
1

An Adaptive Subdivision Algorithm for Crack Prevention
in the Display of Parametric Surfaces

David R . Forsey
Computer Graphics Laboratory ,

University of Waterloo,
Waterloo, Ontario,
Canada N2L 3G 1

R. Victor Klassen
Webster Research Center,

Xerox Corporation,
128-29E 800 Phillips Road,
Webster NY USA 14580

Abstract
An algorithm is presented for rendering parametric
spline patches using adaptive subdivision. Criteria for
the termination of subdivision are chosen to allow
large approximating polygons whenever their .use do~s
not result in visible errors in patch boundanes or 10

lighting anomalies. User specified tolerances can be
used to specify the size of acceptable boundary and
lighting errors controlling the speed and the quality of
the rendering.

Keywords: Spline surfaces, surface rendering, adap­
tive subdivision, screen space criteria.

Introduction
A number of algorithms exist for rendering parametri­
cally defined curved surfaces. The purpose of such
algorithms is to display surfaces that are smooth ~th
in their interior and along silhouette edges, while
expending a reasonable amount of computation. The
two most common methods of displaying such surfaces
are subdivision[4], [5], [10] and forward differ~nc­
ing[12], [19]. For each of these methods there IS a
speed/accuracy tradeoff. Because high performance
graphics workstations can render polygons very
quickly, the dominating cost is in finding the polyg~ns
to draw, rather than drawing them. Choosmg
polygons smaller than screen pixels gives a high degr~e
of accuracy , with a correspondingly high cost. For t~s
reason a number of systems choose the polygon size
based on the local curvature of the surface, in order to
draw flat regions using as few polygons as possible.
Adaptive methods vary the parametric step size within
a patch so that small polygons are only dra",:n. where
needed. When adjacent sub-patches are subdiVided to
different levels (either recursively or using forward dif­
ferencing with different step sizes), cracks may appear
between the two patches. Figure 1 shows an exag­
gerated view of how this can happen.

Figure 1: The patch to the left is subdivided more deeply
than the patch to the right. As a result, a crack appears in
the polygonal approximation .

This paper describes an adaptive subdivision
scheme with screen-space crack prevention. Three
principles guide the algorithm development. Fir~t , the
criteria for terminating subdivision should be directly
related to visible phenomena. Thus the factors that
determine when a patch boundary is suitable for linear
approximation do so within a screen-space tolerance.
Secondly the speed/quality tradeoff should be under
user con~rol. Edge error tolerance for a high-quality
picture is set to avoid approximation errors larger than
a half pixel thereby eliminating any visual evidence of
error but the user is free to increase the maximum
edge' error for faster previewing. To con'trol lighting
discontinuities with this approximation, a second
parameter determines when the patch is considered flat
enough for polygonal approximation. The third prin­
ciple is simplicity. No complex data structures are
needed as the algorithm recursively renders each patch
separately without the need to pass boundary informa­
tion between patches.

The body of the paper can be logically divi.ded
into three parts. First, section 2 outlines prevIous
work related to our algorithm. Secondly, section 3
describes the algorithm itself, and section 4 describes a
pitfall related to the way in which polygons are

Graphics Interface '90

sometimes rendered that may cause the algorithm to
appear to be working incorrectly. Finally, section 5
discusses results and performance issues.

1. Previous Work
There are three contexts in which crack prevention
arises. First, cracks can appear in surfaces rendered
using forward differencing if the step size in adjacent
patches differs. Secondly, and most relevant to this
paper, they may appear when adaptive subdivision is
used to render surfaces. Thirdly, some surface-surface
intersection algorithms use adaptive subdivision, and
must avoid errors resulting from cracks.

Scanline algorithms[9], [11] can avoid cracks by
. keeping adjacency information explicitly. While scan­
line algorithms are asymptotically efficient when
implemented in software, they cannot use hardware
polygon rendering to full advantage.

Algorithms based on forward differencing can
render polygons that are all guaranteed smaller than a
pixel [19], or approximately uniform in size [12], [18].
If they are approximately pixel-sized, visible cracks
are unlikely. An alternative method [6] is to choose
the step size based on the curvature, so that larger
polygons can be used for patches of low curvature
without introducing significant errors. In this case
cracks may appear when different step sizes are chosen
on two sides of a boundary. The remedy proposed by
Filip et al. is to move points that lie on a patch boun­
dary to the nearest vertex of a piecewise linear
approximation of the boundary. Because the approxi­
mation to the boundary depends only on the boundary
itself (and not the adjacent surfaces), vertices on both
sides of the boundary are moved to points along the
same curve, even if information about both patches is
not available when either patch is rendered.

