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Abstract 
A frequent objection to the use of Bezier and B-spline curves is 
that the manipulation of control vertices lying off the curve is 
non-intuitive. Whether true or not, they incontestably increase 
the clutter on-screen. We introduce a simple technique by 
which the user may reshape a Bezier or B-spline curve by 
picking any point on the curve and moving it to a new location, 
through which an appropriately altered curve then passes. 
Computation of the new curve can be done in real-time, and 
the technique can be generalized to simultaneously satisfy a 
useful class of constraints. 

1. Introduction 

Consider the Bhier curve shown in Figure 1. It is defined 
by a sequence of control vertices positioned in the plane, 
shown in Figure 2 by small squares. The curve is actually an 
approximation of the piecewise-linear control polygon that 
results from connecting the control vertices in order. It is 
generally reshaped by moving one of the control vertices, thus 
resulting in a new approximation . Hence the control vertices 
are customarily shown when the curve is to be reshaped, 
though of course they need only be shown when the user 
wishes to select one so as to alter the curve. Because the order 
in which the control vertices are approximated is part of the 
definition, it is frequently necessary to show the control 
polygon as well. Significant clutter often results, especially for 
small curves overlying other objects. 

Figure I . A Bezier curve. 

Figure 2. The Bezier curve of Figure I, together with iLS control 
vertices (shown as small squares), and iLS concrol polygon (the 
sequence of line segmenLS joining the concrol vertices). 

Points on a Bezier curve are defined as a function of the 
positions of the control vertices. It seems reasonable to 
suppose that given such a point, together with a new location 
through which we would like the curve to pass instead, we 
might compute new positions for the control vertices that cause 
this to happen. This would enable us to suppress display of the 
control vertices and control polygon, of which the user then 
need not be aware. 

In fact , there is more than enough freedom to accomplish 
this: we are given the x and y coordinates of the new position 
through which the curve is to pass - two constraints - while 
we have at our disposal the x and y coordinates of all the 
control vertices. How to select from among the infinite 
number of possible control vertex positions that cause the 
curve to interpolate a new location those that also "cause a 
suitable change in the curve's shape," and how one may select 
a solution that satisfies other useful constraints, is the subject 
of this paper. 

In what follows, we provide only the background and 
definitions necessary to fix our notation. For details the reader 
is referred to [Barte1s], [Farin], [Faux], or [Mortenson]. 

2. The Technique 

Consider a Bezier curve C(u) = (X(u),Y(u)). Without loss 
of generality, the curve is traced out from beginning to end as u 
varies from 0 to 1. Let us number the control vertices 0 
through d, and represent the position of the jth control vertex 
by (xi,y/ A cubic Bezier curve is then given by the equations 

Y(u) 

where 

Bi,iu) = ( ~) (1 - u)d.i ui 

is the i th Bhier basis function or Bernstein polynomial of 
degree d, which for clarity we shall abbreviate as Bi when d is 
clear from the context. Let us suppose that the user has 
selected some point (x,y) along the curve, thus fixing the value 
of u, and moved the cursor to a new location (x' ,y' ) through 
which the curve is to pass for the same value of u. If we write 
x' as x+ill and y' as y+~y, then for a cubic Bezier curve we 
may write 
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x+~ (xo+~<yBo + (xI+~I)B I (e 2) 

Y + l1y 

whence 

+ (X2+~2)B2 + (X3+~3)B3 

(yo+l1YO)BO + (YI+l1YI)B I 

+ (Y2+l1Y2)B2 + (Y3+l1Y3)B3 

~oBo+~IBI + ~2B2+~3B3 

l1yoBo + l1YIB 1+ l1Y2B 2 + l1Y3B 3 

(e 3) 

We have two equations in the eight unknowns Llxi and L1Yi' so 
there are many ways in which we could choose the Llxi and L1Yi. 

Setting Llxi = ~, and L1Yi = l1y certainly works - it is well 
known that the Bemstein polynomials sum to one, so for this 
choice of the Llxi and L1Yi (e 3) becomes 

l1x l1x (Bo + BI + B2 + B3) l1x 

l1y l1y (Bo + BI + B2 + B3) l1y 

But this merely translates the curve - useful, but it does not 
result in a change of shape. 

Let us instead chose weights wi' and use them to compute 
the Llxi and L1Yi' according to the following formula: 

(e 4) 

B 
l1y = l1yw. = l1y J 

J J B6+ B t+ Bl+Bl 

We shall see in Section 3 that there is a sound theoretical 
justification for this choice. In the meantime, we note that the 
amount by which each control vertex moves is proportional to 
its influence on the point being moved - surely an intuitive 
choice. 

