
55

SmallScript: A User Programmable
Framework

Based on Smalltalk and PostScript

Kevin Haaland and Dave Thomas

School of Computer Science

Carleton University

Abstract

This paper describes the design and
implementation of Small Script. Small Script combines
the power of object oriented programming and an
advanced imaging model, based on PostScript, to
provide an integrated, interactive development
environment for multiprocessing graphical applications.
All applications which use SmallScript are divided into
user interface and application components which
interact through an object-oriented message protocol.

1 Introduction

There are numerous applications in which a user
programmable framework (UPF) for user interface
development is essential. The large number of shell
scripts and menu shells on current systems are a strong
testimony to the need and utility of such systems.
Traditional user interface management systems (UIMS)
[Pfaff, 1985] and standardized tool kits such as X
Windows [ScheifJer, 1986] and MacApp [APDA,
1986] despite wide spread interest, fail to meet the
demanding needs of evolving user interface software.
To overcome this problem, embedded programming
languages are often provided (eg. AUTOLISP). The
need for user programmable interfaces has inspired a
wide spread increase in the use of Smalltalk,
[Goldberg, 1983] which remains the most powerful
environment for the interactive exploration of new
interface metaphors. It is unfortunate, however, that a
language with such power is based on the low-level
bitblt raster imaging model of the 70's. One of the
primary goals of this research is to address this
weakness.

In this paper we describe SmallScript, an
integrated environment for user interface development.
SmallScript, like Ne WS [NeWS, 1987], has a

PostScript [Adobe, 1984] based graphics imaging
model. User interfaces are written in Smalltalk, a
language and environment acknowledged to be among
the most advanced available. Small Script extends
Smalltalk with a modem, device independent imaging
model and an alternative user interface framework. We
describe our prototype design and implementation of
SmallScript.

Our primary interest is CPU intensive
applications such as finite element analysis, (FEA) and
computer aided design (CAD). Ideally, we see each
program being composed of an application and a user
interface. The application component implements the
algorithms necessary to make the program function (eg.
determining the optimal circuit board layout in a CAD
system, or solving a large set of nonlinear equations in
a FEA). The user interface component mediates the
interaction between the application components and the
user. By dividing the problem into an application and a
user interface, we hope to exploit the advantages of
distributed processing in a heterogeneous computing
environment. Furthermore, we would like to reduce the
amount of user interface code that has to be written for
each application. This approach is used in NeWS and
X, where clients and servers are used to describe both
components.

2 User Programmable Frameworks

Two recent user programmable frameworks
(UPF) are NeWS and HyperCard [Good man, 1987].
These systems offer the end user, as well as the
application developer, the ability to configure a rich
graphical interface using an interpretive language. Both
systems allow the user interface to communicate with a
more traditional application environment via a well
defined interface. HyperCard provides a tangible, user
interface metaphor based on index cards combined and

Graphics Interface '89

a simple command language, HyperTalk. HyperCard is
unfortunately limited by its use of bitmap graphics and
its inability to add new object types. In its current
implementation, developing large applications is
difficult since HyperCard lacks code browsers and
debugging support. Providing a HyperCard user
interface to an existing application requires the addition
of external pieces of code, called resources, to the basic
HyperCard system, via a resource mover utility
program. It is also possible to use the XCMD facility to
execute code not written in HyperTalk.

NeWS provides a powerful programming
capability based on PostScript. The PostScript
interpreter communicates with the application program
via a stream connection. If an existing application can
be modified to generate PostScript code, porting it to a
NeWS environment is relatively easy.

3. Distributed Window Systems

3.1 The X Window System

The X window system provides a basic set of
display primitives and input routing facilities. This
system uses asynchronous, stream-based interprocess
communication. Applications may use the facilities
provided by X Windows to present information, on
any display in the network, in a device independent and
network transparent manner. An application calls
procedures in the X library to perform low level
operations on the display device. The requests are sent
to the server for execution via the interprocess
communication network. The server sends event
notifications, corresponding to mouse movements and
key presses, to the application. Client and server
processes communicate via a potentially large number
of low level messages. For example, printing "Hello
world" in a window requires 40 executable statements
and 25 calls to the standard XII library [Rosenthal,
1988] ~ The implementers of X Windows argue that the
cost of interprocessor communication is minimal. Thus
combining the user interface with the window server is
not required [Scheifler, 1986] . It is also argued that
most application writers do not need to be concerned
with low level interactions between clients and servers
since the XII distribution contains a user interface
toolkit which allows the "Hello world" program to be
written in 5 lines of code.