Adaptive subdivision was first proposed by Cat­
mull [4], who suggested subdividing until all patches
are less than one pixel in size. In this case cracks are
completely avoided. A number of authors have sug­
gested using a flatness measure, rather than screen­
space size, as the stopping criterion for subdivision.
(We defer discussion of specific flatness measures to
section 3.4.) Adaptive methods using polygons larger
than pixels need some means of preventing cracks if
they are to give visually pleasing renditions.

Several strategies for crack prevention in the
context of adaptive subdivision have been proposed.
Nyddeger solved the problem by retaining a complete
data structure of the subdivided control graph, and
then inserting filler polygons wherever cracks were
detected [14] . Clark uses Catmull's basis [4], subdivi­
sion of which requires fewer operations than the Bezier
basis, and involves computing midpoints and then
correcting them. Once a given edge satisfies the
straightness test, the midpoint of the line segment con­
necting the edge endpoints is used in further

2

subdivisions (the correction is omitted). Our method
is similar, but provides more accurate shading than the
straight line approximation.

Side B

(a) (b)

(c) (d)

Figure 2: Lighting errors due to unequal sampling across
patch boundaries. (a) patch boundary with correct normals,
(b) linearly interpolated normais , (c) correct normais used
on split side, (d) conflicting norm als on boundary .

Barsky , De Rose and Dippe [2] proposed a
method, which like Clark's, does not require informa­
tion outside of the (sub)patch being rendered to avoid
cracks. It differs in two significant ways. First, their
method uses the actual patch boundary for subsequent
subdivisions even once an edge is considered straight,
and also keeps information indicating that final
approximating polygon edges must lie along the line
joining the endpoints . Thus polygon vertices gen­
erated at lower levels of subdivision are on the line at
the points closest to the corresponding points on the
true boundary. Secondly, lighting information is cal­
culated from the actual control mesh. There is a
potential lighting inconsistency across a boundary in
the Barsky algorithm, although probably not visible at
the tolerances the authors intend. It occurs where a
curved boundary is shared between two patches, one
of which is rendered as flat , while the other is split.
Figure 2 (a) shows an (exaggerated) edge that, for the
sake of illustration, is the boundary between two such
sub-patches. Since the one side is approximated with a
single polygon, and the normals at both ends of the
boundary are the same, there is no variation in inten­
sity along the edge on that side, for either Gouraud or
Phong shading (b) . On the other side the patch is
split, and the actual behaviour of the normal is
reflected in the shading of the two polygons (c). In
this case there is a significant difference between the
computed normals on the two sides of the boundary at
the midpoint (d) .

Adaptive subdivision is also used in several
intersection algorithms [10], [15]. In these algorithms
cracks must be avoided entirely, lest the intersection
curves be disconnected. To do this, Peng's method
replaces edges with mathematically straight lines once
the edges have passed a straightness criterion. For

Graphics Interface '90

rendering purposes, small cracks are deemed accept­
able as long as their projection onto the screen is too
narrow to appear on the raster. This allows us to
trade a small amount of positional accuracy for greater
lighting accuracy.

2. Algorithm Outline
Our algorithm takes as input a set of patches, and
begins by converting them to the Bezier basis. For the
sake of presentation, we assume cubic patches,
although the algorithm is in no way limited to degree
three. (Catmull's basis could be used for cubics, giv­
ing greater efficiency in subdivision, but the Bezier
basis makes the termination tests simpler). Each patch
has any modelling and viewing transformations (but
not perspective) applied to its control vertices, and is
then rendered recursively as follows:

Render(patch)
Save the unprojected control points
Project the control points to screen space
if Small(patch, "I)

draw patch as a polygon
return

mustsplit _ false
for each boundary of patch

if ..., boundary. straight
Straight uses projected points
if ..., Straight(boundary, Cl<)

mustsplit _ true
else

Straighten(boundary)
boundary. straight - true

if mustsplit or ..., Flat(patch, f3)
Split unprojected patch into

four subpatches: pl..p4
Render(pI)
Render(p2)
Render(p3)
Render(p4)
return

else The patch has straight edges and is flat
draw patch as a polygon

The key elements of this algorithm are hidden in the
primitives SmallO, StraightO and FlatO ; and in the
SplitO and StraightenO routines.

