlike the recursive subdivision algorithm; thus the 
computations of all the meshes will be independent. For the 

mesh :M.k (k E [I,m]) we generate on each vertex Vij a 

random value RDN(i,j,k,S) as a function of i and j (the 

coordinates relating to the mesh :M.~), k (the rank of the mesh) 
and S (a seed for the random generator). Then the mesh is 
"rasterized" in the following way: if the current point P(x,y) 
is a vertex Vij, it will receive the value RDN(i,j,k,S), 
otherwise, its value will be interpolated between the values of 
its neighbours. Finally, a two-dimensional field is obtained by 
superposing and adding point by point all the rasterized 
meshes; the figure 2 shows the three first steps and the last 
one of this iterative process. Then this field can be visualized 
as a two-dimensional field, as a three-dimensional surface 
(the value at the point P(x,y) giving the third coordinate), or 
again transformed and combined with other two-dimensional 
fields (the figure 3 shows an interpolation between such a 
fractal field and a geometric shape; the first appendix gives a 
view of the available tools for the manipulation of 
two-dimensional fields) . 
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Figure 2: the three first steps (n" n,+n2, n,+n2+1't) 
and the last one (n,+n 2+ ... +nN with N=12) of the iterative 
process with a bi-cubic interpolation (512x5l2, 256 colors). 
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Figure 3 : an interpolation between a two-dimensional 
fractal field (obtained by the superposition method) and a 
geometrical shape (512x512, 256 colors). 

With this two-dimensional example, it may be seen that 
this method gives us four "degrees of freedom" : 

-the geometry of the meshes, 
-the interpolation function, 
-the random generator, 
-and finally the mapping function between meshes 

and space coordinates. 

Two interpolation functions have been implemented. 
The first one is a bi-Iinear one (in this two-dimensional 
example), and the second one is a bi-cubic one (see the 
second appendix) . When used with meshes such that: 

and such that one vertex of n
k 

coincide with one vertex of 

n
k
.
j

, the bi-linear interpolation can simulate the subdivision 
algorithm. The figure 4 shows the same three-dimensional 
scene computed with both interpolation functions. The results 
of the bi-linear one shows clearly slope discontinuities (two of 
them are enhanced inside white rectangles), when the bi-cubic 
one looks more realistic. 

2-THE SUPERPOSITION OF 
D-DIMENSIONAL MESHES : 

2.l-Definitions : let {; be a subset of Rn with 

coordinates (x"x2, ... ,xn) . Let {n, .n 2 . .. . nk, ... ,n
m

} be a 
family of hypercellular meshes of decreasing sizes : 
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size(1'1) > size(1't2) > ... > size(1'tk) > ... > size(1't
m

) . 

It is important to notice that this family is not obtained 
with a recursive subdivision and that all its elements are 
independent. Let RDN(xl'x2, ••• ,xn ,k,S) be a random 
generator; its arguments are the coordinates (xl'x2, ••• ,xn), 

the rank k of the current mesh 1't
k 

and a seed S. 

Figure 4 : comparison between the bi-linear and the bi-cubic 
interpolations with the help of two upper views of a fractal 
terrain; the bi-linear interpolation clearly shows, inside the 
white rectangles, slope discontinuities enhanced by the effect 
of a light source located at the right side (512x512, 256 
colors) . 
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2.2-The hyperfield : for each point (xl'x2, .. . ,xn) 

of g and for each mesh 1't
k 

we defme a scalar hyperfield ~k : 

fk(Xl'X 2 , ••• ,x n ,k,S)=RDN(xl'x2, ••• ,xn,k,S) if the 

point (xl'x 2, ... ,xn ) of g is a 

vertex of the current mesh 1'tk' 

=Interpolation between the 
values RDN(x1,x1 .... ,xn,k,S) 
computed for adjoining vertices 
(xl'x2, ... ,xn) otherwise. 

Here again, the Interpolation function is an arbitrary 
one: it can be a n-linear one using the 2n nearest nodes, a 
n-cubic one, or again, any other function. This is just another 
parameter ... 

2.3-The n-dimensional fractal field : for each 
point (xl'x2" .. ,xn) of g we define an-dimensional fractal 

field fF : 

fF (Xl,X2, .. . ,X n ,S) = L p(k )·fk(Xl,X2, ... ,Xn ,S) 
k 

where p(k) is a ponderation factor such that : 

p(l) > p(2) > ... > p(k) > •.• > p(m). 

The way p(k) is evaluated is arbitrary, but can be 
chosen, for example, proportional to the volume of the 

elementary cell of the mesh 1't
k

. 

