
266 

An Integrated Graphical Simulation Platform 

David Ze/tzer, Steve Pieper and David J. Sturman 
Computer Graphics and Animation Group 

The Media Laboratory 
Massachusetts Institute of Technology 

Cambridge, MA 02139 

ABSTRACT 

This paper describes an integrated graphical 
simulation platform (IGSP) which provides a 
framework for constructing interactive simulations, 
specifically those oriented towards task level 
animation - that is, animation for which the user 
specifies the tasks to be performed and the system 
determines the correct sequence of events and 
selection of tools to use in accomplishing that task . 
Our prototype system, which we call bolio, allows 
diverse applications to interact within a run-time 
environment, displaying their results on a common 
3D graphics platform. Here we describe aspects of 
bolio 's design that allow applications to interact 
through a common network of constraints, including 
an integrated suite of tools that simulate kinematic , 
dynamic, and event-driven processes in virtual 
worlds. In addition , the IGSP architecture allows us 
to easily integrate gestural input from a new device 
- the DataGlove - that allows non-expert users to 
manipulate virtual objects directly in these 
microworlds. 

KEYWORDS: computer animation, simulation, con
straints, interaction techniques. 

1. Introduction 

Previous analyses of interactive, 3D graphics systems 
have focused on the specification of graphical primitives 
and viewing parameters in terms of the programming 
interface - e.g., ACM Core, GKS, PHIGS+; the specifica
tion and design of interactive user/computer dialogs -
i.e., user interface management systems (UIMS) 12, 20, 27; or 
various paradigms for "software testbeds " for developing 
rendering tools5, 19,24, 33. In this paper we will present an 
analysis of the requirements of an integrated graphical 
simulation platform (IGSP) intended to support a suite of 
behavior mode ling tools and applications for the purpose of 

This work was supported in part by NHK (Japan 
Broadcasting Corp.), the Institute for Computer Literacy, 
and an equipment grant from Hewlett-Packard, Inc. 

making complex 3D simulation of agents and objects 
accessible to non-expert users. We call this task level ani
mation39. The requirements of a task level IGSP include 
those of the UIMS, for example, but require, in addition, 
consideration of mechanisms for managing interaction 
among simulated autonomous agents and physical 
processes. In view of recent interest in developing a 
variety of mechanisms for simulating the behaviors of 
agents and objects, e.g., "physically-based modeling" of 
n~n-rigid objects30, 31, simulation of the dynamics of rigid 
(possibly articulated) bodies13, 34, and modeling of complex 
behaviors10, 14, 37 we think it is t imely to begin discussion 
in the graphics community of the notion of an IGSP. 

First we describe in general terms what we mean by 
an IGSP, and describe the procedural elements necessary 
to support a task level graphical simulation environment. 
We then present the manus constraint network, which, in 
our implementation, is the mechanism for associating pro
cedural elements with objects, and for defining and satisfy
ing invariant relationships (i.e., constraints) among simu
lated agents and objects. We conclude by describing tools 
we have implemented for interacting with the virtual 
worlds which our prototype system supports. 

2. Requirements of an IGSP for Task Level Control 

In earlier work39, three modes for controlling the 
behavior of animated, simulated objects were identified: 
guiding, programming and task level, defined roughly as 
follows: 

• guiding: explicit specification of behavior over time 
by the user; 

• programming: specification of behavior in some 
programming notation, possibly a special-purpose 
animation language, e.g., ASAS25, or MIRA16. 

• task level: implicit specification of behavior in 
terms of goals, events and constraints. 

In general, guiding systems - e.g., twixtll and 
bbop35 - are typified by the interactive specification of 
key transformations using various graphical input devices, 
usually accompanied by built-in procedural support (e.g., 
linear and cubic interpolation) for automatic in
betweening. While the distinction between the guiding 

Graphics Interface '89 



mode and the other two is rather intuitive, the distinction 
between programming and task level control is less clear 
cut. Nevertheless, the notion is that at the programming 
level the user interacts with the system in terms of the 
abstractions provided by the virtual machine, i.e., the 
graphical and procedural primitives of the implementation 
language. At the task level, interaction is in terms of the 
virtual world, i.e., names and behaviors of simulated 
agents and objects, such as walking, grasping, or possibly 
complex goal-seeking activity. We would control a simu
lated human figure at the task level, for example, by tel
ling it to "Walk to the door," rather than writing a script 
describing the needed motions in detail. 

The implementation of a task level system requires 
what we call adaptive motion and an appropriate set of 
abstraction mechanisms38,39. 

2.1. Adaptive Motion and Object Representation 

Adaptive motion means simply that the motion of 
an object depends on information about the current state 
of the object and the current states of other objects and 
processes in the environment. This facility is fundamental 
to physica.lly-based simulation and other animation tech
niques where the interaction between simulation processes 
determines the behavior of objects. In our IGSP imple
mentation, object attributes and geometric representations 
are globally accessible through a set of standard functions, 
so that object state information is available to all simula
tion processes that require it. 

Since we can't predict in advance what conceptual 
views of an object will be required in a given situation, an 
IGSP must abide by the principle of least commitment 
with respect to common, globally-accessible object 
representations. I.e., the representation should enforce no 
particular view of what an object is. Object representa
tions in a simulation environment are in principle open
ended: we may wish to model things that are stationary, 
rigid and monolithicj as well as objects that are deform
able, or that make up parts of more complex assemblies -
including human, robot or animal figures - in which the 
sub-parts are interrelated in many ways. In addition, 
dynamic simulation imposes a set of time-varying interac
tions among objects. 