2.1. Smallness
The size test is primarily intended for protection
against particularly curved patches. Assuming the
threshold size is small enough, deviations from
straightness or flatness in such polygons cannot be ren­
dered accurately anyway, and so no further time
should be wasted on them.

Several criteria are possible; since patches are
tested first by size it is important that the test is inex­
pensive. Our test is as follows: if the projections of the
sixteen control vertices fit within an axis-aligned

3

square of a uc;er-~pecified size h) on the screen, then
SmallO evaluates to true.

2.2. Straightness
The main reason for straightness testing is crack
prevention. Because edges are tested for straightness
independent of any other patch properties, the result is
consistent for both patches sharing an edge. Since
such edges are straightened in a consistent manner,
cracks are avoided entirely. There are several reasons
for testing straightness in screen space. Foremost
among them is the fact that an edge is considered
straight as soon as it is safely possible, regardless of
the depth of the edge.

Suppose a boundary edge is defined by the pro­
jected points PO,PIoP2,P3' StraightO is true if PI and P2
are within Cl< pixels of the pixels rendered along a line
from Po to P3, measured along a Manhattan grid. If
the line is more horizontal than vertical, the vertical
distances from the interior control points to the line are
compared with Cl<; otherwise the horizontal distance is
used. This way of measuring deviation from the line
is motivated by Bresenham's algorithm for selecting
pixels on the line approximating the boundary [3J.

Straight(Po, Pl , P2, P3, Cl<)

translate polygon so Po is at the origin
if morehorizontal(Po' P3)

Check/or x-monotonicity (to within 'h pixel)
if PO'x < Pl.x < P3·x and Po'x < P2·x < P3.x

shear control polygon making P3.y ;;;;; 0
if Pl .y and P2.y have different signs

return 4/9 max(1 Pl I, 1 P21) < Cl<

else
return 3/4 max(1 Pl I, 1 P2 1) < Cl<

else
return false

else
perform similar operations with x and y exchanged

The multipliers are based on the worst case control
polygons for a Hezier curve. If the signs change the
curve can stray no further from the axis than 4/9 of the
distance to the further point: this corresponds to the
nearer point being on axis. If the signs are the same,
moving the interior control point nearest . the axis to
the position of the further point only makes the curve
go further from the axis. With both points at the same
distance from the axis, the curve goes as far as 3/4 of
the distance to the interior control points.

It is worth noting that because the first part of
the straightness test guarantees that the points are
monotonic in the long axis, patches with edges perpen­
dicular to silhouettes are split until these edges are
shorter than a pixel. Thus edge straightness together
with the flatness criterion guarantees that silhouette
edges of this type are well approximated. (Flatness
comes into play when the exterior of a patch is planar
but a bulge appears in the centre).

Graphics Interface '90

2.3. Straightening Edges
Edges are "straightened" by modifying the interior
control points of the edge. In the methods of Barsky
et al. [2], Clark [5] and Peng [15], the edges are made
mathematically straight. Contrariwise, in our algo­
rithm the edges are "straightened" by moving the inte­
rior control points onto the plane containing the end
control points and the eyepoint. Currently we use the
perpendicular projection of the control vertex onto the
plane to determine its "straightened" position. Any
such projection can yield edges that are not at all
straight in world space, but whose curvature is invisi­
ble from the eye. Since straightness is designed specif­
ically for crack prevention, this meets that need ,
without flattening patches that have an appreciable
amount of curvature in the z direction. In this way a
minimum of lighting errors are introduced by straight­
ening edges.

2.4. Flatness
The size criterion is used to avoid runaways. The
straightness criterion is used for crack prevention. A
flatness criterion is used primarily to control errors in
lighting, and (occasionally) correctness of silhouettes .
If an edge is not straight, patches adjacent to it are not
likely to be flat . Flatness tests are more expensive
than straightness tests. Hence the flatness test is not
performed until all four edges are found to be straight.

