
283 

A Distributed System for Near-Real-Time 
Display of Shaded Three-Dimensional 

Graphics 

Steve Sistare and Mark Friedell 
Aiken Computation Lab 

Harvard University 
Cambridge, MA 02138 

Abstract 

We present a distributed system that provides 
low-cost, interactive response for three-dimensional 
graphics applications. The system runs on com­
monly available hardware, which consists of a set of 
distributed workstations connected by a medium­
bandwidth network. Problems such as heteroge­
neous processors, time-shared use of the worksta­
tions, and non-uniform image complexity are ad­
dressed through a load-balancing algorithm that 
achieves effective parallel speedups, allowing near­
real-time response in interactive applications. A 
scheme for exploiting frame-to-frame coherence, 
which is characteristic of many interactive applica­
tions, further enhances the performance. The im­
ages rendered may be displayed at near-real-time 
rates on an inexpensive, 8-bit frame buffer through 
the use of a novel, color-quantization scheme that 
avoids recomputing a color mapping for every frame 
of an animation sequence . Several applications of 
the system are described, and a video showing near­
real-time interaction with these applications will be 
presented. 

KEYWORDS: Color Quantization, Distributed Ren­
dering, Frame-to-Frame Coherence, Interactive Applica­
tions, Load-Balancing Algorithms, Near Real-Time Ren­
dering, Parallel Processing. 

1 Introduction 

Interactive graphics applications incorporating shaded ren­
derings of three-dimensional scenes are extremely demand­
ing computational tasks. Ordinarily, these applications 
require dedicated use of expensive, special-purpose, graph­
ics hardware. This is certainly true when real-time frame 
rates, e.g., 30 frames per second, are required. 

In many cases, however, a near-real-time frame rate, 
e.g., one frame per one to three seconds, is acceptable, 
and the possibility of using more common computing 
hardware exists. In [1], Fuchs et al. describe their Binary 
Space Partition (BSP) algorithm, a clever approach to 
producing near-real-time renderings of three-dimensional 
scenes with a general-purpose computer and a high­
performance graphics controller. The principle drawback 

igure 1: A typical scene that may be rendered in near­
eal-time. All images were generated in full color and 
eproduced in black and white. 

to the BSP algorithm is that it is limited to static scenes, 
in which only the viewer's position and viewing direction 
may change. 

In this paper, we describe a distributed technique for 
rendering with frame-to-frame coherence that provides 
near-real-time frame rates without restricting the scene 
or viewing parameters, i.e., the viewer's position and 
viewing direction may change, as may any part of the 
scene. An example of a scene we can manipulate in near­
real-time is shown in Figure 1. 

Our technique may be implemented on a collection 
of general-purpose, time-shared computers and works ta­
tions connected by a typical local-area network. One of 
the machines on the network must have a graphics con­
troller, which could be an inexpensive device with only 8 
bits per pixel. An example of appropriate hardware is a 
collection of Sun-3 workstations, one with a color console, 
connected by a 10-megabaud ethernet . 

We certainly do not advocate purchasing a network of 
general-purpose computers to support interactive three­
dimensional graphics. However, such hardware is increas­
ingly common, and our technique allows that hardware 
to support demanding graphics applications that would 
otherwise require additional, specialized , graphics equip-

Graphics Interface '89 



ment. 

2 The Graphics Pipeline 

Typical rendering systems, whether implemented in soft­
ware or hardware, usually operate in a pipelined fashion, 
with graphics primitives, e.g., polygons, sent through the 
following stages: 

1. Transformation into perspective space 

2. Clipping against the viewing frustum 

3. Transformation into device coordinates 

4. Hidden-surface elimination and shading 

Any attempt to apply distributed, parallel processing 
to the rendering problem must involve breaking up this 
pipeline. One simple approach to doing so is to assign 
one processor to each of the above stages. This is the ap­
proach taken in early hardware graphics systems, and is 
motivated by the difficulty of building specialized hard­
ware that can handle more than one of the stages well. 
Note that, for a specific scene, one processor in the pipeline 
could be a bottleneck if its job is too complex, and that 
the degree of parallelism achievable is low, with only four 
participating processors. 