As detailed below (section 3.2), we maintain a 
geometric representation for every object in bolioj other 
kinematic and dynamic information is computed from that 
data. A process which, for example, applies forces to 
objects based on collisions, may maintain private state 
information about those objects - e.g., saving relative 
velocity information in order to compute appropriate reac
tion forces. This representation paradigm is simple and 
economical, since global representations aren't encumbered 
by all the details that every simulation process might 
require, and because more expensive computations on 
object state are invoked only by processes that require 
them, at the time that data is required. While some com
putations may be duplicated at runtime by processes, for 
example, calculating world space bounding volumes, gen-

267 

erality is gained by keeping global representations simple. 
In fact, applications may maintain their own internal 
representations of the objects and processes they model, 
but ultimately, all applications affect the virtual world 
through the primitive object representations. 

2.2. Abstraction Mechanisms: Structural, Procedural and 
Functional 

Some structural abstraction mechanism must be pro
vided for describing the kinematic structure of objects -
e.g., a transformation hierarchy for a jointed figure - and 
defining physical attributes - e.g., mass, stiffness, etc. 
Such a structural defmition serves as a data structure with 
no functional specifications for how an object should move. 
While bolio maintains only a minimal geometric represen
tation for objects, the manus constraint mechanism, 
described below, makes it possible to associate structural 
and dynamic properties, e.g., linkages and springs, as 
necessary with the geometric description. Application 
modules, moreover, such as sa for jointed-figure simula
tion, and roach for hexapod locomotion, may maintain 
their own internal structural defmitions as needed. It is 
important to note, however, that no matter how complex 
these modules may be, they interact solely through the 
common structural abstractions which describe the objects 
in the terms appropriate to the processes being mpdeled. 

Procedural abstractions are the mechanism for defm
ing processes that control object motion. In bolio, at the 
guiding and task level, procedures are treated as built-ins. 
At the programming level, a consistent and modular func
tion library is available so that programmers have access 
to the primitive operations for kinematics, dynamics, and 
constraint defmition and satisfaction that bolio provides. 
This is important both for coding routines for controlling 
object motion, as well as for incorporating application 
modules into the IGSP. 

Just as object representations are open-ended, it is 
not possible to specify in advance a complete set of pro
cedures for a task level simulation platform. This is 
because we often don't know in advance the details of 
those processes which we may wish to visualize, and also 
because the representation and computation of many phy
sical processes is not completely understood 1, 17. 

Nevertheless, we can identify a useful set of procedures for 
supporting a wide range of processes. These include 
inverse kinematics, collision detection, path planning, and 
certain kinds of dynamic simulation, all of which are 
present in bolio. These p~ocedural tools are the basis for 
composing behaviors of simulated objects. Recall that the 
distinction between the programmer level and task level 
simulation really forms a continuum: at the purely pro
gramming end of the spectrum we deal with the pro
cedural primitives of the implementation languagej at the 
task level we deal with the conceptual entities of the simu-. 
lated model. In our view, while the distinction is not clear 
cut, we feel that if the procedural support tools are rich 
enough, we can achieve a qualitative change in our 
interaction with the virtual world. 

Graphics Interface '89 



Functional abstractions are the means with which 
we associate procedures with objects and object sub
assemblies, for the purpose of defming meaningful 
behaviors. For example, we can define a grasping and 
reaching behavior by controlling the motion of a kinematic 
chain using inverse kinematic procedures in a given con
text. This has the effect of simplifying the control of com
plex systems with many degrees of freedom. If we know 
the operation to be performed in a certain situation, we 
can apply functional constraints so that the system can be 
controlled with far fewer parameters to perform a specific 
task. In our IGSP implementation, we support functional 
abstraction in two ways: 

• The manus constraint system provides a built-in 
mechanism for associating objects and processes in 
order to defme behaviors. 

• Application modules may have their own internal 
representations and funct ional abstraction mechan
isms, can be freely incorporated in bolio, by means of 
both bolio's object and graphical primitives, and by 
the use of manus for communicating with other 
applications and bolio processes. 

2.3. Forward Simulation and Key Event Simulation 

Recent work has described methods for generating 
animation using key events over time in terms of forces, 
torques, dynamic and kinematic constraints4, 15, 36. As 
long-time Disney animator Frank Thomas has pointed out , 
the creation of conventional animation can proceed in two 
ways, either as key frame animation, which involves the 
well-known in-betweening technique; or as straightahead 
animation, in which the animator draws frame after frame 
of a sequence with only a general idea of the unfolding 
action32• 

While the analogy only loosely holds, we view com
puter animation and simulation in a similar two-fold way. 
In some cases, we may wish to visualize a known sequence 
of events, and here the appropriate paradigm is what we 
have called key event simulation, as addressed by the 
above-mentioned authors. At other times however, as in 
the simulation of the performance of a vehicle, or in study
ing the behavior of a simulated insect for the purpose of 
validating a hypothesized locomotion control technique, we 
may have little interest in imposing outcomes on a 
sequence - except perhaps through user interaction, as 
the simulation evolves. We call this view forward simula
tion, and it is characterized by incomplete knowledge of 
events and the need to observe autonomous behaviors and 
interactions among objects. The two views are certainly 
not mutually exclusive, since, for example, we may wish a 
simulated vehicle to follow a particular path and perform 
certain operations in the course of a simulation. That is, 
we want to define motor goals which result in some desired 
behavior, but in a forward simulation they take the form 
of motor control programs and feedback loops. 

268 

2.4. Mixed Methods for Behavior Control 

One further issue needs to be addressed in the con
text of an IGSP, namely, the interaction of kinematic con
trol and dynamic control. This, in particular, is a user 
interface issue, since we want the effects of user input to 
be consistent, and not violate the user's assumptions and 
expectations about the simulation. 