A number of flatness tests are given in the
literature; we make no claim that ours is optimal. The
best choice depends on the cost of the various opera­
tions involved. Riesenfeld and Lane were the first to
suggest a flatness test [10]. In their method a patch is
subdivided if the maximum distance of any control
vertex to the plane through three of the corner control
vertices is too large, or if the distance of any edge ver­
tex to the line through the corresponding corner ver­
tices is too large. Barsky and DeRose [1] use only the
plane-point distance. Clark's method uses the
parametric curvatures at the corners to decide whether
the edges are approximately straight, splitting if they
are not, but if they are, uses the parametric curvatures
(d4f(u ,v)/du2dv2

) to decide whether to split. In order
to make the test resolution dependent, the depth com­
ponent is divided out of the control vertices before the
curvatures are computed. The method of Koparkar
and Mudar [8] is to require straightness of all eight
defining curves and co-planarity of the four corner
control points. This criterion is more strict than neces­
sary, as the four interior control points can be any­
where in the plane of the four corner points without
affecting the planarity, as long as they are not outside
the convex hull of the edge curves.

Wang has given an algorithm for finding the
depth of subdivision required for a given degree of
flatness, based on the control points of a patch [20] .
Filip et al. improve on the bounds used by Wang to

4

give a tighter estimate of the degree of suhclivio;ion
required [6] . These last two methods are best suited
for non-adaptive subdivision · or forward differencing.
A good test for adaptive subdivision uses a minimum
of effort to decide whether no further subdivisions are
required, rather than trying to estimate how many
further subdivisions are needed.

Our flatness estimate is most nearly like that of
Clark. It is motivated by the notion that the flatness
test is entirely intended to avoid lighting errors. First
the z components of the exterior edges are tested to
see whether the outside control points are co-planar (x
and y components must be acceptable for the straight­
ness test to succeed). Then the normals of the corner
rectangles and the centre rectangle (of the control
graph) are compared until two of them are found that
point in sufficiently different directions to indicate that
splitting is required or all have been tested. If the
cosine of the angle between two normals exceeds the
parameter p, FlatO returns false .

2.S. Splitting
Patches are split into four subpatches by midpoint sub­
division in both parametric dimensions [10]. Barsky
[1] argues that it is more efficient to split in one
parametric direction at a time. This approach certainly
could be used here without adversely affecting the
crack preventing quality of the algorithm and may be
explored in a future implementation.

To minimize lighting discontinuities when a
boundary curve is "straightened" but its related
patches are not flat enough for polygonal approxima­
tion, the normals at the ends of the curve are calcu­
lated and linearly interpolated at lower levels of subdi­
vision. Since boundary curves become straight at the
same level of subdivision regardless of which adjacent
patch is being rendered, the continuity of the normals
between the patches is maintained in the final approxi­
mating polygons.

3. Caveat Implementor
This and other crack prevention algorithms do not
always prevent single pixel errors along seams such as
the one in Figure 1. While the point at the joint is
mathematically on the line between the two endpoints,
it may not be rendered as such using commonly imple­
mented polygon display algorithms. This problem was
noted by Pineda [17] and is an example of the need
for a restartable DDA [13] , [16]. If the hardware
being used to render the polygons rounds the vertices
to integers before computing the stepping coefficients,
single pixel holes are likely to appear.

Graphics Interface '90

4. Results and Discussion
The algorithm exhibits reasonable behaviour

over a wide range of tolerance values. The user con­
trols two tolerance variables, Cl' and /3. The minimum
polygon area, I, is normally left at 1. The straightness
tolerance, CI', is measured in pixels and can take any
positive value, although exceeding about half the size
of the display screen results in distorted surfaces. The
flatness tolerance, j3 may vary from 0 to 1. If the
desired maximum normal variation is 10°, j3 would be
set to cos(lOO)- .9848 .

We illustrate the performance of the algorithm
using a simple uniform bi-cubic B-spline surface with
64 patches, shown in Figure 3 rendered with 117232
sub-pixel sized polygons. Figure 3 serves as our refer­
ence image. A naive attempt to speed up the render­
ing process by simply increasing the acceptable
minimum polygon size (without applying the crack
prevention techniques of this or other papers) , yields
cracks across unequally sampled boundaries. Figure 4
is an enlargement of such a region showing several
cracks.