One way to overcome these drawbacks can be seen in 
the architecture depicted in Figure 2, in which each stage 
may have several general-purpose processors dynamically 
assigned to it. Work flowing into a stage is distributed 
over the available processors. However, this architecture 
has an excessive amount of overhead, as interprocessor 
communication must take place between each of the four 
stages of the pipeline (assuming a non-shared memory 
system). 

Consideration of the data dependencies leads to a more 
natural and efficient decomposition of the graphics pipe­
line. The first three stages in the pipeline operate on 
an isolated polygon, while stage 4, hidden-surface elimi­
nation, must in general consider all polygons. Therefore, 
the division between stages 3 and 4 is a natural one, while 
the divisions between stages 1, 2, and 3 are not strictly 
necessary. Stages 1, 2, and 3, hereafter referred to as the 
geometry phase, may be coalesced, yielding the architec­
ture of Figure 3. Finally, note that there is little or no 
advantage to having processors simultaneously work on 
both of these stages for a single frame, as the hidden­
surface stage must wait for all data to pass through the 
geometry stage before it can do any work . 

The architecture we use, shown in Figure 4, rectifies 
this last inefficiency. The Master Processor distributes 
polygons among the Slave Processors, which pass their 
polygons through the geometry phase. The output from 
this phase is sent back to the Master. When all interme­
diate results have been gathered, the Master redistributes 
the transformed polygons to the Slaves for hidden-surface 
elimination, step 4 in the pipeline. Image output from 
this step is sent to the Image Collector, which writes the 
image fragments to a display device . In addition to its 

284 

duties as a system coordinator, the Master also serves as 
the host for the graphics application. 

3 Choice of Hidden-Surface Al­
gorithm 

To efficiently decompose the hidden-surface stage for par­
allel processing, each process must operate on a set of 
polygons that have no visual interactions with polygons 
held by other processes. One simple approach, taken in 
[5] and here, is to partition the image into a grid, clipping 
polygons by the planes extending from the grid lines. The 
polygons in each grid cell are given to a separate proces­
sor. Virtually any hidden-surface algorithm can then be 
used to calculate the resulting image for each grid cell. 

Transmission of the image fragments to the Collec­
tor in a reassonably short time presents a problem. The 
volume of raw-image data is too large to transfer over 
a medium-bandwidth network, and encoding algorithms 
that would compress the image are CPU-intensive. The 
solution is to choose a hidden-surface algorithm that can 
generate encoded image data directly. For example, a 
scan-line algorithm [6,7] could return a list of visible spans 
- in effect, a run-length encoded format. The Newell­
Newell-Sancha algorithm [4] could produce similar out­
put, by returning the extents of the polygon segments 
that ordinarily would be used for polygon scan conver­
sion . The Newell-Newell-Sancha algorithm was chosen 
for our implementation for this reason. 

4 Data Flow, Synchronization, 
and Load Balancing 

Upon initialization, the Master Processor distributes a 
copy of the entire scene description to each Slave Proces­
sor. The scene is given in the form of a Structured Display 
File (SDF), an acyclic directed graph in which each node 
contains polygons in a local coordinate system and each 
edge represents a modelling transformation. By appro­
priate traversal of the SDF and application of the relevant 
modelling transformations, all polygons may be mapped 
into world coordinates . Between frames, the Master up­
dates the scene description by broadcasting to the Slaves 
the required modifications to the SDF. Usually, this in­
cludes only updates to the modelling transformations. 

As outlined earlier, each frame is processed by a geom­
etry stage and a hidden-surface stage. During the geom­
etry stage, the Slaves allocate from the Master sequences 
of numerical polygon identifiers that are defined by the 
order of SDF traversal. The corresponding polygons are 
clipped, transformed into image space, sorted into grid 
cells, and sent to the Master. Note that the Master grants 
a sequence to a Slave by passing only polygon identifiers, 
not entire polygon descriptions, over the network . 