• Dynamics/Dynamics 
If all processes in a simulation speak a common 
language, as it were, and always operate on objects 
in terms of forces and torques, the outcome is a 
purely physical simulation. If the numerical, 
computational and sampling issues are properly 
addressed, then the motion of objects will be based 
on physical principles with a degree of realism 
corresponding, for the most part, to the level of 
detail represented by the simulated objects and 
processes. In this case, user input, whether through 
conventional graphic input devices or other sources, 
should be transformed into appropriately scaled 
forces and torques. 

• Kinematics/Kinematics 
In a strictly kinematic simulation there is no longer 
any commitment to modeling Newtonian physics. In 
such a situation, the intentions of the user are the 
dominant factor in determining the order of opera
tions and the level of realism desired. For example, 
in assembling parts of a mechanism for the purposes 
of design validation and interference checking, the 
user may be interested only in rigid motion and colli
sion detection, with little interest in constraining the 
motion of objects to be based on classical mechanics. 

• Kinematics/Dynamics 
If the simulation involves a mixture of kinematic and 
dynamic operations - for example, combining 
kinematic gestural manipulations using the Data
Glove with dynamically controlled objects - then 
the simulation no longer follows Newtonian physics. 
Realistic motion cannot be guaranteed, since 
kinematic operations may, for example, cause velo
city discontinuities. In this case, the intentions of 
the user again become the deciding factor, and it 
becomes necessary to prioritize the order in which 
forces and torques are applied to objects in concert 
with strictly kinematic operations. Note that the 
emphasis here is on combining interactive kinematic 
input with dynamic simulation, unlike the work 
reported by Cohen and Isaacsl5, which described 
methods for combining a priori kinematic constraints 
with dynamic simulation. 

Bolio at present is a kinematic/dynamic environ
ment, in which kinematic gestural input is combined with 
forward dynamic simulation. 
3. BoBo 

Bolio is our prototype IGSP. It serves as a common 
base for the development of simulations by providing an 
input/simulate/draw loop into which new applications can 
be incorporated. Bolio provides an object level interface 

Graphics Interface '89 



to a graphics environment, and is implemented in C on 
Hewlett-Packard 9000 workstations running the HP-UX 
operating system, a derivative of AT &T System V UNIXt. 

3.1. User Interface: Commands and Scripts 

Bolio maintains an internal string buffer and parsing 
mechanism, so that the user can freely intermix input 
from the keyboard, conventional graphical input devices, 
or from other sources such as the DataGlove (described 
below) . Typically, in the bolio task level environment, the 
user is wearing a DataGlove, so that his or her interaction 
centers on occasional menu picks, direct manipulation of 
objects and invocation of processes via specific hand p0s

tures. This is in contrast to the developers interface, in 
which application and environment developers make heavy 
use of keyboard and mouse - often creating complex 
scripts for testing and debugging various simulation 
modules, or for derIDing virtual environments and agents. 
Interactive procedures using mouse and knob box are 
available to developers for setting parameters of objects in 
the virtual environments they create. Specific details of 
the bolio user interface have been described elsewhere3, 

and will not be discussed further here. 

3.2. Bolio Objec:ts 

The central data structure for the exchange of infor
mation between applications is the bolio object. It con
tains fields to describe attributes (name, transformation 
matrix, bounding box ... ) common to all objects appearing 
in the microworld. This is the only information needed by 
most bolio applications. 

Some bolio operations such as reading and writing 
objects to disk files, and graphical display of objects 
require more type-specific information. This is available 
through the description field of the bOBJECT structure, a 
generic pointer to a specific object-type recognized by 
bolio. These structures (bPOLYHEDRON, bCAMERA, bLIGHT, 
bDEPTHMAP, etc.) contain data relevant only to their object 
type. The bPOLYHEDRON structure, for example, contains 
lists of the vertices, polygons, and edges which derIDe the 
polyhedron. While we don't argue that all information 
required for potential interaction between simulated char
acters can be represented by the mainly geometric infor
mation in the bOBJECT structure, we have found that it 
works well for the types of simulations we have envisioned 
and implemented thus far. 

Bolio uses a two stage file format for bOBJECTs (ori
ginally developed at Ohio State University) which reflects 
the distinction between the bOBJECT level and the 
description levelS. Generic information about bOBJECTs 
is stored in files with a . ob j extension. These are ASCn 
text files which' contain keyword/value pairs to derIDe 
fields such as the object's name, its initial transformation 
matrix, and the data type and source file of its description. 
Since this file is generally very short, the entire text is 
kept in memory. The detail keyword in the . ob j file is 
followed by the name of a file from which to read the 

tuNIx ill • Irodemut of AT&T BeU Laboralori .. , 

269 

type-specific description of the object. The description is 
read by routines specific to that type. These routines 
build the appropriate data structure for the type. A 
pointer to this data structure is stored in the description 
field. Example detail file types include . asc for an 
ASCn representation of an object of type bPOLYHEDRON, 
.det for a binary description of an object of type bPO
LYHEDRON, and .dIII for an object of type bDEPTHMAP. This 
structure provides a simple and general method for 
representing a wide variety of object types. 

To make the rend'ering of device independent graphi
cal objects more efficient, they are compiled into a format 
specific to the hardware platform. This device specific 
data is stored in drobjs (drawing objects) structures. A 
bOBJECT structure contains a list of pointers to the drobjs 
which define the hardware calls needed to display it on the 
screen. These drobjs are created by the compile routine 
specific to the bOBJECT description and are in a format 
dependent on the type of output device to be used for 
rendering. Currently, a set of data structures is used 
which is specific to the Starbase graphics system running 
on the Hewlett-Packard 9000 series of workstations. 

