
108

CTS: An Interactive Technique for Manipulating Structured Text

A. Michael Burbidge
Computer Science Department

Brigham Young University
Provo, Utah 84602
mike@cs.byu.edu

(801) 378-4009

Abstract

This paper describes Complex Textual Strings (CTS), a
technique for manipulating structured text strings and an
underlying application data structure by creating a two-way
mapping between the text and the data structure. An
editable specification, called unification grammars describes
~e structure and data mapping characteristics of a particular
Instance of CTS. We also describe an interpreter for parsing
a complex textual string to produce a data structure, and
pr~tty-printing a data structure to produce a complex textual
strmg.

Keywords: Unification Grammar, Text Editing,
Backtracking, Lisp, Structured Text, Athena Widget,
Syntax Directed.

Introduction

A recently proposed model for UIMS, referred to as the
~rowse/Edit model [Olsen 88], suggests viewing user
~nterface .software as a mechanism for manipUlating data or
mformatlOn from a particular application domain. To be
effective, such a UIMS must provide a wide variety of
inte~act~ve techniques for manipUlating various types of
apphcallon data. An overlooked technique, that can be used
to manipulate certain kinds of complex data structures is a
structured text string. That is, any text string that has a
non trivial syntactic ~d/or semantic structure. In this paper,
we present a technIque for specifying and manipulating
complex textual strings (CTS), and their corresponding
application data structures, in the context of a Browse/Edit
type UIMS. .

A Browse/Edit UIMS consists of three components: 1) The
pr~s.entation, which is a set of techniques for interactively
edltmg and viewing application data. This includes some
method for specifying which techniques comprise a specific
presentation. 2) A data structure shared by both the UIMS
and the application. 3) A two-way mapping that describes
how the presentation and the application data structure are
relat~d .. i.e. Ho~ ?oes the presentation change, when the
applIcatIOn modIfIes the shared data structure, and vice
versa. It is important that this description is editable, since a
user interface is constructed by composing a set of these
descriptions, tha~ specify how generic interaction techniques
are used to marupulate the shared data structure. A simple
view of the Browse/Edit model is pictured in figure 1.

Dan R. Olsen
Computer Science Department

Brigham Young University
Provo, Utah 84602

olsen@bunsen.byu.edu
(801) 378-2225

Cousin [Hayes 84] and ADG [DeSoi 89] are examples of
systems based on the Browse/Edit UIMS model. In Cousin,
the presentation is a set of named slots, a slot is a method of
communication between the user interface and the
application. The application data structure, consists of a set
of Lisp primitives, associated with the slots. The primitives
associated with a specific slot are called when the slot's
value is modified . The presentation and presentation-to­
application data mapping are described in a layout. A layout
specifies all the slots and their attributes for a given
pr~s~~tation. One of the slot attributes is a set of lisp
pnnllllves.

Presentation

Editable Description

Application
Data

Figure 1 - Simple Browse/Edit Model

In ADG, the presentation is a set of instantiated behavior
abstractions. A behavior abstraction is an interaction
concept such as a slider. A slider can have many graphical
presentations, such as a scroll-bar, or volume control. The
behavior abstractions combined with a graphical
presentation is an instantiated behavior. The application
data structure, is composed from Lisp primitives and/or
lists .. A data flow d~agram. is used to .describe the two-way
relallon between an mstantJated behavlOr abstraction and the
application data structure.

Complex Text Strings

Both Cousin and ADG handle text by treating each instance
as an indivisible unit. Any slot in Cousin can be used to edit

Graphics Interface '90

a free form text string. ADG provides a behavior abstraction
called a Text Field, which can be combined with a graphical
presentation to create an instantiated behavior abstraction
that can be used to edit free form text strings. Most of the
widget sets built with the XII toolkit (Xt) contain a Text
Widget, which can be used to create and edit simple
multiline text string objects. Though these systems provide
convenient facilities for editing text strings, none of them
provide a method for dealing with the structure present in
many kinds of text. For example, consider the textual
representation of a phone number. Treating the text as an
indivisible unit, makes it impossible to recognize
meaningful substrings, such as the area code, and
extension. It is also difficult to deal with multiple syntactic
forms of the same string, in a meaningful way.