It is straightforward to verify by substitution that equations 
(e 4) satisfy equations (e 3). They are generalized to Bezier 
curves of degree d in the obvious way - the denominator is 
simply the sum of the squares of the d basis functions. (Note 
that while the Bernstein polynomials sum to one, their squares 
do not.) 

Figure 3 shows the effect of moving a point on a Bezier 
curve by computing new control vertex positions using the 
fifth degree version of equations (e 4). The new curve is a 
perfectly reasonable alteration of the old, given that it is now 
required to go through the indicated position. 

Figure 3. Direct manipulation of a fifth degree Bezier curve. 
The original curve is shown in gray and the altered curve in 
black. The black square indicates the point moved. 

For illustrative purposes, Figure 4 shows the corresponding 
movement in the control vertices as the indicated point on the 
curve is repositioned. 
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Figure 4. The curve of Figure 3. but with the control vertices 
and polygon shown. The control vertices that move the most 
are those having the most influence over the point moved. 
which is to say those whose corresponding basis functions are 
largest. so that the control vertex at the right end of the curve 
moves hardly at all. 

One of the classical advantages of Bezier curves is that 
they pass through their first and last control vertices. This 
allows the user to precisely position a curve's endpoints, which 
do not move as any of the curve's remaining control vertices 
are manipulated to change its shape. Our technique appears to 
have the disadvantage that it will move these endpoints. 

This is an easy thing to fix, however. Equations (e 3) work 
because the denominator is " the sum of the squares of the basis 
functions of the control vertices being moved." We can restrict 
movement to a subset of the potentially available control verti­
ces by letting the denominator be the sum of the squares of the 
basis functions associated with exactly those control vertices, 
and computing weights with the form of (e 3) only for those 
vertices. So if we wish to leave the endpoints of a cubic Bezier 
curve fixed in place, we need only alter (e 3) to 

l1y = l1y IB I +l1Y2B2 

where 

(e 5) 

(e 6) 

Bi 
l1y i = l1y w i = l1y -2---'--2 

BI +B2 

It is straightforward to verify by substitution that these also 
satisfy equations (e 3). Figure 5 and Figure 6 are analogous to 
Figure 3 and Figure 4, respectively, except that we have 
"locked down" the endpoints of the curve by this means. Of 
course, one need not lock down both endpoints. 

Figure 5. Compare this example to Figure 3. In this case we 
have forced the endpoints of the curve to remain fixed in place. 
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Figure 6. A re-rendering of the curve shown in Figure 5, except 
that the control vertices and control polygon are shown in 
addition to the curve. The initial state of the curve is shown in 
gray, and its final state in black. 

Sometimes, of course, it is desirable to move the endpoints, 
so we adopt the convention that selecting a point on the curve 
within a small, fixed distance of the actual endpoint indicates 
that the endpoint itself is to be displaced by tracker movement, 
rather than a point on the interior of the curve. 

"L \. 
......... .... .. 

· ································· .....• v., .............. .............. 
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Figure 7 . The initial fifth degree Bezier curve is shown in gray. 
The point marked with a black box is moved to a new position 
by computing new positions for the interior four control vertices 
using the fifth degree version of equations (e 6). 

Equations (e 6) further suggest that we may, to some 
extent, control the locality of the changes produced by 
choosing how many control vertices we wish moved so that the 
curve will go through the new point. It seems most reasonable 
to select the control vertex with the largest influence on the 
point in question, namely the vertex scaling the basis function 
with the largest value at that point, and some number of its 
neighbors. Figure 7 and Figure 8 illustrate this for a fifth 
degree Bezier curve. 

•···•······• ·•·•·•••·••••••·••·········•·· · . .. .••• ww • .. ., ... "." .... ... . 

Figure 8. The gray curves here and in Figure 7 are identical , as 
are the initial and final positions of the black square. However, 
in this figure we compute a new position for only one control 
vertex to produce interpolation of the target position, while in 
Figure 7 four control vertices are moved. 