After all transformed polygons are received by the 
Master, the hidden-surface phase begins . The Master 
distributes the polygons in the grid cells to the Slaves, 

Graphics Interface '89 



285 

Stage 1 Stage 2 Stage 3 Stage 4 

~ Transform - ~ 
Clip I-- ~ Transform - ~ Hidden -

Surface 

~ .. Hidden 
~ Transform Clip Transform Surface r--

0 0 0 0 

0 0 0 0 

0 0 0 0 

Lt Transform I-- 4 Clip I-- Lt Transform I-- ~ Hidden r-
Surface 

Figure 2: 

Graphics 
Primitives 

Figure 3: 

Image 

and the Slaves send the rectangular image segments cor­
responding to their cells to the Collector, which assembles 
the complete image in its frame buffer. 

4.1 Load Balancing 

Load balancing is a critical component of our system, 
made necessary by the environment in which we are run­
ning as well as the nature of the rendering problem. For 
each phase, the problem is to divide the workload among 
p Slave Processors such that they all finish at the same 
time. Given the barrier synchronization between the 
geometry and hidden-surface stages, we must indepen-
dently apply a load-balancing solution to each stage. 

There are three reasons why statically partitioning 
the workload into p chunks is an inadequate solution. 
First, image complexity is not distributed uniformly and 
changes over time. Varying numbers of differently sized 
polygons will drift in and out of each region during the 
course of an animation. Second, the relative speed of each 
processor may be unknown and in any case is difficult to 
measure. Third, each processor in our network is time-' 
shared, and response times will vary greatly depending 
on the multiprogramming level of each processor. 

4.2 Load Allocation 

To perform load balancing for each rendering stage, the 
Master maintains a pool of work items, which are allo­
cated by Slaves as they become idle, with no requirement 
that the work items be of the same size. Fast Slaves 
will allocate more work items than slow Slaves during 
the time it takes to exhaust the pool, and the maximum 
difference in the total work time spent by any two pro­
cesses will be bounded by the time it takes to process 
one work item. To see this, consider the system with one 
item left in the pool and all Slaves busy. The next Slave 
that goes idle will allocate the remaining item, and a dif­
ferent Slave may go idle immediately after this. Thus, 
better balancing is achieved with a large number of small 
work items. However, there is a fixed cost per work al­
location, so total overhead increases with the number of 
work items. Consequently, increasing the number of work 
items will decrease the variance in execution time but 
raise the mean. 

The smallest possible unit of work in the geometry 
stage is the polygon, but allocating polygons one at a 
time would involve too many allocation transactions for 
scenes with thousands of polygons. Instead, a group of 
polygons is handed out in each allocation, and the size of 
the group decreases with each successive allocation until 
single polygons are handed out in the final allocations. 
The result is that fewer allocations are necessary, and 
there is still a good chance that the processes will finish 
within one polygon-processing time of each other. The 
largest group of polygons is sized so that an unloaded 
Slave would be able to finish them and come back for sev­
eral more allocations before the geometry stage is over. 
Thus, if the time-sharing load on a Slave goes up, it still 
has a reasonable chance of finishing at least its first allo­
cation before the stage is over, and any successive alloca­
tions it would have received will go to other Slaves. 

Graphics Interface '89 



286 

Figure 4: System architecture sh.owing data fl.ow 

Figure 5: 

W.ork in the hidden-surface stage may be divided as 
menti.oned previ.ously, i.e., by partiti.oning the image int.o 
a grid, with cells .of the grid being all.ocated by Slaves 
.one at a time. We have f.ound empirically that making 
the grid sufficiently fine s.o as t.o pr.oduce six t.o eight cells 
per Slave Pr.ocess.or yields g.o.od l.oad-balancing results. 
When a grid cell is all.ocated, the Master transmits t.o 
the receiving Slaves all p.olyg.ons that were .output fr.om 
the ge.ometry stage and lie in the cell. 

5 Frame Coherence 

Frame-to-frame c.oherence, .or frame c.oherence f.or sh.ort, 
is said t.o h.old when parts .of an image remain unchanged 
fr.om .one frame in a sequence t.o the next [31. The mini­
mum requirement f.or frame c.oherence is that the viewer's 
p.ositi.on and line .of sight in the envir.onment must remain 
c.onstant between frames. In additi.on, s.ome .of the .ob­
jects in the envir.onment must remain stati.onary. There 
are many applicati.ons that meet these requirements. An 

applicati.on generating animati.on sequences in which a 
f.oregr.ound .object m.oves inside an unchanging and po­
tentially c.omplex backgr.ound envir.onment exhibits frame 
c.oherence, as d.oes an applicati.on in which an .object is in­
crementally built by adding and subtracting single parts. 
Examples .of the f.ormer include a viewer watching an air­
plane fly ar.ound a m.ountain, and a r.ob.ot watching its 
mechanical arm sweep .out acr.oss a fact.ory fl.o.or. Ex­
amples .of the latter include CAD, an incremental scene 
edit.or, and s.ome f.orms .of scientific visualizati.on. 