Rather than deal with text strings as indivisible units, we
have developed the concept of a complex textual string
(CTS). A CTS is any text string that has meaningful
syntactic and/or semantic structure that can be used for
manipulating a corresponding application data structure.
Viewing structured text in this manner, we can then use the
Browse/Edit model and construct a two-way mapping,
between the meaningful substrings in a CTS and an
appropriate application data structure.

To demonstrate this, consider creating a two-way mapping
between a textual representation of a phone number, and a
data structure built using Lisp type lists. The significant
substrings in a phone number are: area code, prefix, and
suffix. A two-way mapping can be constructed using a list
of three elements, as shown in the following examples:

(801) 378-4009
378-4009

<==>
<==>

(801 (378 4009»
(0 (3784009»

More complex mappings can easily be constructed. For
example, text strings that represent proper names must be
mapped to a variable length data structure. Using a CTS, a
two-way mapping could be represented by a two element
list, the first consisting of an arbitrarily long list of symbols,
one for each given name, and the second a symbol
representing the sir name. Some examples would be:

Hillman, Lee <==> «Lee) Hillman)
Hillman, Gary Lee <==> «Gary Lee) Hillman)
San!, Bryan Chad Romney <==>

(Bryan Chad Romney) Sant)

Text strings representing recursive kinds of things can also
be handled. For example, a textual representation of a
spread sheet formula could be mapped recursively to a
postfix representation, as shown below:

Cl = Al + 3 <==> (assign Cl (add Al 3»
Cl = (AI - Bl) * 0.5 <==>

(assign Cl (mult (sub Al B 1) 0.5»

Unification Grammars

A Unification Grammar (UG) is a method for specifying the
presentation to application data mapping characteristics of a
CTS. The presentation component of a CTS, is the syntactic
structure of the text. This is specified using a context-free
grammar. Since the presentation to application data
mapping is dependent on the structure of the text, we
augment the context-free grammar with patterns constructed
from Lisp type lists, to specify the two-way map.

109

This is different than other syntax directed editing
approaches in two ways: First, systems such as the Cornell
Program Synthesizer [Reps 84] map text into a fixed data
structure, that is actually hard wired into the structure of the
program. And second, the text to data mapping function of
the Synthesizer is one-way. Using unification grammars we
get a two-way mapping.

A pattern is a list that contains constants, variables, or
subpatterns. Variables are symbols that begin with a
question mark and match any arbitrary list. A specific
variable may occur more than once in a pattern, but it must
represent the same list in all cases. An example of a simple
pattern is:

«?first ?second) ?last)

Patterns are useful for qualifying a set of lists that have a
certain characteristic. For example the above pattern could
be used to match lists that represent the names of people
that have two given names. The following pattern would
match any three element lists whose first and last elements
were equivalent:

(?A ?B ?A)

All lists representing phone numbers that have no area code
would match the pattern:

(0 (?prefix ?suffix»

or phone numbers of people living in Utah, will match the
pattern:

(801 (?prefix ?suffix»

Using a context-free grammar we can specify the syntax of
a phone number with the following single production
grammar:

Phone ::= "(" Digits ")" Digits "-" Digits ;

By augmenting this grammar with patterns we can specify a
the two-way mapping between segments of the structured
text and the application data structure:

<Phone:(?area-code (?prefix ?suffix»> ::=
"(" Digits:?area-code ")"
Digits:?prefix "-" Digits:?suffix;

It is important to note that the scope of a variable in a
unification grammar, is the variable's surrounding
production. This means, in the previous example, that
?suffix in the pattern associated with <Phone>, refers to the
same variable as ?suffix associated with the last instance of
Digits.

Given the grammar for phone number we can parse the text
string (801) 378-4009 to produce the following bindings:

?area-code = 801, ?prefix = 378, ?suffix = 4009

Given these bindings, the list associated with <Phone>
becomes (801 (378 4009». Now, we can also go in the
reverse direction. Given the grammar and the list (801 (378
4009», by unifying the list and the pattern (?area-code
(?prefix ?suffix» we produce the same bindings as when
parsing, and given the right-hand side of the production can
now produce a syntactically correct phone number.