Let us briefly consider multiple-segment Bezier curves. If 
the joints are fixed and we wish to maintain existing first or 
second derivative continuity, then we may use equations (e 4) 
or (e 5) to alter the segment containing the point being moved, 
and then from the usual continuity equations (see pages 214-
215 in [Bartels], for example) compute the necessary movement 
in control vertices for the neigh boring segment or segments. In 
Section 3 we will present a generalization of our technique that 
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would enable us to compute altered coordinates for 
neigh boring vertices in such a way as to maintain first or 
second degree continuity while moving joints as in Figure 3. 
However, it seems more natural in such circumstances to use a 
B-spline curve with an appropriate knot sequence, since for a 
cubic B-spline curve, second derivative continuity is preserved 
if there are no multiple knots, and knots of multiplicity two 
may be used to specify that only first derivative continuity be 
maintained at the corresponding joint. 

B-Splines 
Given control vertices Vo through V rn' the resulting cubic 

B-spline curve C(u) = (X(u),Y(u» of m-2 segments for the non­
decreasing knot sequence uo' ""urn+4 and u3 :s; U < um+1 is given 
by 

m 

X(u) LXj Nj,4(u) 

j=O 

Y(U) fYj Nj,4(u) 
j=O 

where the i1h B-spline Nj,iu) of order k is defined recursively 
by 

-_ 101 
Nj,l(U) \ 

I.Ii :s; U < l.Ii+l 

otherwise 

for k ~ 2. For cubics, in fact, each N j4(u) is non-zero only for 
uj :s; U < uj+4' so segment i of the cubic B-spline curve is given 
by 

x j_3N j_3,4(u) + x j_l'j_2,4(u) 

+ x j_ 1N j_ 1,4(u) + x!"ju) 

Yj_3N j_3,4(u) + Yj_l'j_2,4(u) 

+ Yj_1N j_1,4(u) + Y!"j,4(u) 

(It is convenient that the first segment of a cubic B-spline 
curve have index 3, as it is defined for ~ :s; U < u4.) 

Applying our technique to B-splines is straightforward: one 
uses exactly the same equations to compute new positions for 
the control vertices, and then generates the altered curve from 
the altered control vertices in the usual way. The four Bj(u) in 
equations (e 1) and (e 4) are replaced by the four Nj,/u) that 
are non-zero for the segment of the B-sp1ine curve containing 
the point being moved, new positions are computed for the 
corresponding control vertices, and the curve is redrawn. 
Figure 10[11 is a nine segment (twelve control vertex) unifonn 
cubic B-spline curve; Figure 11 shows the effect of moving a 
point near the right hand end of this curve, using equations 
(e 4) . It illustrates a potential problem, however: 

[I] There is no Figure 9 ... 
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Figure 10. A nine segment, twelve control vertex uniform cubic 
B-spline curve. The control vertices are shown as squares, and 
the line pattern alternates from one segment of the curve to the 
next. 

o 

o ,l.J c •... 
Z;i/ b 

a 

Figure 11. Starting from the curve of Figure 10 (shown in 
gray), the indicated point has been moved northwest. Only the 
rightmost four control vertices have moved. 

the curve still points towards the very last control vertex, 
rightmost in Figure 11. It is easy to see why this is necessarily 
the case. Let a, band c be the last three control vertices. Then 
the final point on the curve (see page 38 in [Bartels]) is found at 

Pe a N 9(ue) + bN\O(ue) + C N 9(ue) 

1.(a+4b+c) 
6 

and the derivative De at Pe is 

De=3(c-a) 

Moving a point in the last segment by applying equation (e 4) 
moves primarily a and b because the basis functions scaling 
them are largest. As the point moved approaches the left end 
of the final segment, a is moved more than b, but in both cases 
c remains nearly stationary because the B-spline weighting it is 
relatively small. We will return to this problem later, but in 
any case we want to be able to fix the endpoints of a cubic B­
spline curve, and one of the mechanisms for doing so also 
avoids this problem. 

Instead of uniform knot spacing, let us suppose that the 
first and final knots have multiplicity four, while the remaining 
breakpoints have multiplicity one and are uniformly spaced. 
Figure 12 shows such a curve, which for convenience we will 
refer to informally as an "fmek curve" (for "full multiplicity 
end knot curve"). 

Figure 12. A nine segment, twelve control vertex cubic B-spline 
fmek curve for the knot vector (0,0,0,0,1,2,3,4,5,6,7,8,9,9,9,9). 
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B-splines based on such knot vectors have two especially 
useful characteristics: they interpolate the first and last control 
vertices, and the derivatives at the beginning and end of the 
curve lie along the first and last legs of the control polygon. 
From the first property it follows that if we use variations of 
equations (e 4) which do not involve the initial or final vertex 
then the endpoints will remain fixed. By selecting a point near 
the end of the curve and rotating it about the end we can 
control the direction of the curve at the endpoint (illustrated in 
Figure 13). As was mentioned earlier, it is convenient to adopt 
the convention that selecting a point sufficiently close to an 
end point results in direct translation of the control vertex at 
that endpoint. 

