
33

A Technique for the Direct Manipulation of Spline Curves

Richard H. Barte1s
John C. Beatty

Computer Graphics Laboratory
Department of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3Gl

(519) 888-4534

Abstract
A frequent objection to the use of Bezier and B-spline curves is
that the manipulation of control vertices lying off the curve is
non-intuitive. Whether true or not, they incontestably increase
the clutter on-screen. We introduce a simple technique by
which the user may reshape a Bezier or B-spline curve by
picking any point on the curve and moving it to a new location,
through which an appropriately altered curve then passes.
Computation of the new curve can be done in real-time, and
the technique can be generalized to simultaneously satisfy a
useful class of constraints.

1. Introduction

Consider the Bhier curve shown in Figure 1. It is defined
by a sequence of control vertices positioned in the plane,
shown in Figure 2 by small squares. The curve is actually an
approximation of the piecewise-linear control polygon that
results from connecting the control vertices in order. It is
generally reshaped by moving one of the control vertices, thus
resulting in a new approximation . Hence the control vertices
are customarily shown when the curve is to be reshaped,
though of course they need only be shown when the user
wishes to select one so as to alter the curve. Because the order
in which the control vertices are approximated is part of the
definition, it is frequently necessary to show the control
polygon as well. Significant clutter often results, especially for
small curves overlying other objects.

Figure I . A Bezier curve.

Figure 2. The Bezier curve of Figure I, together with iLS control
vertices (shown as small squares), and iLS concrol polygon (the
sequence of line segmenLS joining the concrol vertices).

Points on a Bezier curve are defined as a function of the
positions of the control vertices. It seems reasonable to
suppose that given such a point, together with a new location
through which we would like the curve to pass instead, we
might compute new positions for the control vertices that cause
this to happen. This would enable us to suppress display of the
control vertices and control polygon, of which the user then
need not be aware.

In fact , there is more than enough freedom to accomplish
this: we are given the x and y coordinates of the new position
through which the curve is to pass - two constraints - while
we have at our disposal the x and y coordinates of all the
control vertices. How to select from among the infinite
number of possible control vertex positions that cause the
curve to interpolate a new location those that also "cause a
suitable change in the curve's shape," and how one may select
a solution that satisfies other useful constraints, is the subject
of this paper.

In what follows, we provide only the background and
definitions necessary to fix our notation. For details the reader
is referred to [Barte1s], [Farin], [Faux], or [Mortenson].

2. The Technique

Consider a Bezier curve C(u) = (X(u),Y(u)). Without loss
of generality, the curve is traced out from beginning to end as u
varies from 0 to 1. Let us number the control vertices 0
through d, and represent the position of the jth control vertex
by (xi,y/ A cubic Bezier curve is then given by the equations

Y(u)

where

Bi,iu) = (~) (1 - u)d.i ui

is the i th Bhier basis function or Bernstein polynomial of
degree d, which for clarity we shall abbreviate as Bi when d is
clear from the context. Let us suppose that the user has
selected some point (x,y) along the curve, thus fixing the value
of u, and moved the cursor to a new location (x' ,y') through
which the curve is to pass for the same value of u. If we write
x' as x+ill and y' as y+~y, then for a cubic Bezier curve we
may write

Graphics Interface '89

x+~ (xo+~<yBo + (xI+~I)B I (e 2)

Y + l1y

whence

+ (X2+~2)B2 + (X3+~3)B3

(yo+l1YO)BO + (YI+l1YI)B I

+ (Y2+l1Y2)B2 + (Y3+l1Y3)B3

~oBo+~IBI + ~2B2+~3B3

l1yoBo + l1YIB 1+ l1Y2B 2 + l1Y3B 3

(e 3)

We have two equations in the eight unknowns Llxi and L1Yi' so
there are many ways in which we could choose the Llxi and L1Yi.

Setting Llxi = ~, and L1Yi = l1y certainly works - it is well
known that the Bemstein polynomials sum to one, so for this
choice of the Llxi and L1Yi (e 3) becomes

l1x l1x (Bo + BI + B2 + B3) l1x

l1y l1y (Bo + BI + B2 + B3) l1y

But this merely translates the curve - useful, but it does not
result in a change of shape.

Let us instead chose weights wi' and use them to compute
the Llxi and L1Yi' according to the following formula:

(e 4)

B
l1y = l1yw. = l1y J

J J B6+ B t+ Bl+Bl

We shall see in Section 3 that there is a sound theoretical
justification for this choice. In the meantime, we note that the
amount by which each control vertex moves is proportional to
its influence on the point being moved - surely an intuitive
choice.