3.2 NeWS

Sun's Network extensible Window System
(NeWS) is an advanced windowing system using

56

PostScript in a distributed window server. PostScript
displays text, graphics and sampled images in a device
independent manner. NeWS is unique in its
incorporation of a full programming language as the
means of describing the appearance of objects on the
display.

Figure 1 Client server relationship in NeWS

Multiple clients may have open connections with
a single window server. Each client communicates with
a lightweight process that executes inside the window
server. (See figure 1) In NeWS, these processes are
PostScript interpreters. NeWS clients send PostScript
code via a byte stream which connects the client and a
PostScript interpreter running in the server. Since
PostScript is a programming language, clients can
extend the capabilities of the window server by
defining new PostScript procedures.

A NeWS application begins by establishing a
connection with a NeWS server. Tthe client program
then sends PostScript code to the server. This code
defines the application specific routines required by the
client. During the course of execution the client
program responds to events from the server and sends
PostScript code to the server. Unless the entire client
code exists as a PostScript program, exe,cuted by the
server, it must be divided into two components. The
first component generates PostScript code that is sent to
the server. The second implements the rest of the
application. Although the presence of PostScript may
be hidden by language bindings, the application
developer is always aware that PostScript is present.

Graphics Interface '89

4 Object Oriented Approach

4.1 Introduction

Efficient exploration of new ideas in user
interface design requires an ability to produce
prototypes of the desired system. A good user interface
often attempts to model techniques and entities familiar
to the user. Object oriented languages such as
Smalltalk, Actor [White Water, 1987] and Objective-C
[StepS tone, 1986] can model real world objects (such
as integrated circuits and welds), as well as abstract
objects (such as windows, icons, menus, buttons and
scroll bars) much better than traditional languages. For
example, a user interface that incorporates file folders,
filing cabinets and a garbage can is appropriate for
applications used by office workers since they are
familiar with the behaviour of these objects. Most
object oriented programming languages provide the
programmer with a set of generic software components
which can be customized to suit specific needs. By
using inheritance and polymorphism (where possible),
the programmer builds on the existing functionality of
the system.The ability to perform fast prototyping of
ideas is needed to allow tailoring of the user interface.

4.2 Heterogenous Computing Environments

Local area networks and standardized
communication protocols have allowed the creation of
heterogenous computing environments. Typically,
these networks are used for electronic mail, file
transfer, remote login, and distributed file systems.
Effective use of the resources available on a network
can provide reliability and performance improvements
that would be either impossible or too expensive on a
single . CPU system. On a network there may be
specialized hardware devices, such as database
machines and super computers, which can dramatically
improve system performance. In NeWS , an
application consists of a client and a window server
process. This process is a user interface assistant for
the client. By writing more of the system in PostScript,
the user interface can be made to perform more tasks
that would otherwise be done by the client. In NeWS,
the application (client) controls the user interface
(server). We propose that the user interface should be
given control of the system and that developing an
interface should be made as easy as possible.
Furthermore, the user interface should be able to
exploit multiple application assistants that, where
appropriate, execute on specialized hardware.

In order to minimize the number of messages
sent between CPUs, dependencies between
components must be minimized. Dividing any system

57

into application and user interface components is a
nontrivial problem. The client-server model of
distributed user interfaces used in X Windows
implements the windowing routines on the server. It is
the responsiblity of the client to implement the rest of
the user interface. As a result, the client and server are
tightly coupled and exchange a large number of low
level messages, such as bit maps, line drawing
commands, key presses and mouse movements.

It is often argued that forcing the division of a
system into an application and a user interface is an
awkward solution which doesn't work in real systems.
This is the same argument that was used in the
seventies when the notion of structured programming
was introduced. Separating application and user
interface has many benefits: program modularity,
software reusability , better system design and
improved programmer productivity. The application
now becomes a toolbox of support procedures that the
user interface calls when it requires work to be done.

Modem user interfaces are highly reactive and
account for a large percentage of the code in most
systems. To allow the user to customize his
environment, many systems (eg. Autocad) include an
embedded programming language. Since Smalltalk is
both a programming language and an environment, we
achieve the benefits of an embedded programming
language with all systems developed in SmallScript.