Figure 13. This is a four segment, seven control vertex cubic B­
spline fmek curve. A three-vertex version of equations (e 5) not 
involving the last control vertex has been used to move the point 
represented by the black square, which lies on the last segment 
of the curve. It follows that the last vertex is not altered, so that 
the endpoint of the curve remains fixed, and the curve rotates 
around that endpoinl. 

Of course, we may choose not to lock down the endpoints of 
an fmek curve, and if we move a point sufficiently close to the 
end of the curve, the end will move also. Figure 14 illustrates 
this (and avoids the difficulty illustrated in Figure 11). 

Figure 14 . Here we have selected the same point, and using 
equations (e 4), moved it to the same position as we did in 
Figure 13. The last control vertex contributes substantially to 
the position moved, and so an entirely different alteration in the 
curve resullS. 

Just as for Bezier curves, we may use a form of equations (e 4) 
involving anywhere between one and k control vertices, where 
k is the order of the B-spline. If we move one control vertex, 
then k segments of the B-spline will be altered in order to 
interpolate the desired point, while if k control vertices are 
moved then k+(k-l) segments will be altered, so that to some 
extent we may control the locality of the change by selecting 
the number of control vertices involved. 
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Figure 15. A particular point on the curve of Figure 12 has been 
moved twice to the same new position, once by altering a singlc 
control vertex (resulting in the middle curve), and once by 
altering four control vertices (resulting in the upper curve). In 
the latter case, one additional segment to the left and two 
additional segments to the right change shape, although the 
alteration in the rightmost segment is not visible (panl y because 
the point being moved is very close LO a joint). 

Movement of a single control venex can result in "unbalanced" 
changes in shape, so it is probably a better idea to move two or 
more (see Figure 16): a decrease in the influence of one 
control venex is balanced by an increase in the influence of 
another. 

............ ~ .... ~. 
r-" ' N ~ ' . . ~ .....•. ~ ......... ~ .... . 

"\ ;: "\ / .
... r- .................. ~ ............. . 
\~ --

Figure 16 . The points being moved in the LOp two curves lie 
ever so slightly left and right, respectively, of the parameter 
value for which the influence of the two closest con trol vertices 
are balanced. A single control venex is being altcred, and 
curves of distinctly different shape result. The bottom curve 
shows overlain the two curves that result from movement of the 
two points specified in the LOp two curves (as well as the initial 
curve), but with the alteration of two control vertices. In this 
case the two curves are nearly indistinguishable. 

3. A Theoretical Justification 

We will now provide a theoretical justification for 
equations (e 4) 
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and (e 6) by showing that they cause the curve to go through 
the new position by making a "minimal" change in the 
positions of the control venices, in a sense that will become 
clear shonly. 

Let us rewrite equations (e 3) as: 

(e 7) 

(We omit explicit discussion of D.y, the treatment of which is 
exactly analogous.) We make use of the Householder 
transformation [Lawson] 

H = I - LwTw 
1t 

where 

OOT { Bf] 
w = [(Bo+o)B t B2 B 3 ] 

Tt = 0 (B 0+0 ) 

As may be verified directly, H is an orthogonal matrix with the 
property that 

[ BO B t B2 B3J H = [-0 0 0 0 J 

Because H is orthogonal, H-t = HT so that HHT is the identity 
matrix. Hence equation (e 7) may be written as 

[ B, B, B, BT1 HHT [g 1 6, 
Let [eo,e t ,e2,e3]T = HT [Llxo,Llxt ,~,Llx3]T. Then we may write 
this equation as 

Clearly eo = - Llx/o, but el' e2, and e3 may have any values 
whatsoever. Because H is an onhogonal matrix, we may think 
of it as accomplishing a change of coordinate ' systems that 
preserves Euclidian distance, so that [eO,el'e2 ,e3]T and 
[Llxo,Llxt ,Llx2,Llx3]T have the same length. Both are vectors 
representing the change made to the control vertices. So as to 
minimize this change, we let et= e2 = e3 = O. Finally, we undo 
the Householder transformation to compute the Llxi . Thus 
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Straightforward algebra .then yields 

[E:1 = B2 + B2~ B2 + B 2 [;:1 
ill 0 1 2 3 B 3 3 

which is simply another representation of equations (e 4). 