It is straightforward to verify by substitution that equations
(e 4) satisfy equations (e 3). They are generalized to Bezier
curves of degree d in the obvious way - the denominator is
simply the sum of the squares of the d basis functions. (Note
that while the Bernstein polynomials sum to one, their squares
do not.)

Figure 3 shows the effect of moving a point on a Bezier
curve by computing new control vertex positions using the
fifth degree version of equations (e 4). The new curve is a
perfectly reasonable alteration of the old, given that it is now
required to go through the indicated position.

Figure 3. Direct manipulation of a fifth degree Bezier curve.
The original curve is shown in gray and the altered curve in
black. The black square indicates the point moved.

For illustrative purposes, Figure 4 shows the corresponding
movement in the control vertices as the indicated point on the
curve is repositioned.

34

Figure 4. The curve of Figure 3. but with the control vertices
and polygon shown. The control vertices that move the most
are those having the most influence over the point moved.
which is to say those whose corresponding basis functions are
largest. so that the control vertex at the right end of the curve
moves hardly at all.

One of the classical advantages of Bezier curves is that
they pass through their first and last control vertices. This
allows the user to precisely position a curve's endpoints, which
do not move as any of the curve's remaining control vertices
are manipulated to change its shape. Our technique appears to
have the disadvantage that it will move these endpoints.

This is an easy thing to fix, however. Equations (e 3) work
because the denominator is " the sum of the squares of the basis
functions of the control vertices being moved." We can restrict
movement to a subset of the potentially available control verti­
ces by letting the denominator be the sum of the squares of the
basis functions associated with exactly those control vertices,
and computing weights with the form of (e 3) only for those
vertices. So if we wish to leave the endpoints of a cubic Bezier
curve fixed in place, we need only alter (e 3) to

l1y = l1y IB I +l1Y2B2

where

(e 5)

(e 6)

Bi
l1y i = l1y w i = l1y -2---'--2

BI +B2

It is straightforward to verify by substitution that these also
satisfy equations (e 3). Figure 5 and Figure 6 are analogous to
Figure 3 and Figure 4, respectively, except that we have
"locked down" the endpoints of the curve by this means. Of
course, one need not lock down both endpoints.

Figure 5. Compare this example to Figure 3. In this case we
have forced the endpoints of the curve to remain fixed in place.

Graphics Interface '89

Figure 6. A re-rendering of the curve shown in Figure 5, except
that the control vertices and control polygon are shown in
addition to the curve. The initial state of the curve is shown in
gray, and its final state in black.

Sometimes, of course, it is desirable to move the endpoints,
so we adopt the convention that selecting a point on the curve
within a small, fixed distance of the actual endpoint indicates
that the endpoint itself is to be displaced by tracker movement,
rather than a point on the interior of the curve.

"L \.
.........

· ·································• v.,

.... :•...

Figure 7 . The initial fifth degree Bezier curve is shown in gray.
The point marked with a black box is moved to a new position
by computing new positions for the interior four control vertices
using the fifth degree version of equations (e 6).

Equations (e 6) further suggest that we may, to some
extent, control the locality of the changes produced by
choosing how many control vertices we wish moved so that the
curve will go through the new point. It seems most reasonable
to select the control vertex with the largest influence on the
point in question, namely the vertex scaling the basis function
with the largest value at that point, and some number of its
neighbors. Figure 7 and Figure 8 illustrate this for a fifth
degree Bezier curve.

•···•······• ·•·•·•••·••••••·••·········•·· ·••• ww • .. ., ... "."

Figure 8. The gray curves here and in Figure 7 are identical , as
are the initial and final positions of the black square. However,
in this figure we compute a new position for only one control
vertex to produce interpolation of the target position, while in
Figure 7 four control vertices are moved.

Let us briefly consider multiple-segment Bezier curves. If
the joints are fixed and we wish to maintain existing first or
second derivative continuity, then we may use equations (e 4)
or (e 5) to alter the segment containing the point being moved,
and then from the usual continuity equations (see pages 214-
215 in [Bartels], for example) compute the necessary movement
in control vertices for the neigh boring segment or segments. In
Section 3 we will present a generalization of our technique that

35

would enable us to compute altered coordinates for
neigh boring vertices in such a way as to maintain first or
second degree continuity while moving joints as in Figure 3.
However, it seems more natural in such circumstances to use a
B-spline curve with an appropriate knot sequence, since for a
cubic B-spline curve, second derivative continuity is preserved
if there are no multiple knots, and knots of multiplicity two
may be used to specify that only first derivative continuity be
maintained at the corresponding joint.