To gain a better understanding of the behaviour
of SmallScript, consider an interactive database system.
The user interacts with this system using a mouse and
high resolution display. The user interface is
responsible for presenting graphical images and
implementing their behaviour. For example, when the
user selects an item with the mouse, the selected object
highlights itself to inform the user that it has been
selected. If the user decides to resize a window, the
interface does the sizing and displaying of the
information without help from the application. If,
during the course of using this system, a database
query is generated, the user interface forwards the
query to the application. When the application has
performed the query, the results are sent to the user
interface. Since the application and the user interface
communicate only via high level messages, the cost of
inter-machine communication is minimized . An
application specific object oriented protocol can often
be superior to any low level generic protocol
[Gentleman, 1988] .

Graphics Interface '89

5 Implementation

5.1 The SmallScript Imaging Model

Imaging models describe the display capabilities
of a graphics system. The coordinate systems used, the
types of lines which can be drawn, support for colour
and text are some of the more important aspects
consided when assessing the merits of an imaging
model. The ideal imaging model for our system renders
objects composed of curved as well as straight lines,
colour, and multiple fonts . The imaging model must
also support hardware assisted image generation, if it is
available, without requiring the programmer to take
special measures to use it. Ideally we would prefer to
use a 3D model such as PHIGS. However, current
graphics technology, especially hardcopy, favours
PostScript. PostScript has been used successfully as
the basis of the graphical output of NeWS. The
PostScript imaging model, with extensions for
rendering three dimensional objects, satisfies all of our
criteria.

Integrating an object oriented programming
language, such as Smalltalk, with a PostScript imaging
model can be approached in several ways. Central to
this problem is the question of how much PostScript
should be incorporated in the system. One solution is
to include the entire PostScript language, as done in
NeWS; the other is to include only the PostScript
imaging model. Using a PostScript interpreter from
Small talk requires that Smalltalk objects generate
PostScript code. Automatic translation of Smalltalk
methods into equivalent PostScript procedures is a
convenient approach (from the Smalltalk programmers
point of view) . However, implementing this translator
would be difficult; since Smalltalk supports operator
overloading and late binding.

Instead, we have implemented a Smalltalk class
PostScriptPen, that implements the PostScript
imaging model in Smalltalk. PostScriptPen
encapsulates the interface between Smalltalk and
PostScript. Messages are sent to a PostScriptPen when
graphical output is desired. Programmers can extend
the available imaging operations by writing Smalltalk
methods that use the imaging operations provided. At
the present time, a subset of the PostScript imaging
model is implemented in SmallTalk. Since all imaging
operations are based on the same primitives as
PostScript, producing a hardcopy version of a display
is simply a matter of sending the same operations to a
PostScript printer. The classes that have been added to
the original SmalltalklV image are listed in Appendix
A.

58

5.2 SmallScript User Interface Organization

In order to distribute the user interface and the
application, interprocess communication primitives
based on the Berkeley socket model were added to
SmalltalklV. These primitive operations are used by a
network transparent interface based on Proxy objects
[Bennett, 1987]. A proxy object is responsible for
receiving all requests for service from the remote
machine and ensuring that a message is sent to the
computer that actually contains the object being
referenced. By reimplementing doesNotUnderstand in
Proxy, references to a remote object are automatically
converted into Ethemet messages. (Figure 2 provides a
high level overview of our system)

User

Interface

Mouse Manager Screen Manager

Event Manager

Event Stream Operating System

(Primitive events)

Figure 2. SmallScript Organisation

There are three classes in our window system.
There are objects that supply information (models),
objects that display information (views) and objects
that coordinate the behaviour between views
(coordinators). Models have two responsibilities in
existing Smalltalk window systems (eg MVC, MPD):
supplying data and implementing application methods
which use the data. This combination of data access
and application works in single processor systems. It
is unacceptable in a heterogeneous computing

Graphics Interface '89

environment since application functions may be written
in languages other than Smalltalk.

Views display information stored in a model.
Typical views are textViews, labelViews, listViews,
menuViews and borderViews. Views are responsible
for implementing their visual behaviour. For example,
when a textView is the active view and the user types a
character, the character is displayed at the insertion
point which then moves to the right. When the mouse
is moved within a listView, the selection underneath
the mouse will highlight itself, and return to normal
when the mouse leaves.