Graphics Interface '90

The process of taking a unification grammar and a text
string and producing the corresponding list. can be called
parsing. although it is more powerful than a simple parse.
since it is really driven by the data and the grammar. rather
than just the grammar. The reverse operation. that of taking
a list and a unification grammar and producing the text
string. we call pretty-printing.

A parse would proceed in the following manner: Given a
production. begin examining. in order. the syntactic
symbols on the right-hand side of the production. If a
symbol is a constant such as .. C'. we make sure that the next
token in the text string matches. Otherwise. we simply bind
the token in the text string to the variable associated with
the current symbol. A parse of the string (801) 378-4009
would consist of the following steps:

1) Match the constant "(". from the production against the
first token ... (.. in the string.

2) Get the next syntactic symbol. Digits:?area-code. It is not
a constant, so bind 801 to the variable ?area-code.

3) Match ..)" from production against ..)" from text string.
4) Bind 378 to ?prefix
S) Match "-" from production against "-" from text string.
6) Bind 4009 to ?suffix.

We end up with the bindings ?area-code=80l. ?prefix=378.
and ?suffix=4009. And since the scope of a variable is its
surrounding production. the resulting application data is the
list (801 (378 4009)).

The pretty-print would proceed in a similar fashion. except
that instead of examining the syntactic symbols. we begin
by unifying the given list and the pattern associated with the
production. This should give a binding to all variables in the
production. We then examine the syntactic symbols. in
order. If a symbol is a constant we output the constant to
the text string. otherwise we output the value of the pattern
associated with the syntactic symbol.

By adding mUltiple productions we can allow alternate
syntax for one type text string. For example. the following
production does not require an area code. but maps the local
area code into the application list:

<Phone:(80l (?prefix ?suffix)) ::=
Digits:?prefix "-" Digits:?suffix;

Using this production. the text 378-4009 maps to (801 (378
4009)) and vice versa, and combining this with the previous
production. we have a grammar representing a crs that is
flexible enough to manipulate phone numbers with or
without area codes.

So far. our examples have been very simple. When
specifying a unification grammar for any reasonably
complex string it is useful to break the string into sub­
strings and specify productions for each of the sub-strings.
Then using productions for sub-strings we can specify a
production for complete string. For example. a unification
grammar equivalent to the two productions given above
would be:

<Phone:(?area-code ?number» ::=
<AreaCode: ?area-code> <Number:?number>;

<Phone:(80l ?number» ::= <Number:?number>;
<AreaCode:?area-code> ::= .. (" Digits:?area-code ..)";
<Number:(?prefix ?suffix» ::=

Digits:?prefix "-:" Digits:?suff1X;

110

Some types of structured strings have a recursive nature.
Any string. such as the given name example used earlier.
that contains a variable length list of sub-strings can be
described recursively. Following is a recursive unification
granunar describing a variable number of given names:

<Name:(?gnames 1 ?last» ::=
Name:?last <GName:?gnames>;

<GName:(?newJlame 1 ?name_Iist» ::=
Name:?new _name <GN ame:?name_Iist>;

<GName:(?name» ::= Name:?name;

In this example we used the concatenation operator I. as in
Prolog [Sterling 86]. for constructing a list. The element
preceding the 1 is the CAR of the list. and the element
following the 1 is the CDR of the list.

By combining recursion and multiple nonterrninals a fairly
complex textual string and mapping can be described. The
following unification grammar describes an arithmetic
expression. such as could be used in a spread sheet formula,
that is mapped to a Lisp list postfix notation:

1) <Exp:(add ?opl ?op2» ::=
<Operand:?opl> "+" <Exp:?op2>;

2) <Exp:(sub ?opl ?op2» ::=
<Operand:?opl> "-" <Exp:?op2>;

3) <Exp:?op> ::= <Operand:?op>;
4) <Operand:?op> ::= Integer:?op;
5) <Operand:?op> ::= Real:?op;
6) <Operand:?op> ::= CellName:?op;