The affect of Cl' can be isolated by setting j3 = 0
(so that the flatness test never fails) while varying CI'.

Figure 5 shows the polygons selected when the refer­
ence surface is rendered with Cl' values of 100. The
enlargement without the polygons outlined shown in
Figure 6 shows the resulting errors. With Cl' set to 1.0,
no further improvements are possible. Figure 7 and 8
show the cases of Cl' = 1.0 and Cl' ~ 0.5 respectively.

Similarly, Cl' can be held constant while f3
changes (Figures 9 to 12) In both cases the number of
polygons varies from a few hundred to a few thousand
with a corresponding improvement in the quality of the
final image . The increase in quality is negligible from
Figure 11 to Figure 12, in spite of a considerable
increase in polygon count.

Because the act of straightening an edge also
tends to flatten the patch, Cl' and f3 are not independent
variables. Different tolerance values can produce the
same visual effect while using a considerably different
number of polygons. The "optimum" setting depends
on the nature of the surface and the relative impor­
tance of speed and accuracy.

In general we have found that Cl' has the greater
influence on the performance of the algorithm (meas­
ured in number of polygons generated) and the quality
of the lighting, but this may be a side effect of the way
edges are straightened. Future work will explore alter­
native projection methods.

5. Summary
This paper presents an algorithm for rendering
parametric spline surfaces using adaptive subdivision.
Patches that are smaller than a user-specified limit are
rendered as polygons; patches are normally found to

5

be flat and rendered before this test can ~ucceed.

To avoid cracks, edges are tested for straight­
ness and then straightened if they are nearly straight.
Patch boundaries are tested until their projections into
screen space are within a user-specified tolerance of
being x-y straight, and their curvature in z is within a
second user-specified tolerance of being flat. Once
edges are straight in this sense, their interior control
vertices are moved to the plane through the eye and
the end control vertices, thereby guaranteeing that the
patch on either side of the edge can be rendered as a
single polygon without creating a crack should the
other patch be further subdivided. Normal informa­
tion is calculated before the edges are straightened and
interpolated in further subdivisions, guaranteeing that
if either side is Phong shaded immediately, the other
may be subdivided and subsequently shaded without
introducing any lighting discontinuities. When an edge
straightness test succeeds, a flag is set so that no suc­
cessful test need be repeated.

Once all four edges of a patch are tested the
flatness is measured. This test is more expensive than
straightness testing, but it seldom fails once the edges
are all straight. Highly curved patches are subdivided
until they have a small projection onto the· screen; less
curved patches can be approximated with large
polygons.

Three user specifiable tolerances make it possi­
ble to vary the quality of the result in terms of
silhouette degradation (maximum polygon size),
geometric errors (deviations from straightness) and
lighting errors (flatness) . When the polygon size is
small , a very strict tolerance in either straightness or
flatness produces a high quality image. Relaxing the
tolerances results in significant speedups for the pur­
poses of previewing.

Regardless of the tolerances for errors , con­
sistency across patch boundaries is maintained.
Cracks do not appear, regardless of the straightness
tolerance, and lighting discontinuities do not appear,
regardless of the flatness tolerance. The images pro­
duced run the range of very reasonable in very little
time to excellent in the same or less time than required
by previous crack prevention algorithms.

6. Acknowledgements
Partial financial support for the research reported in
this paper was provided by operating, equipment, stra­
tegic, and infrastructure grants from the Natural Sci­
ences and Engineering Research Council of Canada,
by the Province of Ontario's Information Technology
Research Centre, by Digital Equipment of Canada
and by Silicon Graphics of Canada. All the surfaces
were created and rendered on an IRIS graphics works­
tation with a locally developed spline editor [7] .

Graphics Interface '90

7. References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

B.A. Barsky and T.D. De Rose , "The Beta2-
spline: a special case of the Beta-spline curve
and surface representation," IEEE Computer
Graphics and Applications, 5(9) pp. 46-58 (Sep­
tember 1985).

B.A. Barsky, T.D. DeRose, and M.A. Dippe,
"An Adaptive Subdivision Method with Crack
Prevention for Rendering Beta-Spline Objects,"
Technical Report UCB/CSD 871348, Computer
Science Division, University of California at
Berkeley (March 1987).