Views register for the events that they require to
implement their visual behaviour. For example
borderViews, once displayed, do not change their
appearance ; therefore they do not register for any
events. Text views however, register for events such as
keyPressed and leftButtonClick and listViews register
for mouse movement and button click events.

Separating the model from the view allows
multiple views on the same model. By using only
models and views, a window system could not handle
dependencies between windows . Two or more
windows are dependent if actions in one affect the
behaviour of another. For example, selecting an
element in the selectors pane of a class hierarchy
browser changes the browser's text pane. Dependency
management is a significant feature missing from the
first implementation of EV A [McAffer, 1987].
Coordinating the dependencies between views is the
responsibility of a coordinator. Multiple coordinators
are organized into a directed acyclic graph.
Communication between these levels is achieved by
sending messages corresponding to events. Views
inform their coordinator when a significant event has
occurred . The definition of what constitutes a ·
significant event depends on the application. The
default implementation of listView treats the selection
of an entry in the view as a significant event and will
generate a selection event every time it occurs. These
events are handled by the coordinator for the view. At
anyone moment there is only one active view. (This
will be eliminated when SmallScript is moved into the
Actra environment [Thomas D, Lalonde W, Pugh J,
1986]) To signify that a view is active, the label
associated with the window containing the active view
is highlighted. All user input is accepted by the active
view until the user activates another view.

59

a Database an Array Processor

a FEMU serlnterfaceCoordinator

a TextViewCoordinator

Figure 3. Design of a Simple Application

As previously mentioned, coordinators are
arranged in a directed acyclic graph, with coordinators
closer to the root coordinating higher levels of
behaviour. Coordinators at the leaves of the tree
coordinate the behavior of one view and at the next
level, they coordinate dependencies between multiple
views. The root of the coordination tree is the
application. The application(s) receive high level
requests for actions such as a query of a database. For
example, in Figure 3, a high level design for a system
requiring access to a database and manipulation of
matricies (eg. PHIGS) is presented.

5.3 The Event System

An event represents an action of importance to
the system (See figure 4) . Pressing a key on the
keyboard or moving the mouse are examples of
physical events. The event system in SmallScript is
composed of four classes: Event, EventStream,
EventManager and Interest. The event stream
interacts with the underlying operating system to
translate physical events into their Small talk
equivalents. Instances of an EventStream have one
public method (called next) , which returns the next
event. Event streams convert the operating system
dependent information into Small talk events. Events
have instance variables that identify the type,
originator, data and time of the event.

Graphics Interface '89

An Event
type : leftButtonDown

sender: anEventStream
data: 100@100
time: 12332

Figure 4. Example of an event.

Compound events such as button clicks are
generated by a button down followed by a button up
event. When a mouse button down event occurs, a
future, button-held event is generated. A future event is
an event whose time is greater than the current time.
Generating events that will occur in the future is simply
a matter of specifying the time at which the event
should occur and posting it.

Event managers are responsible for distributing
events to all interested objects. Events that have been
posted but not yet dispatched are stored in a priority
queue. When the time of the event at the head of the
queue is less than or equal to the current time, it is
dequeued and dispatched to all objects which have
expressed an interest in receiving events matching the
current event.

Any Smalltalk object can express an interest in
being notified when an event occurs. When expressing
an interest in a particular event, the interested object
creates an instance of Interest. Before an event
matching an object's interest is dispatched, the
interested field is checked to make sure its value is true.
This allows for objects to toggle their interest without
revoking and reexpressing their interest. An Interest
may optionally include a block of code which must
return true in order for the event to match. Text
editors, since they are only concerned about characters
being typed in their window, uses this filtering facility .
An event manager adds the interest to a collection of
interests associated with the event.

When the event manager dispatches an event, it
goes through the list of interests associated with the
event type, informing all objects whose interest
matches the current event. If a matching interest is
exclusive, no other object is told about the event. When
expressing its interest, a proxy can be specified. The
proxy for an interest performs actions on behalf of the
interested object.

60

5.4 MouseManager and ScreenManager

Our window system uses higher level events
than the ones returned by EventStream. Events such as
button clicks and window boundary crossings are
important to the window system. Transforming low
level events into higher level events is the responsibility
of a manager. Managers express interest in low level
events and combine one or more of them into higher
level events. For example, a leftButtonDown and a
leftButtonUp will be combined to form a
leftButtonClick. There are two types of managers in the
current system: MouseManagers and ScreenManagers.
A mouse manager generates high level mouse events,
and a screen manager generates high level screen
events.