When frame c.oherence is present, there is a p.otential 
f.or c.omputati.onal savings if the system can is.olate and 
rec.ompute .only the parts .of an image that change. F.or 
example, in Figure 5, we have an airplane flying in fr.ont 
.of a m.ountain as the airplane m.oves fr.om cell A t.o cell B 
between frames. T.o render the next frame, cell A must 
be rec.omputed because the airplane is n.o l.onger there, 
and cell B must be rec.omputed because the airplane has 
m.oved int.o it. Any m.ountain p.olyg.ons lying in cells A 
and B are included in the rec.omputati.on. N.one.of the 
.other cells in the image, which may include th.ousands .of 
p.olyg.ons, need be rec.omputed. 

Frame c.oherence can be inc.orp.orated int.o a distributed 
system with few m.odificati.ons t.o the system architec­
ture: The existing grid that is used t.o divide the scene f.or 
the hidden-surface stage is used t.o is.olate image changes 
between frames. When transf.ormed p.olyg.ons fr.om the 
Slaves are sent t.o the Master at the end .of the ge.ometry 
phase and st.ored in the appr.opriate grid cells, the Master 
must maintain the p.olyg.ons in the grid f.or p.ossible use 
in future frames . 

When an .object m.oves - which happens when the graph­
ics applicati.on changes a m.odelling transf.ormati.on in the 
SDF that affects the .object - the .object's p.olyg.ons are 
deleted fr.om the Master's grid, and the grid cells that 
these deleted p.olyg.ons were in are marked. When the 
Slaves all.ocate w.ork during the ge.ometry phase, they al­
l.ocate .only p.olyg.ons bel.onging t.o m.oving .objects. These 
m.oving p.olyg.ons are transf.ormed, sent back t.o the Mas­
ter, and added t.o the appr.opriate grid cells, which are 
als.o marked. In the hidden-surface phase, all marked 

Graphics Interface '89 



grid cells are allocated to the Slaves to be re-rendered. 
A marked cell may contain polygons describing moving 
objects that have just been deposited in the cell, as well 
as polygons from stationary objects that were deposited 
in the cell in earlier frames . Thus, moving and station­
ary objects will properly intersect and/or obscure each 
other. Finally, the Slaves send the image fragments re­
sulting from each marked cell to the Collector, and the 
Collector paints these fragments over the areas on the im­
age that the fragments replace, without repainting static 
image areas. 

6 Static Color Quantization 

Color quantization generally is required to display color 
images with a typical, low-cost, 8-bit frame buffer. There 
are many known color quantization algorithms. How­
ever, most algorithms that give good results are ardu­
ously slow, and the time to invoke color quantization can 
be much longer than the time to render the image! 

In the context of our system, it is undesirable that 
color quantization be performed for each frame, as the 
resulting degradation in frame rate would be intolerable, 
even if the quantizationwere done in parallel. Instead, 
we have developed a method for static color quantization, 
in which color quantization is performed just once (after 
the scene description is defined) and the color map thus 
computed is used for all frames. The color domain to 
be quantized must include all possible colors that can be 
generated during the course of the animation. Without 
prior knowledge of the motions that the object will un­
dergo, the best one can do is assume that every polygon 
in the scene can take on any orientation, and thereafter 
generate all possible final shades for each polygon based 
on the shading model being used . 

The number of possible surface orientations, hence 
shades , is infinite, so the terms in the shading model in­
volving the surface normal must be quantized into a finite 
number of values. For example, in a simple, faceted shad­
ing model, the scalar result of taking N . L, where N is 
the surface normal and L is the light-source direction, 
must be quantized. The computation involved in gener­
ating all shades for all polygons can be reduced by recog­
nizing that in the scene description, many polygons will 
have the same color. One need evaluate only the shading 
model for each (quantized) orientation and each polygon 
col or, and weight each shade thus generated by the num­
ber of polygons that have the color. Strongly weighted 
shades will, in general, have less error introduced in the 
quantization than weakly weighted shades. The weights 
could be made more accurate by considering the average 
projected area of each polygon on the screen during the 
animation . 