B-Splines
Given control vertices Vo through V rn' the resulting cubic

B-spline curve C(u) = (X(u),Y(u» of m-2 segments for the non­
decreasing knot sequence uo' ""urn+4 and u3 :s; U < um+1 is given
by

m

X(u) LXj Nj,4(u)

j=O

Y(U) fYj Nj,4(u)
j=O

where the i1h B-spline Nj,iu) of order k is defined recursively
by

-_ 101
Nj,l(U) \

I.Ii :s; U < l.Ii+l

otherwise

for k ~ 2. For cubics, in fact, each N j4(u) is non-zero only for
uj :s; U < uj+4' so segment i of the cubic B-spline curve is given
by

x j_3N j_3,4(u) + x j_l'j_2,4(u)

+ x j_ 1N j_ 1,4(u) + x!"ju)

Yj_3N j_3,4(u) + Yj_l'j_2,4(u)

+ Yj_1N j_1,4(u) + Y!"j,4(u)

(It is convenient that the first segment of a cubic B-spline
curve have index 3, as it is defined for ~ :s; U < u4.)

Applying our technique to B-splines is straightforward: one
uses exactly the same equations to compute new positions for
the control vertices, and then generates the altered curve from
the altered control vertices in the usual way. The four Bj(u) in
equations (e 1) and (e 4) are replaced by the four Nj,/u) that
are non-zero for the segment of the B-sp1ine curve containing
the point being moved, new positions are computed for the
corresponding control vertices, and the curve is redrawn.
Figure 10[11 is a nine segment (twelve control vertex) unifonn
cubic B-spline curve; Figure 11 shows the effect of moving a
point near the right hand end of this curve, using equations
(e 4) . It illustrates a potential problem, however:

[I] There is no Figure 9 ...

Graphics Interface '89

r - - --- - ------

o

Figure 10. A nine segment, twelve control vertex uniform cubic
B-spline curve. The control vertices are shown as squares, and
the line pattern alternates from one segment of the curve to the
next.

o

o ,l.J c •...
Z;i/ b

a

Figure 11. Starting from the curve of Figure 10 (shown in
gray), the indicated point has been moved northwest. Only the
rightmost four control vertices have moved.

the curve still points towards the very last control vertex,
rightmost in Figure 11. It is easy to see why this is necessarily
the case. Let a, band c be the last three control vertices. Then
the final point on the curve (see page 38 in [Bartels]) is found at

Pe a N 9(ue) + bN\O(ue) + C N 9(ue)

1.(a+4b+c)
6

and the derivative De at Pe is

De=3(c-a)

Moving a point in the last segment by applying equation (e 4)
moves primarily a and b because the basis functions scaling
them are largest. As the point moved approaches the left end
of the final segment, a is moved more than b, but in both cases
c remains nearly stationary because the B-spline weighting it is
relatively small. We will return to this problem later, but in
any case we want to be able to fix the endpoints of a cubic B­
spline curve, and one of the mechanisms for doing so also
avoids this problem.

Instead of uniform knot spacing, let us suppose that the
first and final knots have multiplicity four, while the remaining
breakpoints have multiplicity one and are uniformly spaced.
Figure 12 shows such a curve, which for convenience we will
refer to informally as an "fmek curve" (for "full multiplicity
end knot curve").

Figure 12. A nine segment, twelve control vertex cubic B-spline
fmek curve for the knot vector (0,0,0,0,1,2,3,4,5,6,7,8,9,9,9,9).

36

B-splines based on such knot vectors have two especially
useful characteristics: they interpolate the first and last control
vertices, and the derivatives at the beginning and end of the
curve lie along the first and last legs of the control polygon.
From the first property it follows that if we use variations of
equations (e 4) which do not involve the initial or final vertex
then the endpoints will remain fixed. By selecting a point near
the end of the curve and rotating it about the end we can
control the direction of the curve at the endpoint (illustrated in
Figure 13). As was mentioned earlier, it is convenient to adopt
the convention that selecting a point sufficiently close to an
end point results in direct translation of the control vertex at
that endpoint.

Figure 13. This is a four segment, seven control vertex cubic B­
spline fmek curve. A three-vertex version of equations (e 5) not
involving the last control vertex has been used to move the point
represented by the black square, which lies on the last segment
of the curve. It follows that the last vertex is not altered, so that
the endpoint of the curve remains fixed, and the curve rotates
around that endpoinl.

Of course, we may choose not to lock down the endpoints of
an fmek curve, and if we move a point sufficiently close to the
end of the curve, the end will move also. Figure 14 illustrates
this (and avoids the difficulty illustrated in Figure 11).