A view of the bolio world is generated according to 
the parameters stored in a camera object. Some of the 
view information (e.g. the view point, view normal and 
view up) is extracted from the information stored at the 
bOBJECT level, while other view parameters (such as the 
camera field of view) are stored in the bCAMERA referenced 
by the description structure. This arrangement makes 
it possible to use standard matrix inheritance constraints 
to attach the camera to any object in the scene, such as 
the eye of a simulated character, or the position of the 
DataGlove. 

4. The Manus Constraint System 

A constraint package was a key element of 
Sutherland's classic work, SketchpaJl9, and of Borning's 
ThinglalJ2 , Our work with constraints is similar in spirit to 
both of these systems, although both of them were res
tricted to 2D graphics. All three systems incorporate 
rather general mechanisms for defining constraints and 
constraint satisfaction methods. However, the two earlier 
constraint systems incorporate an analysis stage, and 
Borning's work included two additional satisfaction tech
niques beyond one-pass solutions and relaxation. 

Manus was developed initially to handle position and 
orientation constraints on the motion of rigid objects, and 
non-rigid motion of polygonal meshes. Thus, unlike the 
earlier Sketchpad and Thinglab systems, which were 
intended to satisfy multiple, interacting constraints 
encountered in geometric and mechanical design problems, 
bolio does not perform preliminary analysis of the con
straint network. Since relaxation is time-consuming and 
may not converge, the purpose of this constraint planning 
step is to identify constraints that can be satisfied by 
simpler, direct means, so that relaxation is invoked only 
when necessary. However, bolio supports an interactive, 
time-varying virtual environment, perhaps with active 
agents whose ~havior may not be known a priori. Thus, 

Graphics Interface '89 



constraint satisfaction has to proceed in parallel with for
ward simulation, and a constraint pre-planning stage is not 
feasible. 

The manus constraint network is composed of bOB
JECTs in the bolio world connected by instances of con
straints. Each instance of a constraint contains informa
tion specific to the objects it is connected to and pointers 
to the code necessary to process the constraint. Thus, 
constraint instances share procedures but maintain private 
copies of relevant data structures. 

Each time a constraint instance connects to a bOB
JECT which should trigger it, it adds a pointer to itself into 
the bOBJECTs who-cares list (part of the constraints 
structure). Later, when a constraint instance modifies the 
bOBJECTs, the bOBJECT notifies all constraint instances in 
its who-cares list. Those constraint instances then exe
cute, modifying other bOBJECTs which trigger constraint 
instances in their who-cares list, etc. This process 
proceeds in an manner managed by the 
manus re normalize function. 

When a bOBJECT triggers constraint instances in its 
who-cares list it actually just puts a pointer to each 
instance on the end of a global pending constraint instance 
list (pending queue) . The manus _renormalize function 
goes sequentially through the queue (in effect a breadth
first search of the constraint network) invoking constraint 
instances as they are pulled from the list. As constraint 
instances execute, objects they affect place new items at 
the end of the queue. This procedure continues until the 
queue is empty. We use several methods to ensure termi
nation of this process: 

• Carefully construct constraint networks so as to 
avoid loops. 

• Allow a particular constraint instance to be placed 
on the queue only once per frame. This technique is 
used by the DataGlove constraints which only sam
ple the external device once per frame. 
• Program constraints such that their instances only 
modify their dependent bOBJECTs once per frame, 
treating all subsequent constraint invocations as 
interrupts of the forward simulation of the object's 
motion, which then instantaneously update the 
object's position and orientation. E.g., if the user 
catches a bouncing ball with the DataGlove, the 
glove constraint causes the simulation of the ball's 
motion to suspend; the ball is repositioned according 
to the glove constraint. Constraints are prioritized 
in the order in which they are invoked. 

• If none of these methods prove flexible enough to 
handle the interactions of several constraints which 
all wish to control a single bOBJECT, the fmal resort 
is to express the constraints in terms of forces and 
let the solution evolve over time via forward simula
tion. This is used, for example, in the case of inter
penetration prevention where several constraint 
instances may all influence the position of the same 
bOBJECT. 

The manus re normalization function is invoked at 

270 

three points within each iteration of the bolio's main loop. 
Two special constraint structures exist for the start and 
end of each iteration, allowing events such as device sam
pling to be triggered by the start of a new frame or control 
of a video tape recorder to be signaled by the end of a 
frame. The renormalization operation is performed after 
each of these signals is sent. Renormalization is also per
formed after the command portion of the main loop, 
between the start and end of the frame. 

An example manus operation (or mop) is the link 
constraint. This mop updates the size and position of a 
"link" object so that it appears to physically connect two 
other objects. The code which satisfies an instance of this 
constraint looks at the positions of the two objects and 
calculates an appropriate transformation matrix for the 
link object. When either of the two objects is moved, the 
mop is re-executed to properly transform the link object. 
The constraint instance contains a pointer to the code to 
calculate the appropriate transformation for the link object 
given the positions of the other two objects, and a 
structure containing pointers to the object to be used as a 
link, the two objects to be linked, and flag telling whether 
the linking transformation should be volume conserving. 

5. Bolio Tools 

Applications incorporated into the bolio system and 
optional libraries of constraints are called bolio tools. 
Examples of bolio tools include a camera manipulation and 
animation package, an autonomous hexapod (roach), an 
inverse kinematic constraint package, a set of dynamics 
simulation tools, the DataGlove device handlers, and a 
path-planning module. These all link into the main bolio 
system and communicate with each other through the con
straint network. 