The shades and their weights are fed into a standard 
color-quantization algorithm, such as the median-cut al­
gorithm, described in [21, and a color sampling and map­
ping to this sampling is produced. For fast access , we 
convert this mapping to a two-dimensional table, orga­
nized as follows . One dimension is indexed by polygon 

287 

color. For this purpose, an integer color index is associ­
ated with each color and stored in every polygon. The 
other dimension is indexed by the quantity N . L, which 
has been quantized . Thus, to determine the pixel value 
to be scanned into the frame buffer for any polygon in 
any frame, one just looks it up based on the polygon's 
normal, N, and color index. 

The color map remains valid as long as parameters of 
the shading equation remain unchanged, such as ambient 
lighting and light-source direction, and as long as no new 
colors are added. When any of these factors changes, 
color quantization must be called again, resulting in a 
temporary delay in the animation. 

The visual results achieved using static color quanti­
zation appear to be satisfactory, although at this time 
we are using only a faceted shading model. The acid 
test will come when smooth shading is incorporated, as 
quantization effects will be most apparent in that setting. 

7 Implementation 

Our experimental system runs on a collection of Sun 
workstations - one Sun-4 serving as the Master and up 
to N Sun-3 Slaves. However, the Sun-3's are of different 
models (and hence speeds), and the Slaves could include 
any variety of machine types. 

The top-level interface to our system consists of a set 
of C subroutines that may be called to construct and 
render a scene description. The application programmer 
need not be concerned with the underlying parallel nature 
of the system. 

When the Master is invoked, it first starts up the Slave 
Processes and the Collector using the UNIX call rexec, 
which creates a TCP /IP socket between the Master and 
each new process. The host machines used may be speci­
fied at run time. The Master then returns from initializa­
tion and executes the application program. Each Slave, 
upon startup, creates a socket connection to the Collec­
tor, and then goes into an endless loop of waiting for 
messages from the Master and acting upon them, termi­
nating when the Master closes the connection. 

The Collector behaves similarly to a Slave, looping 
and waiting for messages. Its only function is to receive 
image pieces and pass them to a frame-buffer controller 
for display. Since many Slaves send image messages to 
the Collector, it is possible that the Collector's input 
buffer could fill up, blocking further messages and hold­
ing up the Slaves until the buffer has room. To minimize 
this possibility, the Collector always listens for incoming 
messages during the hidden-surface stage (i.e., when the 
Slaves are generating image messages) and immediately 
copies any received messages into a temporary memory 
area. The image is not assembled and sent to the frame­
buffer controller until the start of the geometry stage in 
the next frame. The Collector must be capable of putting 
up the image before the geometry stage is over, requiring 
a high-bandwidth connection between the Collector and 
its graphics controller. It is helpful if the controller is ca­
pable of drawing vectors, in which case the Collector's de-

Graphics Interface '89 



Figure 6: 4096-polygon mountain 

coding task will be minimal, as polygon-segment-encoded 
images generated by the Newell-Newell-Sancha algorithm 
map directly into vectors . The controller that we use, a 
Sun-3 with graphics processor board, has this capability. 
An alternative available on most frame buffers, including 
generic Sun-3's, is to use the bitblt fill operation to fill 
out each polygon segment. 

Absolutely essential to efficient communication over 
the ethernet is buffering of both input and output, as the 
system calls necessary for network communications are 
very expensive compared to the cost of moving data. As 
much data as possible must be transferred to and from 
the operating system in each read and write system 
call. Furthermore, it is noteworthy that data transmis­
sion rates over the net are limited as much by machine 
speed as by network bandwidth. One Sun-3, a I-MIP 
machine, sending raw data to another Sun-3 over an eth­
ernet achieves a maximum data-transfer rate of less than 
200KB per second. If five Sun-3's transmit to one, the 
result is the same. However, if five (or more) Sun-3's 
transmit to one Sun-4, a lO-mip machine, the combined 
data transfer rate is 1MB per second, which is the full 
bandv.:idth of the network. The implication for our dis­
tributed system is that the fastest host available should 
serve as the Master, which in our case is a Sun-4 . 