A finite state machine is used by the
MouseManager to transform left button activities into
leftButtonClick, and select events. A similar finite state
machine is used to transform right button actions into
rightButtonClick and scrollEvents. Extending this finite
state machine to transform two clicks into a
doubleClick is simply a matter of adding a few more
states and transition paths. The ability of the event
kernel to accept events occuring in the future is used
extensively by the mouse manager.

6 Conclusion

Small Script addresses two major issues: how to
exploit a heterogenous computing environment and
how to provide a flexible user interface. Effective use
of available computing resources requires that a system
be decomposed into functional components.
SmallScript is the user interface component. Event
objects are used to communicate between components
in a SmallScript application. Event objects can describe
physical events, such as the user typing a character, as
well as abstract events, such as a database query. Since
components (coordinators) communicate via these
events, distributing an application over a network is
easy . Furthermore, coordinators do not have to be
written in Small talk, which allows the developer to
exploit existing code libraries.

The current prototype is implemented in
Small talk IV on an IBM AT. In our prototype the
PostScript pen is simulated using bitblt. The next
version will use a TI3401 0 [Texas Instruments, 1986]
based PostScript imaging system derived from
GhostScript [Deutsch, 1987] and will be moved to a
mUltiprocessor Smalltalk [Thomas D, Lalonde W ,
Pugh J, 1986] .

Graphics Interface '89

Appendix New Smalltalk Classes

ClassBrowserApplication 0

Coordinator (parent)
ComplexCoonlinatorO
MyClassBrowser 0

Editor 0
SimpleCoordinator (view menu)

BorderViewCoordinator 0
Lable ViewCoordinator 0
ListViewCoordinator 0
Menu ViewCoordinator 0

TextViewCoordinator 0

Event 0
Interest ()

EventManager 0

EventStream 0

InternetAddress 0

Model
TextModelO

MouseEventManager 0

NetworkManager 0

PostScriptPen 0

Proxy 0

ScreenEventManager 0

Socket 0
TCPSocketO
UDPSocketO

View 0
BackgroundView ()
BorderView ()
LableViewO
TextViewO
ListViewO

References

Adobe 1984 PostScript Language Manual, Adobe
Systems Inc., Palo Alto, California.

61

APDA 1986, MacApp: The Expandable Macintosh
Application, Apple programmers and developers
association, APDA #KMSAPD, 290 SW 43rd Street,
Renton W A 988055

Bennett John 1987, The Design and Implementation of
Distributed Smalltalk, OOPSLA 87 Conference
Proceedings.

Deutsch 1987, GNU Postscript, Free Software
Foundation.

Gentlemen 1988, M. Private communication 1988.

Goldberg 1983, Smalltalk-80: The language and its
implementation, Adele Goldberg and David Robson,
Addison-Wesley 1983.

Goodman 1987, The Complete HyperCard Handbook,
The Macintosh Performance Library, Bantom
Computer Books 1987.

McAffer, J. and Thomas D.A. 1987, Eva: An Event
Driven Interface for Smalltalk , Graphics Interface
Conference 1988.

NeWS 1987, NeWS Technical Overview, Sun
Microsystems Inc., Mountain View, California.

Pfaff G .E. (Ed) 1985. User Interface Management
Systems, Proc. Seeheim Workshop on User Interface
Management Systems, Nov 1983, Springer-Verlag,
Berlin(1985)

Rosenthal 1988, A Simple Xll Client Program or How
hard can it really be to write "Hello World"? David S.
H. Rosentahl Sun Microsystems 1988.

Scheifler Robert W 1986, The X Window System,
Robert W Scheifler, Jim Gettys, MIT October 1986.

StepStone 1986 ,Objective C Reference Manual,
StepStone Inc.

Texas Instruments Inc. 1986, TMS340l0 User's
Guide, Texas Instruments Inc., Houston, Texas.

Thomas, D., Lalonde, W. and Pugh J. 1986, ACTRA,
A MultitaskinglMultiprocessing Smalltalk, Technical
Report No. SCS-TR-92, Carleton University, School
of Computer Science, Ottawa, Ont.

WhiteWater 1987, Actor Reference Manual, The
WhiteWater Group.

Graphics Interface '89