J.E. Bresenham, "Algorithm for computer con­
trol of a digital plotter," IBM System Journal,
4(1) pp. 25-30 (1965).

E. Catmull, A Subdivision Algorithm for Com­
puter Display of Curved Surfaces, University of
Utah PhD Thesis 1974.

J. Clark, "A fast algorithm for rendering
parametric surfaces," Proceedings of SIG­
GRAPH'79, pp. 7-12 (1979).

D. Filip, R. Markot, and R. Magedson, "U.sing
bounds on derivatives in computer aided
geometric design," Computer-Aided Geometric
Design, 3 pp. 295-311 (1986) .

D.R. Forsey and R.H. Bartels, "Hierarchical
B-spline refinement," Proceedings of SIG­
GRAPH'SS, pp. 205-212 (August 1988).

P.A. Koparkar and S.P. Mudar, "Computa­
tional techniques for processing parametric sur­
faces," Computer Vision, Graphics and Image
Processing, 28 pp. 303-322 (1984).

J. Lane and L. Carpenter, "A generalized scan
line algorithm for the computer display of
parametrically defined surfaces," Computer
Graphics and Image Processing, 11(3) pp. 290-
297 (1979).

J. Lane and R. Riesenfeld, "A theoretical
development for the computer generation and
display of piecewise polynomial surfaces," IEEE
Transactions on Pattern Analysis and Machine
Intelligence, PAMI-2(1) pp. 35-46 (January
1980).

J. Lane, L. Carpenter, J. T. Whitted, and J.
Blinn"Scanline methods for displaying , .
parametrically defined surfaces," Communica-
tions of the ACM, 23(1) pp. 23-34 (January
1980).

SoL. Lien, M. Shantz, and V. Pratt, "Adaptive
forward differencing for rendering curves and
surfaces," Computer Graphics, 21(4) pp. 111-
118 (July 1987).

6

13.

14.

15.

16.

17.

18.

19.

20.

M.L.P van Lierop, C.W.A.M. van Overfeld,
and H.M.M van de Wetering, "Line rasteriza­
tion algorithms that satisfy the subset line pro­
perty," Computer Vision, Graphics and Image
Processing, 41 pp. 210-228 (1988).

R.A. Nyddeger, "Data minimization algorithm
of analytical models for computer graphics,:'
Master's thesis, Department of Computer Sci­
ence, University of Utah (1972).

O.S. Peng, "An algorithm for finding the inter­
section lines between two B-spline surfaces,"
Computer Aided Design, 16(4) pp. 191-196 (July
1984) .

R. Pike, "Graphics in overlapping bitmap
layers," ACM Transactions on Graphics, 2(2) pp.
135-160 (April 1983).

J. Pineda, "A parallel algorithm for polygon
rasterization," Proceedings of SIGGRAPH'SS,
pp. 17-20 (August 1988).

A. Rockwood, K. Heaton, and T. Davis,
"Real-time rendering of trimmed surfaces,"
Computer Graphics, 23(3) pp. 107-116 (July
1989).

A.P. Rockwood, "Generalized scanning tech­
nique for display of parametrically defined sur­
faces," IEEE Computer Graphics and Applica­
tions, 7(8) pp. 15-26 (August 1987).

G. Wang, "The subdivision method for finding
the intersection between two Bezier Curves or
Surfaces," Zhejiang University Journal, special
issue on Computational Geometry (in Chinese),
(1984).

Graphics Interface '90

Figure 3: A bi-cubic B-spline surface with 64 patches
rendered with 117232 sub-pixel polygons.

Figure s: The 460 polygons created when rendering
with 0'-100 and (3-0.

Figure 7: 0'-1, (3-0, 2881 polygons.

7

Flgure 4: Cracks resulting from a naive polygonal
rendering of the surface in Figure 3.

Figure 6: An enlargement of Figure 5.

Figure 8: 0'-0.5, (3-0, 6193 polygons.

Graphics Interface '90

Figure 9: The 709 polygons created when rendering
with a-ID and .8-0.96.

Figure 11: a-ID, .8-0.995, 4582 polygons.

8

Figure 10: An enlargement of Figure 9.

Figure 12: a-ID, .8-0.997, 7342 polygons.

Graphics Interface '90