8 Applications and Results 

Sever.al interactive graphics applications have been con­
structed using our distributed system, including a crude 
flight simulator and a crystalline-structure editor. The 
flight simulator was used to gather extensive timing data, 
shown in the Results section, from which one can evalu­
ate the parallel efficiency of our distributed system. The 
simulator operates in two modes, which are purposely 
simplistic in order to generate repeatable and consistent 
timing data. The viewer can either continuously move 
around a mountain or remain stationary and watch an 
airplane move around the mountain. A typical image 
from this application may be seen in Figure 6. 

In the first mode, the entire scene must be recomputed 

288 

Figure 7: quasi-crystal 

in each frame. One can see from the tables in the Results 
section that frames could be generated in just over two 
seconds with 1024 polygons in the mountain, which yields 
a surprisingly good rotational effect. Mountains with 256 
polygons positively zip around, having frame-generation 
times of less than 1 second. In the second mode, frame 
coherence limits the recomputation necessary, and the 
airplane flys around the mountain at a rate of one to 
four frames per second. Thus, a wide variety of appli­
cations that interactively generate animation sequences 
using scenes of moderate complexity can be supported 
by our distributed system. 

The quasi-crystal editor is a scientific-visualization tool 
that is being used in materials-science research at Har­
vard . Its purpose is to investigate the structure of the 
quasi-crystal, which is a solid crystalline structure. A 
typical quasi-crystal may be seen in Figure 7. Various 
polyhedra, such as tetrahedra and icosahedra, are used 
to represent structures within the crystal. The function 
of the editor is to help understand how these polyhedra 
may fit together exactly, with no space in-between, to 
form a solid crystalline structure. Supported actions in­
clude adding a polyhedron to an existing polyhedral face , 
deleting an existing polyhedron, and viewing the entire 
crystal from a different perspective. 

Before our distributed system became available, the 
quasi-crystal application could be termed interactive only 
for very patient users, since simply adding a new polyhe­
dron could take many seconds as the crystal being built 
became larger. When linked with our distributed sys­
tem, the user detects no appreciable delay when a poly­
hedron is added or deleted, and the actual response time 
is just fractions of a second. T his response is due more 
to frame coherence than the system's parallel-processing 
power, as excellent response can be achieved using only 
one Slave Process . When more Slave Processes are used, 
the extra Slaves are idle most of the time during poly­
hedron add/delete operations and waste no CPU cycles. 
However, when the user wishes to view the crystal from 
another perspective, all the Slaves are fully utilized, and 
the new view is generated rapidly. Using 10 Slaves, the 

Graphics Interface '89 



slaves time efficiency overhead speedup cpu 
(ms) (ms) avail 

14 1084 0.33 726 4.80 0.95 
13 1063 0.36 676 4.98 0.95 
12 1069 0.38 662 4.76 0.97 
11 1138 0.40 683 4.62 0.96 
10 1106 0.45 606 4.70 0.98 
9 1216 0.48 633 4.42 0.96 
8 1234 0.52 587 4.38 0.98 
7 1370 0.55 619 3.97 0.97 
6 1463 0.59 606 3.70 0.98 
5 1669 0.63 618 3.35 0.96 
4 1936 0.64 688 2.75 0.97 
3 2313 0.70 700 2.31 0.98 
2 3181 0.78 691 1.75 0.86 
1 5737 0.70 1715 0.70 0.80 

Table 1: polygons = 256 

slaves time efficiency overhead speedup cpu 
(ms) (ms) avail 

14 2202 0.46 1186 6.68 0.98 
13 2218 0.51 1082 6.81 0.98 
12 2453 0.50 1221 6.11 0.96 
11 2349 0.59 965 6.60 0.93 
10 2463 0.59 1012 6.01 0.97 
9 2601 0.61 1007 5.66 0.98 
8 2787 0.65 986 5.29 0.97 
7 2874 0.69 889 4.97 0.99 
6 3407 0.72 969 4.40 0.97 
5 4187 0.73 1127 3.74 0.96 
4 5300 0.76 1285 3.06 0.98 
3 7059 0.78 1564 2.36 0.99 
2 11216 0.80 2248 1.60 0.98 
1 21660 0.84 3422 0.84 0.95 