At the UNIX shell level, a configuration file called 
. BOLIOTOOLS contains a list of tool sets to be included in 
the version of bolio being compiled. The code for each 
tool is contained in a separate subdirectory of the bolio 
directory hierarchy. Each tool directory has a makefile 
that builds a library (UNIX archive file) containing that 
tool's code. For each included tool, bolio's compile script 
executes the makefile and reads three configuration files 
from the tool's directory; the bopnames file, which has a 
list of the main loop commands for the tool; the mopnames 
file, containing a list of the constraint commands for the 
tool; and the usrlibs file, which contains a list of other 
system libraries which must be linked with the tool library 
into the bolio executable. The first two files are used to 
construct branch tables for the main command command 
parser and to allow the constraint command parser to map 
input strings into function calls. The third file is used to 
add arguments to the command which links the executable 
bolio. In this way independent libraries and applications 
are kept separate and compiled in only as needed. 
Optimally, bolio would contain a run-time loader that 
linked in code libraries as they were needed. 

5.1. Core Tools 

Functions that are of general use to bolio users 

Graphics Interface '89 



regardless of the particular bolio application are grouped 
together in a library of core tools, which are included in all 

linked versions of bolio. The current set of core tools 
includes a range of useful interactive graphics utility com
mands to manipulate object and viewport structures; e.g. 
using the mouse for moving and sizing viewports, changing 
camera parameters, transforming and changing colors of 
objects, or positioning lights, and a set of general purpose 
constraints such as object transformation hierarchies, 
bounding box representations of objects, and graphical 
links between objects (e.g. rubberband lines). As new 
users and developers enter the system, they tend to add 
new functions to the core tool library.· 

5.2. Dynamics Simulation 

Bolio's dynamics simulation module was developed 
as part of a project to model the deformation behavior of 
human soft tissue, particularly in the facial region, taking 
into account muscle forces and the underlying skeletal 
structures23• 

The simulation module uses a network of data struc
tures representing the physical properties of material sam
ples in the tissue including mass, position and velocity. 
The material samples are connected by . springs which 
apply forces to maintain rest distances. Other constraints 
on the material samples include gravity, which simply 
applies a constant downward force, and interpenetration 
prevention. The latter is accomplished by computing 
repulsive forces, triggered whenever a sample point enters 
a forbidden region. These regions can be defmed by the 
boundaries of the microworld, by the bounding sphere of a 
bOBJECT, or by the surface of a bDEPTHMAP. 

The primary dynamic simulation constraint attaches 
a structure to a bOBJECT which maintains material sample 
information. If there is no explicit modification of the 
bOBJECT by outside actions, such as the DataGlove or 
roach module, then the position and orientation of the 
bOBJECT is modified based on the current velocity, posi
tion, and forces generated by dynamic constraints. The 
spring constraint applies forces to two dynamic structures 
(attached to bOBJECTs) based on spring and damper con
stants, a rest length, relative separation and velocity 
between the two bodies, .etc. The gravity constraint 
applies forces to objects based on a global gravitational 
constant. These forces, together with the interpenetration 
prevention forces, are integrated into new object positions 
by the clock constraint. The latter is fIred by the fra~e
start event and runs a specified number of integration time 
steps. The independence of the rendering frame count and 
dynamic simulation time step allows animation of dynamic 
simulations to trade-off speed and accuracy, depending on 
the needs of the moment. 

As described above, non-rigid objects are modeled as 
networks of these points and springs, which deform 
according to the influence of forces. simulation of rigid 
bodies and their interactions can be modeled with 
appropriate combinations of the various dynamic simula
tion constraints. Each iteration through the dynamics 

271 

loop (or group of iterations) provides another frame in the 
animation. In one example, the hexapod pushes objects 
out of its path as it wanders the microworld landscape. In 
another example, the DataGlove can be used to pick up an 
assembly of balls and springs and whirl them through the 
virtual air. 

5.3. Autonomous Hexapod 

Our research on the simulation of human and animal 
locomotion includes a control structure for six-legged 
locomotion - called roach - based on biological research 
into the neural mechanisms found in insects and mam
mals9, 18,22. The control system is based on coupled oscil
lators that coordinate the action of the legs to form 
appropriate gait patterns for a given speed. Within the 
overall pattern, simulated reflexes generate changes in 
state for each leg. The implementation uses inverse
kinematics to bend the "knees" correctly according to the 
current body location and desired foot position. 

Communication between the bolio environment and 
the roach module is accomplished through two constraints. 
The fIrst is roachwalk, an instance of which exists for each 
hexapod in the environment and is triggered by the 
frame-start. Roachwalk sets the transformation matrices 
defming the positions of the hexapod's constituent parts 
for the current frame and triggers any constraint instances 
which depend on those parts. The second constraint, 
roachorient, provides a communication path from the bolio 
environment to the roach modules through the objects 
representing the hexapod's body. Any time the hexapod's 
body is moved the roachorient constraint sends the new 
location of the hexapod body to the roach module, which 
updates its internal data structures accordingly. Thus, for 
example, if the DataGlove picks up the hexapod body, the 
roach module will get the new location and ensure that the 
hexapod's legs are moved also. 

The results of simulated physical interactions also 
are propagated to the roach module through the 
roachorient constraint; the dynamic simulation tracks the 
position of the hexapod via the constraint network and 
modifies the position of the body in accordance 'with the 
forces that affect it. These forces include gravity, ground 
forces, and collision forces generated when the hexapod 
walks into a wall or other objects. In this way the hexa
pod becomes subject to any laws of dynamics within a 
bolio simulation. The hexapod can also affect the environ
ment through the constraint structures, for example, push
ing objects out of the way when a collision is detected. 

Commands coming through bolio's standard input 
which begin with the word roach are passed to the roach 
module's input parser. Thus it is easy to mix roach initial
ization and control commands into scripts which set up 
and modify bolio environments. 