Figure 14 . Here we have selected the same point, and using
equations (e 4), moved it to the same position as we did in
Figure 13. The last control vertex contributes substantially to
the position moved, and so an entirely different alteration in the
curve resullS.

Just as for Bezier curves, we may use a form of equations (e 4)
involving anywhere between one and k control vertices, where
k is the order of the B-spline. If we move one control vertex,
then k segments of the B-spline will be altered in order to
interpolate the desired point, while if k control vertices are
moved then k+(k-l) segments will be altered, so that to some
extent we may control the locality of the change by selecting
the number of control vertices involved.

Graphics Interface '89

/
Figure 15. A particular point on the curve of Figure 12 has been
moved twice to the same new position, once by altering a singlc
control vertex (resulting in the middle curve), and once by
altering four control vertices (resulting in the upper curve). In
the latter case, one additional segment to the left and two
additional segments to the right change shape, although the
alteration in the rightmost segment is not visible (panl y because
the point being moved is very close LO a joint).

Movement of a single control venex can result in "unbalanced"
changes in shape, so it is probably a better idea to move two or
more (see Figure 16): a decrease in the influence of one
control venex is balanced by an increase in the influence of
another.

............ ~ ~.
r-" ' N ~ ' . . ~•. ~ ~

"\ ;: "\ / .
... r- ~
\~ --

Figure 16 . The points being moved in the LOp two curves lie
ever so slightly left and right, respectively, of the parameter
value for which the influence of the two closest con trol vertices
are balanced. A single control venex is being altcred, and
curves of distinctly different shape result. The bottom curve
shows overlain the two curves that result from movement of the
two points specified in the LOp two curves (as well as the initial
curve), but with the alteration of two control vertices. In this
case the two curves are nearly indistinguishable.

3. A Theoretical Justification

We will now provide a theoretical justification for
equations (e 4)

37

and (e 6) by showing that they cause the curve to go through
the new position by making a "minimal" change in the
positions of the control venices, in a sense that will become
clear shonly.

Let us rewrite equations (e 3) as:

(e 7)

(We omit explicit discussion of D.y, the treatment of which is
exactly analogous.) We make use of the Householder
transformation [Lawson]

H = I - LwTw
1t

where

OOT { Bf]
w = [(Bo+o)B t B2 B 3]

Tt = 0 (B 0+0)

As may be verified directly, H is an orthogonal matrix with the
property that

[BO B t B2 B3J H = [-0 0 0 0 J

Because H is orthogonal, H-t = HT so that HHT is the identity
matrix. Hence equation (e 7) may be written as

[B, B, B, BT1 HHT [g 1 6,
Let [eo,e t ,e2,e3]T = HT [Llxo,Llxt ,~,Llx3]T. Then we may write
this equation as

Clearly eo = - Llx/o, but el' e2, and e3 may have any values
whatsoever. Because H is an onhogonal matrix, we may think
of it as accomplishing a change of coordinate ' systems that
preserves Euclidian distance, so that [eO,el'e2 ,e3]T and
[Llxo,Llxt ,Llx2,Llx3]T have the same length. Both are vectors
representing the change made to the control vertices. So as to
minimize this change, we let et= e2 = e3 = O. Finally, we undo
the Householder transformation to compute the Llxi . Thus

Graphics Interface '89

Straightforward algebra .then yields

[E:1 = B2 + B2~ B2 + B 2 [;:1
ill 0 1 2 3 B 3 3

which is simply another representation of equations (e 4).

Moreover, the above argument in no way depended on our
having involved all the control vertices contributing to the
position of the point being moved, so that modifications such
as that of (e 6) also minimize the total change of the control
vertices being allowed to move.

4. A Generalization

Repeated Householder transfonnations can be used to find
a minimum length solution to a system of several underdeter­
mined equations. For example, let us suppose that we wish to
move a point C(u) in the first segment of a floating B-spline
curve over a unifonn knot vector (such as the curve of
Figure 10), without alteration to the initial point of the curve
(see Figure 17 for an example).

Figure 17 . This is a six control vertex uniform cubic B-spline
curve. There were two equations involved in moving the point
shown as a black square: one yielded its new position, and the
other enforced the constraint that the change accomplishing the
first goal left the initial, leftrnost point of the curve unchanged.