Table 2: polygons = 1024 

slaves time efficiency overhead speedup cpu 
(ms) (ms) avail 

14 7949 0.48 4096 7.27 0.90 
13 6726 0.60 2689 7.98 0.96 
12 7332 0.59 2993 7.29 0.96 
11 7089 0.66 2426 7.40 0.98 
10 7710 0.67 2547 6.90 0.97 
9 8062 0.71 2339 6.57 0.97 
8 8332 0.76 1968 6.30 0.97 
7 9934 0.76 2407 5.46 0.97 
6 11514 0.78 2539 4.81 0.98 
5 13782 0.82 2457 4.19 0.98 
4 19364 0.76 4579 3.12 0.96 
3 25411 0.80 4981 2.46 0.97 
2 42702 0.67 13983 1.37 0.98 
1 57419 0.90 5850 0.90 0.98 

Table 3: polygons = 4096 
crystal in Figure 7 can be re-displayed in several seconds, 
which is satisfyingly interactive. The interactive require­
ments of the quasi-crystal editor are an ideal match to 
the capabilities of our distributed system, and there are 
many other applications having these same characteris­
tics. 

289 

9 Analysis of Results 

Timing results from distributed rendering using load al­
location may be found in Tables I, 2, and 3. The data 
in these tables was generated from the flight-simulator 
application, with the viewer moving around a mountain. 
The mountain contained 256 polygons in Table I, 1024 
polygons in Table 2, and 4096 polygons in Table 3, and 
all images were computed at a resolution of 640 by 483. 
The 409&-polygon mountain is shown in Figure 6. 

The timing figures shown are averages taken over many 
frames and represent real elapsed time. The processors 
for the runs were used in a timesharing environment and 
were not 100% available to the graphics application. The 
aggregate CPU availability is indicated for each time mea­
surement. 

The entries in the table were derived as follows. Let 

P = number of Slaves 

TSi = serial CPU-time on Slave i 

Ai = CPU availability of Slave i 

Tp = actual parallel time 

T; = ideal parallel time given 100% CPU availability 

T;' = ideal parallel time considering actual CPU avail-
ability 

Then 

T;= (E;=11 / Tsi)-1 

T;' = (E;=1Ai/Tsir1 

aggregate CPU availability = T;/T;' 

efficiency = T;' /Tp 

overhead per processor = Tp - T;' 

speedup = (E;=1 Jjf.) /P 

The quantities and formulae defined above require some 
explanation, as they are complicated by the presence of 
heterogeneous, non-dedicated processors. The quantity 
Ai was determined for each Slave by measuring the real 
time and CPU time spent during a compute-bound sec­
tion of code in the distributed system. The ideal parallel 
time is the inverse of the sum of the rates of work achieved 
by each Slave Processor. In the formula for T;', the rates 
are scaled by the CPU availability. The definitions of effi­
ciency and overhead follow naturally. Speedup is relative 
an average processor. Note that these formulae reduce to 
an easily recognizable form when TSi is the same for all 
i, and Ai is 100% for all i. 

To understand the data presented, we must examine 
the potential sources of overhead that contribute to the 
calculated speedups and efficiencies. Overhead springs 
from four sources: time to partition the scene for the 
hidden-surface stage, communication time, allocation-

Graphics Interface '89 



request time, and barrier-synchronization time. The num­
ber of partitions for all runs was fixed, so partitioning 
time is independent of the number of Slaves. Commu­
nication time also will be a constant for a given number 
of polygons . Allocation-request time is the time required 
by the Master to respond to an allocation request and 
will remain constant as long as Slaves do not queue up 
waiting for service. Of course, for the initial request for 
work in each phase, queueing is unavoidable, as all Slaves 
want work at the same time. Thereafter, Slaves will finish 
their pieces of work at different intervals and thus spread 
out their additional requests . However, if the number 
of Slaves is large enough, the Master will not be able to 
keep up with them, they will queue up, and the over­
head for allocation requests will rise. Finally, barrier­
synchronization time is a function of the performance of 
the load-balancing algorithm. 