5.4. Robot: Inverse Kinematics 

A set of routines to perform inverse-kinematics on 
jointed fIgures are provided by the robot tool. The rou
tines allow the specifIcation of jointed fIgures using the 

Graphics Interface '89 



Denavit-Hartenberg (DH) description conventions which 
defIDe kinematic linkages in terms of the relative transfor
mations between neigh boring joint-centered coordinate 
systems6,26. This information is embodied in a Jacobian 
matrix, whose pseudo-inverse provides the joint angle velo
cities needed to achieve given end effector velocities7,21. 

Robot is linked into bolio via the ik (inverse kinemat
ics) constraint which. o~rates on a list 9f bOBJECTs which 
will serve as joints for an articulated figure. The DH 
description of the figure is calculated based on the initial 
locations of the objects in the list. The first item on the 
list is used as the kinematic. base, the last item is the used 
as the end effector, and the remaining items are used as 
the ordered set of intermediary joints. Any time the base 
object or end effector object is moved, the robot module 
calculates new positions and orientations for the intermedi
ate joint bOBJECTs as if they were joined by rigid links. 
The links themselves do not appear unless constructed 
separately by, say, the link constraint. 

Because the ik constraint is based on the end effec
tor and base bOBJECTs of a kinematic linkage, the pose of 
a jointed figure can to be manipulated by any bolio tool 
(e.g. the DataGlove or dynamic simulation) that modifies 
the position of those bOBJECTs. 

5.5. The DataGlove 

We have developed a standard method of dealing 
with input to bolio using an event loop that triggers con
straints on objects. This standardized method has made it 
extremely simple to incorporate novel devices into the sys
tem. The DataGlove is one such device. 

For the past year we have been experimenting with 
a VPL DataGlove which records the position, orientation, 
and finger postures of a human hand8, 28, 40. It transmits 
this information through a serial communication line to 
the host computer up to 60 times per second, more than 
sufficient for our current needs. 

The glove is incorporated into bolio via the glovepoll 
constraint. An instance of glovepoll is attached to the 
frame-start structure so that the DataGlove device driver 
is given a chance to execute every time bolio runs through 
its main loop. Glovepoll's code updates an internal struc
ture (the struct glovepoll_data) containing the current 
DataGlove values; instances of other constraints that 
depend on the values in the glovepoll_ data structure are 
triggered whenever those values are updated. One con
straint dependent on the glovepoll data structure is the 
dghand constraint, which transfor~ a set of objects so 
that their screen position matches the position and orien
tation information supplied by the DataGlove, thereby 
providing a screen echo of the hand. 

The glovepoll constraint also checks the current 
fIDger-bend values against a user-defIDed posture table and 
sets a value in the glovepoll_data structure indicating 
the current hand posture. For example, when the grasp 
posture is recognized, the grabber constraint finds the 
nearest object (if it is within a threshold distance) and 
constrains it to track the location of the "grabbing" object 

272 

(usually the index fIDger tip, whose position is being con
trolled by the DataGlove through the dghand constraint) . 
Note that moving the "grabbed" object invokes any con
straint instances dependent on its position. With this 
behavior, it is possible to use the DataGlove to interact 
with objects in the virtual world. In fact, any bolio tools 
which use position and orientation of objects as input (like 
the robot tool, or dynamic simulation) can make use of the 
glove as an input device. 

Another glove constraint which depends on the sam
pled data in the glovepolt data structure is the 
glove_cursor constraint. When this constraint detects the 
appropriate posture, it maps finger bends into cursor 
movement up and down the bolio menu. By making a 
hand movement, the glove wearer can cause this con
straint to pass a button-press event to the menu code, and 
thereby select the menu item. With this constraint, the 
entire system can be controlled through posture and posi
tion input from the glove rather than the keyboard and 
mouse. 

5.6. sa 

sa is a figure animation system developed by Zeltzer 
in 1984 to describe and manipulate jointed figures via an 
event-driven simulation mechanism. It includes a special 
animation language for controlling jointed figures37,39. 

sa's simulation mechanisms take into account the articu
lated structure of a walking figure, the current gait, and . 
the support requirements to place the figure's limbs in 
space. It has successfully been used to animate a walking, 
jumping skeleton, George38. 

The task of incorporating sa into bolio involved 
replacing sa's graphics output routines with calls to bolio's 
graphics utilities, providing a way for bolio users to 
interact with sa through it's own animation language, and 
developing the appropriate constraint structures to permit 
interaction between bOBJECTs controlled by bolio and bOB
JECTs controlled by sa. Replacing the graphics routines 
was a straightforward, easily accomplished task. Providing 
a method for users to access sa's animation language was 
handled, as with the roach module, by providing a key
word to bolio's command processor that would pass the 
remainder of the instruction to 8a'8 internal command 
parser. Providing the constraint modules to permit 
smooth interaction between bolio's control of objects and 
sa'8 is unde~ay. Currently the transformation matrices 
which defIDe the positions of the figure's parts are used by 
sa to position the bOBJECTs which represents the parts. 
However sa receives no feedback from bolio through the 
constraint network. When the integration is complete, 
agents in the bolio environment will be able to fully 
interact with sa characters and vice-versa. For example, 
we will be able to use the DataGlove and inverse kinemat
ics to shake hands a with virtual human figure. Future 
work will use manus to allow sa to take advantage of the 
inverse-kinematics and dynamics simulations in bolio. 