The appropriate equations are as follows:

Insertion of the first Householder transfonnation leaves us with

o
fh

where [f30 f31 f32 A J = [Bo(~) BI(~) B/~) B3(~) JH. We
then insert a 3x3 Householder transfonnation H into the
system

38

to obtain the system

o

Next embed H into a 4x4 matrix as

H4 = [~ ~]
and combine the two transfonnations into (HH)(HTH1) to
obtain the system

-(1 0 0 0 h _ ill

[
eo]

[f3o - ~ 0 0] j~ - [0]
(e 8)

This time we set f2 = h = 0 and solve for eo and fl by
forward substitution. Inverting the two Householder
transfonnations then yields the desired values of /::"Xj and /::,.Yj .

After solving for /::"x, we may obtain /::"Y by altering the right
hand side and repeating the forward substitution. Moreover, so
long as we do not change the value of u in question, repeated
forward substitution suffices for subsequent movement of the
tracker.

5. Discussion

While promising, and indeed useful, the approach we have
presented has its limitations. One problem is that moving a
point close to the end of a curve when the endpoint is locked
down can produce an unexpectedly large change in the shape
of the curve (see Figure 18).

Figure 18. The leftmost black square records a position selected
on the original, gray curve that is very close to the endpoint,
which is not allowed to move. The black square to the right and
above it marks the position to which the tracker was moved in
producing the solid black curve.

What's happening is that the new curve is required to
interpolate the new location for the same, fixed value of u.
Because the point selected is very close to the beginning of the
curve, which does not move, the new curve must cover a
relatively large Euclidian distance while undergoing a
relatively small change in u, resulting in the large overshoot
shown.

Graphics Interface '89

A related phenomenon has to do with the movement of a
selected point along a curve, which changes the relationship
between the independent parameter u, arc length, the length of
individual spline segments, and the portion of the curve that is
altered when interaction occurs - we would prefer that the
locality of movement be independent of the point being
moved, but this may not be the case. Of course, the same
changes can occur when moving control vertices directly,
although the control vertex positions provide some indication
of what is happening. For direct manipulation, one might use
color or gray scale to distinguish consecutive segments, or
space small beads uniformly in parameter space, to provide a
visual indication of segment length and the resulting locality.
A more interesting possibility we are exploring is to use the
component of tracker motion along the curve to alter the
parameter value u for which the curve is required to interpolate
the new location.

Another interesting possibility is to combine knot insertion,
hierarchical B-spline refinement (introduced by [ForseyJ), and
direct manipulation so that a user may either cycle among
available localities or specify exactly the subcurve that is to be
reshaped, retaining the ability to subsequently perform more
global manipulations. One might also alter the posi tions of
some number of control vertices neigh boring those moved to
accomplish the interpolation, along the lines of the "warp"
operator discussed in [Cobb), to widen the extent of the
reshaping.

We have not yet discussed how the curve should first be
entered. Our method of choice is to make an initial free-hand
sketch, collecting data points every few pixels and performing
a least squares fit in which the parametric spacing of data
points is proportional to the Euclidian distance separating
them. In the resulting curves the independent parameter u is
generally a good approximation of arc length.

Finally, we have only begun to explore the utility of
Householder transformations in reshaping curves while
enforcing auxiliary constraints. Note also that equations (e 4)
suggest other non-minimal, though perhaps useful, weighting
schemes.

6. Acknowledgments

This work was supported by grants from the National
Science and Engineering Council of Canada, by Digital
Equipment of Canada, and by the Information Technology
Research Centre.

39

7. References

Bartels

Cobb

Farin

Faux

Forsey

Lawson

Richard H. Bartels, John C. Beatty and Brian A.
Barsky, An Introduction to Splines for Use in
Computer Graphics and Geometric Modeling.
Morgan Kaufman Publishers, Inc., Los Altos,
California, 1987.

Elizabeth Susan Cobb, Design of Sculptured
Surfaces Using the B-Spline Representation. PhD
Dissertation, Department of Computer Science,
University of Utah, June 1984.

Gerald Farin, Curves and Surfaces for Computer
Aided Geometric Design, Academic Press, 1988.

Ivor D. Faux and Michael J. Pratt, Computational
Geometry for Design and Manufacture. Ellis
Horwood Limited, Chichester, England 1979.

David R. Forsey and Richard H. Bartels,
"Hierarchical B-Spline Refinement," Computer
Graphics, 22:4 (August 1988), pp. 205-212
(proceedings of the Siggraph 88 Conference) .

Charles L. Lawson and Richard J. Hanson,
Solving Least Squares Problems. Prentice Hall,
1974.

Mortenson Michael E. Mortenson, Geometric Modeling.
John Wiley and Sons, New York, 1985.

Graphics Interface '89