Within each of Tables 1, 2, and 3, we see that the 
overhead per Slave is large for small numbers of Slaves, 
and it decreases to a relatively stable value as the number 
of Slaves increases. This is because sources of overhead 
which are independent of number of Slaves are distributed 
over an increasing number of Slaves, until contribution of 
these overhead sources per Slave becomes negligible. The 
overhead that remains stems largely from waiting time at 
barrier-synchronization points . The fact that this time is 
constant per Slave makes perfect sense , as all Slaves will 
have to wait for the last Slave to finish, and this finishing 
time will be one half of the average time to process a 
piece of work . 

The efficiencies go down as t he number of Slaves in­
creases, because the overhead per Slave levels off, while 
the useful work done per Slave declines. In addition, we 
see that efficiency goes up with polygons for a given num­
ber of Slaves, as the amount of useful work gets larger 
with respect to the constant sources of overhead. In gen­
eral the efficiencies are low in comparison to many tightly 
cou~led multiprocessor systems. However, the overhead 
that causes this low efficiency is composed largely of wait­
ing time, which burns no CPU cycles. Thus, in a time­
sharing environment, the cycles available during this wait­
ing time may be put to good use by other processes on 
the hosts, and low efficiency does not necessarily imply 
waste in the context of the entire distributed system. 

Tests done during moderately loaded system condi­
tions give further evidence in favor of our approach to 
load balancing. The average frame times are of course 
higher than those for unloaded Slaves, but the signifi­
cant result is thOat the individual frame times usually are 
within 10% of each other. Rarely, a frame may take sev­
eral seconds longer than average, because a Slave Process 
does not get attention from its CPU. This is an unfortu­
nate characteristic of UNIX that we must live with. 

290 

10 Conclusion 

We presented a distributed system that gives interac­
tive response to a wide variety of interactive applica­
tions requiring near-real-time shaded display of three­
dimensional scenes. The system's hardware requirements 
are met easily by a network of ordinary, low-cost, per­
sonal workstations and an inexpensive frame buffer. The 
rendering technique allows arbitrary changes in the scene 
between frames and detects frame coherence when it ex­
ists. Applications that generate scenes with several hun­
dred to several thousand polygons are well supported us­
ing approximately 10 processors, which can render these 
scenes in 1 to 3 seconds per frame. Larger scenes using 
more processors may still be rendered at sufficiently in­
teractive rates. When degrees of frame coherence hold, 
frame generation times may be decreased greatly, giving 
instantaneous response to applications such as the quasi­
crystal editor. The distributed-system approach to ren­
dering will not become obsolete as technology improves; 
rather, the performance of a distributed system will only 
increase with advances in the speed of its components. 

References 

[I] Fuchs, H., G.D. Abram, E .D .Grant, "Near Real­
Time Shaded Display of Rigid Objects", Computer 
Graphics, 17(3), July 1983, pp. 65-72. 

[2] Heckbert, P., "Color Image Quantization for Frame 
Buffer Display", Computer Graphics, 16(3), July 
1982, pp. 297-307. 

[31 Hubschman, H. and S. Zucker, "Frame-to-Frame 
Coherence and the Hidden Surface Computation: 
Constraints for a Convex World", Transactions on 
Graphics, 1(2), 1982, pp. 129-162. 

[4] Newell, M.E., R. G. Newell, and T.L. Sancha, "A 
New Approach to the Shaded Picture Problem", 
Proc. ACM Nat. Conf. 1972, pp. 443. 

[5] Parke, F. "Simulation and Expected Performance 
Analysis of Multiple Processor Z-buffer Systems", 
Computer Graphics, 14(3), July 1980, pp. 48-56. 

[6] Watkins, G .S., A Real- Time Visible Surface Algo­
rithm, Univ. Utah Computer Sci. Dept., UTEC-CSc-
70-101, June 1970, NTIS AD-762 004. 

[71 Wylie, C., G.W Romney, D.C. Evans, and A.C. Er­
dahl, Halftone Perspective Drawings b!l Computer, 
FJCC 1967, Thompson Books, Washington, D.C., 
pp. 49-58. 

Graphics Interface '89 