Moreover, the above argument in no way depended on our 
having involved all the control vertices contributing to the 
position of the point being moved, so that modifications such 
as that of (e 6) also minimize the total change of the control 
vertices being allowed to move. 

4. A Generalization 

Repeated Householder transfonnations can be used to find 
a minimum length solution to a system of several underdeter­
mined equations. For example, let us suppose that we wish to 
move a point C(u) in the first segment of a floating B-spline 
curve over a unifonn knot vector (such as the curve of 
Figure 10), without alteration to the initial point of the curve 
(see Figure 17 for an example). 

Figure 17 . This is a six control vertex uniform cubic B-spline 
curve. There were two equations involved in moving the point 
shown as a black square: one yielded its new position, and the 
other enforced the constraint that the change accomplishing the 
first goal left the initial, leftrnost point of the curve unchanged. 

The appropriate equations are as follows: 

Insertion of the first Householder transfonnation leaves us with 

o 
fh 

where [ f30 f31 f32 A J = [ Bo(~) BI(~) B/~) B3(~) JH. We 
then insert a 3x3 Householder transfonnation H into the 
system 
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to obtain the system 

o 

Next embed H into a 4x4 matrix as 

H4 = [ ~ ~ ] 
and combine the two transfonnations into (HH )(HTH1) to 
obtain the system 

-(1 0 0 0 h _ ill 

[
eo] 

[f3o - ~ 0 0] j~ - [ 0 ] 
(e 8) 

This time we set f2 = h = 0 and solve for eo and fl by 
forward substitution. Inverting the two Householder 
transfonnations then yields the desired values of /::"Xj and /::,.Yj . 

After solving for /::"x, we may obtain /::"Y by altering the right 
hand side and repeating the forward substitution. Moreover, so 
long as we do not change the value of u in question, repeated 
forward substitution suffices for subsequent movement of the 
tracker. 

5. Discussion 

While promising, and indeed useful, the approach we have 
presented has its limitations. One problem is that moving a 
point close to the end of a curve when the endpoint is locked 
down can produce an unexpectedly large change in the shape 
of the curve (see Figure 18). 

Figure 18. The leftmost black square records a position selected 
on the original, gray curve that is very close to the endpoint, 
which is not allowed to move. The black square to the right and 
above it marks the position to which the tracker was moved in 
producing the solid black curve. 

What's happening is that the new curve is required to 
interpolate the new location for the same, fixed value of u. 
Because the point selected is very close to the beginning of the 
curve, which does not move, the new curve must cover a 
relatively large Euclidian distance while undergoing a 
relatively small change in u, resulting in the large overshoot 
shown. 
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A related phenomenon has to do with the movement of a 
selected point along a curve, which changes the relationship 
between the independent parameter u, arc length, the length of 
individual spline segments, and the portion of the curve that is 
altered when interaction occurs - we would prefer that the 
locality of movement be independent of the point being 
moved, but this may not be the case. Of course, the same 
changes can occur when moving control vertices directly, 
although the control vertex positions provide some indication 
of what is happening. For direct manipulation, one might use 
color or gray scale to distinguish consecutive segments, or 
space small beads uniformly in parameter space, to provide a 
visual indication of segment length and the resulting locality. 
A more interesting possibility we are exploring is to use the 
component of tracker motion along the curve to alter the 
parameter value u for which the curve is required to interpolate 
the new location. 

Another interesting possibility is to combine knot insertion, 
hierarchical B-spline refinement (introduced by [ForseyJ), and 
direct manipulation so that a user may either cycle among 
available localities or specify exactly the subcurve that is to be 
reshaped, retaining the ability to subsequently perform more 
global manipulations. One might also alter the posi tions of 
some number of control vertices neigh boring those moved to 
accomplish the interpolation, along the lines of the "warp" 
operator discussed in [Cobb), to widen the extent of the 
reshaping. 

We have not yet discussed how the curve should first be 
entered. Our method of choice is to make an initial free-hand 
sketch, collecting data points every few pixels and performing 
a least squares fit in which the parametric spacing of data 
points is proportional to the Euclidian distance separating 
them. In the resulting curves the independent parameter u is 
generally a good approximation of arc length. 

Finally, we have only begun to explore the utility of 
Householder transformations in reshaping curves while 
enforcing auxiliary constraints. Note also that equations (e 4) 
suggest other non-minimal, though perhaps useful, weighting 
schemes. 
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