6. The Roach and Glove Microworld Example 

A more complete example may clarify how these 

Graphics Interface '89 



constraints combine to produce an interactive simulation. 
The Roach and Glove demo is a set of bolio scripts and 
menus which make use of the most advanced features of 
the system. The world consists of a hexapod and various 
objects (cubes and soccer balls) on a grid floor. The hand 
of the user (who is wearing the DataGlove) floats in space 
among the objects. By forming the grab posture, a con
straint . is triggered that draws a red line from the current 
glove location to the nearest of the objects in the scene. 
This serves as a visual cue to indicate the nearest object to 
grab. If the user moves so that the glove touches an 
object the glove's grabber constraint causes the object to 
track the motion of the glove; stick to the glove as it were. 
This tracking continues until the user leaves the grab pos-
ture. Thus, the user can pick up and throw objects 
around in the virtual space. 

A set of scripts can be invoked to link a group of 
objects together with dynamic springs. When the user 
grabs one of the objects in the group the others are realist
ically dragged along by the spring forces . Interestingly, on 
a fast machine the illusion is convincing enough that the 
user expects to feel the inertia of the objects, and the lack 
of tactile feedback is disturbingly apparent. 

The hexapod randomly traverses the ground plane 
using simple collision detection and dynamic constraints to 
push obstructing objects from its path. When the user's 
hand is in the follow posture, a path is drawn from the 
roach to the the glove and the roach is redirected to walk 
along that path. The path is updated every frame that 
the user is in the follow posture, thereby allowing the user 
to lead the hexapod around the world. It is also possible 
to pick up and reposition the roach by using the grab pos
ture. 

Another set of scripts attaches the eyepoint to the 
hexapod body to achieve a 'roach-eye view' of the world. 
The local origin of the DataGlove is also attached to the 
local origin of the hexapod. The effect is that of riding the 
hexapod with one's hand extended in front, pointing out 
the direction of travel, grabbing and throwing obstacles 
out of the way. 

1. Conclusion 

In this paper we have suggested a conceptual frame
work for the integration of graphical simulation tools, some 
of which, e.g., dynamic simulation, are receiving increasing 
at tention in the graphics community. We call this frame
work an integrated graphical simulation platform (IGSP), 
we have described the requirements for a task level IGSP, 
and we have described our prototype implementation, 
bolio. 

We are taking a breadth-first approach in our 
development of bolio. While initially the virtual worlds we 
model may be siL'?le, at every stage of the development 
process we have a working system that increases in com
plexity as simulation components are added. Moreover, at 
each stage users can interact with virtual objects at the 
task level, often using gestural input from the DataGlove. 
This provides a rich environment for testing and refining 
new behavior control modules - taking full advantage of 

273 

existing tools. 

Future work will include increasing the complexity 
of virtual worlds by distributing simulation processes 
among a set of networked compute platforms, as well as 
research aimed at modeling the planning and problem 
solving behaviors of autonomous robotic and human 
agents. 

8. Acknowledgments 

Many people have contributed much time and effort 
to the development of bolio. Much of the initial imple
mentation is due to Cliff Brett. Dave Chen provided the 
inverse kinematic tools, Mike McKenna wrote and adapted . 
the hexapod simulation, and Peter Schroeder developed 
path planning and camera specification tools. Our Media 
Lab colleagues and many visitors provided invaluable com
ments and advice, as well as serving as willing guinea pigs 
and "demo-breakers". 

References 

1. R. Alexander and G. Goldspink, Mechanics and 
Energetics of Animal Locomotion, John Wiley & 
Sons, New York (1977). 

2. A. Borning, "Thinglab - A Constraint-Oriented 
Simulation Laboratory," Tech. Report No. SSL-79-3, 
Xerox P ARC, Palo Alto, CA (July 1979). 

3. C. Brett, S. Pieper, and D. Zeltzer, "Putting It All 
Together: An Integrated Package for Viewing and 
Editing 3D Microworlds," Proc. ~th Usenix Com
puter Graphics Workshop, (October 1987 ). 

4. L. Shapiro Brotman and A. Netravali, "Motion 
Interpolation by Optimal Control," Computer 
Graphics 22(4) pp. 309-315 (August 1988). Proc. 
ACM SIGGRAPH 88. 

5. F . C. Crow, "A More Flexible Image Generation 
Environment," Computer Graphics 16(3) pp. 9-18 
(July 1982). Proc. ACM SIGGRAPH 82. 

6. J. Denavit and R. B. Hartenberg, "A Kinematic 
Notation for Lower-Pair Mechanisms Based on 
Matrices," Journal of Applied Mechanics 23 pp. 
215-221 (June 1955). 

7. A. Ferdman, "Robotics Techniques for Controlling 
Computer Animated Figures," M.S.V.S Thesis, 
Massachusetts Institute of Technology (August 
1986). 

8. J. D. Foley, "Interfaces for Advanced Computing," 
Scientific American 251(4) pp. 126-135 (October 
1987) . 

9. C. R. Gallistel, The Organization of Action: A New 
Synthesis, Lawrence Erlbaum Associates, Hillsdale, 
New Jersey (1980). 

10. M. Girard and A.A. Maciejewski, "Computational 
Modeling for the Computer Animation of Legged 
Figures," Computer Graphics 19(3) pp. 263-270 
(July 1985). Proc. ACM SIGGRAPH 85. 

Graphics Interface '89 



11. J. E. Gomez, "Twixt: A 3-D Animation System," 
Proc. Eurographics '8.1, North-Holland, (September 
1984). 

12. M. Green, "The University of Alberta Interface 
Management System," Computer Graphics 19(3) pp. 
205-213 (July 1985) . Proc. ACM SIGGRAPH 85. 

13. J. K. Hahn, "Realistic Animation of Rigid Bodies," 
Computer Graphics 22(4) pp. 299-308 (August 1988). 
Proc. ACM SIGGRAPH 88. 