3-ANIMA TION 
OBJECTS: 

OF FRACTAL 

Let 8 be the physical space; it is a subset of R4 (or 
R 3, according to the dimension of the simulation) with 
coordinates (x,y,[z,]t). With these definitions, let's give two 
ex:amples of the animation of fractalobjects : 

3.l-Earthquakes : it suffice to use the preceding 
model with the following mapping between 8 (= R3) and (: 
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Figure 5 : 16 frames from a simulation of a 
catastrophic earthquake (each picture is 
256x256, 256 colors). 
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Figure 6 : 16 frames from a periodical (ie. 
the 17th picture would be identical to the first 
one) simulation of cloud dynamics ; the 
surface of the mountain is obtained by the 
mean of the two-dimensional fractal field 
shown on the figure 2 (each picture is 
256x256, 256 colors). 
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The figure 5 shows sixteen frames from a terrific 
(because of the amplitude ... ) earthquake simulation. Each of 
the "instaneous" mountains is obtained with a 
two-dimensional cross-section inside the three-dimensional 
fractal field at t=x3=constant ; then this "sub-field" is 
visualized as a three-dimensional surface. 

3.2-Cloud dynamics : it suffice to use the 
preceding model with the following mapping between &5 (= 

R3 to reduce the computing time) and & : 

X -7 [x 1 + OXl (X3)]modulo L,. 

y -7 [X2 + OX2(X3)]modulo L,. 

where the vector (oxl(x3),ox2(x3» is used to simulate 
the effect of the wind in the (x,y) plane, and the modulos 
LxfLy/Ll to allow the generation of periodic sequences. The 
figure 6 shows us a complex scene : a fractal mountain 
obtained by the preceding method of superposition, with three 
two-dimensional fields of clouds with a wind blowing from 

the right to the left (ox 1 (x3) = -a2.x3, ox2(x3) = 0). This 
simulation was only three-dimensionaly made in order to 
reduce the computing time. About the shadows, the ones 
relating to the mountains are correct, when the ones relating to 
the clouds are simulated (due to their two-dimensionaJity ... ) 
with a texture mapping approach : at time t, a texture using the 

clouds at time t+t1t (t1t«Lt) is computed and then mapped 
onto the mountain surface. 

4-CONCLUSION : this method is general; it 
allows the generation of n-dimensional fractal objects, where 
one of the dimension can be the time, thus giving animation 
capabilities. Two axis of research will be followed: the first 
one is about the parallelization of this method on a Transputer 
network. The second one is related to the exploration of new 
mapping functions and meshes to produce new classes of 
fractal objects. 

247 

References : 

[1] A. Fournier, D. Fussel, L. Carpenter, Computer 
rendering of stochastic models, Communication of the ACM, 
25, 6,june 1982, pages 371-384. 

[2] G. Miller, The definition and rendering of terrain maps, 
Computer Graphics, ACM SIGGRAPH, 20, 4, august 1986, 
pages 39-48. 

[3] IF. Colonna, M. Farge, L'experimentation numerique 
assistee par ordinateur, La Recherche, 187, april 1987, pages 
444-457. 

[4] IF. Colonna, Visualization, Computer Graphic World, 
december 1987, pages 40-44. 

[5] IF. Colonna, Picture synthesis: an essential tool for 
numerical experimentation, Computer Physics 
Communications, 49, 1988, pages 215-228. 

FIRST APPENDIX: This algorithm is in fact a 
small component of a much more larger software written to 
facilitate the manipulation and the visualization oflarge sets of 
scientific data [3][4][5]. A set ofcpp macros (giving birth to 
C or Fortran sources) is the programming language and 
UNIX, the operating sytem. Computing fractal objects as 
fields allows us to manipulate them with general tools. They 
are C-like functions, like mountain(param), and each has its 
counterpart at the Shell level : hundreds of "pipeable" 
commands are available. Thus it is valid to write (where 
'param' denotes lists of parameters) : 

display(mountain (fractal _ nD(param),param),param); 

or again, as a string of piped commands: 

fractal_nD param I mountain param I display param 

In both case, an-dimensional fractal field is computed 
and displayed as a three-dimensional surface. 

SECOND APPENDIX : a pseudo n-cubic 
interpolation will be described in a two-dimensional (n=2) 
space in order to simplify. Let V(u;o.v;O)' V(u;l,v;Q),V(U;I,v;l) 

and V(u;Q,v; l) be the basic elements of the square mesh:M.
k 

and let u and v be the parametric coordinates of the square: 
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V(u=O ,v=l) 

V(u=O ,v= O) 

V(u=l,v=l) 
B(u,v=l) 

P (u , v) -

B(u,v=O) 
V(u=l,v=O) 

At the four vertices V(U,v) (with u and v equal 0 or I), 
we compute the value of the function f(V (U,v),k ,S) as a 
random value : 

f(V(u,v),k,S) = RDN (u,v,k,S) 

and the partial derivatives as finite differences: 

~V k S) = f(V (U+l,v) ,k,S) - f (V(u_l,v),k,S ) 
all' (U,v), , 2 

~V k S) = f(V (u,v+l ),k ,S) - f(V(u,V . l),k,S) 
aY' (u,v), , 2 

For the two points B(u,v) (with v equal 0 or I), we compute 
the value of the function f using a cubic interpolation with 
respect to u : 
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with : 

and the partial derivative with respect to v, using a linear 
interpolation with respect to u : 

with : 

At last, at the point P (U,v)' the value of the function is 
computed with a cubic interpolation with respect to v : 

with : 

The recursive extension in a n-dimensional space of this 
pseudo n-cubic interpolation is obvious ... 
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