14. D. R. Haumann and R. E. Parent, "The Behavioral 
Test-bed: Obtaining Complex Behavior from Simple 
Rules," The Visual Computer 4(6) pp. 332-347 
(December 1988) . 

15. P . M. Isaacs and M. F. Cohen, "Controlling 
Dynamic Simulation with Kinematic Constraints, 
Behavior Functions and Inverse Dynamics," 
Computer Graphics 21(4) pp. 215-224 (July 1987). 
Proc. ACM SIGGRAPH 87. 

16. N. Magnenat-Thalman and D. Thalman, "The Use 
of High-Level 3-D Graphical Types in the Mira Ani
mation System," IEEE Computer Graphics and 
Applications 3(9) pp. 9-16 (Dec 1983). 

17. M. T. Mason and J. K. Salisbury, Jr., Robot Haoos 
and the Mechanics of Manipulation, The MIT Press, 
Cambridge, MA (1985). 

18. M. McKenna and D. Zeltzer, "Dynamic Simulation 
for Autonomous Legged Locomotion," MIT Media 
Lab (January 1989) . Submitted for publication. 

19. T . Nadas and A. Fournier, "GRAPE: An Environ
ment to Build Display Processes," Computer Graph
ics 21(4) pp. 75-84 (July 1987) . Proc. ACM SIG
GRAPH 87. 

20. D. R. Olsen, Jr., E. P. Dempsey, and R. Rogge, 
"Input/Output Linkage in a User Interface Manage
ment System," Computer Graphics 19(3) pp. 191-197 
(July 1985). Proc. ACM SIGGRAPH 85. 

21. R. Paul, Robot Manipulators: Mathematics, Pro
gramming, and Control, MIT Press (1981). 

22. K. Pearson, "The Control of Walking," Scientific 
American 235(6) pp. 72-86 (December 1976). 

23. S. D. Pieper, "More Than Skin Deep: Physical 
Modeling of Facial Tissue," S.M. Thesis, Mas
sachusetts Institute of Technology (February 1989) . 

24. M. Potmesil and E. M. Hoffert, "FRAMES: Software 
Tools for Modeling, Rendering and Animation of 3D 
Scenes," Computer Graphics 21(4) pp. 85-94 (July 
1987). Proc. ACM SIGGRAPH 87. 

25. C. W. Reynolds, "Computer Animation with Scripts 
and Actors," Computer Graphics 16(3) pp. 289-296 
(July 1982). Proc. ACM SIGGRAPH 81. 

26. E. A. Ribble, "Synthesis of Human Skeletal Motion 
and the Design of a Special-Purpose Processor for 
Real-Time Animation of Human and Animal Figure 
Motion," M.S. Thesis, The Ohio State University 

274 

(June 1982). 

27. J . L. Sibert, W. D. Hurley, and T. W. Bleser, "An 
Object-Oriented User Interface Management Sys
tem," Computer Graphics 20(4) pp. 259-268 (August 
1986). Proc. ACM SIGGRAPH 86. 

28. D. Sturman, D. Zeltzer, and S. Pieper, "Hands On 
Interaction with Virtual Environments," MIT Media 
Lab (January 1989). Submitted for publication. 

29. I. E. Sutherland, "Sketchpad: A Man-Machine 
Graphical Communication System," Proc. AFIPS 
Spring Joint Computer Conf. 23 pp. 329-346 (Spring 
1963). 

30. D. Terzopoulos, J. Platt, A. H. Barr, and K. 
Fleischer, Elasticall!l Deformable Models, Proc. ACM 
SIGGRAPH 87, Anaheim, CA (July 1987). 

31. D. Terzopoulos and K. Fleischer, "Modeling Inelastic 
Deformation: Viscoelasticity, Plasticity, Fracture," 
Computer Graphics 22(4) pp. 269-278 (August 1988) . 
Proc. ACM SIGGRAPH 88. 

32. F . Thomas and o. Johnston, Disne!l Animation: The 
fllusion of Life, Abbeville Press, New York (1981). 

33. T. Whitted and D. Weimer, "A Software Test-Bed 
for the Development of 3-D Raster Graphics Sys
tems," Computer Graphics 15(3) pp. 271-277 
(August 1981). Proc. ACM SIGGRAPH 81. 

34. J. Wilhelrns, "Using Dynamic Analysis for Realistic 
Animation of Articulated Bodies ," IEEE Computer 
Graphics and Applications 1(6) pp. 12-27 (June 
1987) . 

35. L. Williarns, "BBOP," Course Notes, Seminar on 
Three-Dimensional Computer Animation, (July 27, 
1982). ACM SIGGRAPH 82. 

36. A. Witkin and M. Kass, "Spacetime Constraints," 
Computer Graphics 22(4) pp. 159-168 (August 1988). 
Proc. ACM SIGGRAPH 88. 

37. D. Zeltzer, "Motor Control Techniques for Figure 
Animation," IEEE Computer Graphics and Applica
tions 2(9) pp. 53-59 (November 1982). 

38. D. Zeltzer, "Representation and Control of Three 
Dimensional Computer Animated Figures," Ph.D. 
Thesis, Dept. of Computer and Information Science, 
Ohio State University (August 1984). 

39. D. Zeltzer, "Towards an Integrated View of 3-D 
Computer Animation," The Visual Computer 
1(4) pp. 249-259 (December 1985). 

40. T. G. Zimmerman, J. Lanier, C. Blanchard, S. Bry
son, and Y. Harvill, "A Hand Gesture Interface Dev
ice," Proc. CHI+GI 1987, pp. 189-192 (April 5-9, 
1987). 

Graphics Interface '89 