Given the above grammar and some example expressions.
the following two-way mappings are established:

Cl+S
Al + S - Cl

<=:=>
<==>

(add Cl S)
(add Al (sub S Cl))

Parsing/pretty-printing a CTS specified by a unification
grammar containing multiple nonterminals proceeds in
much the same manner as described earlier. with the
exception of what happens when we encounter a
non terminal while examining the right-hand side syntactic
symbols. In the above example. we would be given Exp as
a starting symbol. When encountering a nonterrninal on the
right-hand side of a production. we first save the position in
the current production. and then choose the appropriate
production for the nonterminal just encountered. We then
proceed with the new nonterminal just as in the single
nonterminal case. except that when we're finished. we
return to fmish processing the remaining symbols in the
original production.

Consider the steps for parsing "Cl + Al - S":

1) Chose production 1. and begin processing its syntactic
symbols.

2) The first symbol is the nonterrninal symbol Operand.
since it is a nonterminal we save our position and begin
processing a production for Operand.

3) Choose production 6. for Operand.
4) Begin processing its symbols. There is only one. the

terminal symbol CellName. it is not a constant .so set
?op = Cl. the next token in the text string.

S) Return to the saved position in the original production.
Exp. Note the result of processing the Operand
nontenninal is that ?opl = Cl.

6) The next syntactic symbol is the constant "+". we check
it for a match against the next token.

7) The next symbol is a nonterrninal for Exp. it is processed

Graphics Interface '90

in a manner similar to the Operand non terminal, except
it will recurs through two non terminals instead of one.
When we return from processing Exp, ?op2=(sub Al -
5), and we are flnished. The resulting data structure is
(add Cl (sub Al 5».

Algorithms

Both the CTS parser and pretty-printer are implemented
using the standard backtracking and unification algorithm
found in backward-chaining production systems. One of the
unique concepts of the CTS algorithm is its technique for
mapping the terminal tokens of a text string onto the
productions in a unifIcation grammar. This is also the only
difference between the parser and pretty-printer algorithms.
When the parser encounters a terminal token, it is mapped
to the appropriate location in the shared data structure.
When the pretty-printer encounters a terminal token, the
value in the shared data is output to the text string.

There are many effIcient deterministic algorithms for
parsing text and mapping it onto an intermediate data
structure However, most of them require some form of
preprocessing that excludes them from being used
interactively. Using a backtracking and unification
algorithm we get an editable specification that is easily
modifiable without a time consuming preprocessing or
compilation step, which is one of the requirements for
interactive techniques in a Browse/Edit UIMS.

We have encountered a few problems with the algorithmic
approach we have taken. First, certain kinds of complex
recursive strings do not perform at interactive speeds, do to
heavy backtracking. We have not observed the problem
when dealing with just complexity, or just recursion. A
prime example, is a string that represents a list of program
statements. A program statement can be quite complex, and
at the same time be composed of recursive type strings,
such as arithmetic expressions. We feel that performance
could be improved a great deal by implementing a Cut type
operator, as in Prolog. This would limit the amount of
backtracking for certain productions.

Another problem, is that it is possible to specify a
unification grammar that has a unique kind of ambiguity in
the way that the parser and the pretty-printer interact. A
simple example best describes the ambiguity. Consider the
following abbreviated unification grammar:

<Exp:(add ?opl ?op2» ::=
<Operand:?opl> "+" <Exp:?op2>;

<Exp:?op> ::= <Operand:?op>;
<Operand:?op> ::= Integer:?op;
<Operand:?op> ::= "(" <Exp:?op> ")";

Given the string "a + b" and the above grammar, parsing
produces the list (add a b), but parsing the string "(a + b)"
produces the same list. The problem comes in trying to
pretty-print the list (add a b). The pretty-printer encounters
an ambiguity in trying to decide which of the previously
given strings should be produced. This is manifested by
infinite recursion. (hang) Fortunately, there is a simple
solution. Replace the last production by:

<Operand:(precedence ?op» ::= "(" <Exp:?op> ")";

Now parsing the string, "(a + b)" produces the list
(precedence (add a b», thus removing the ambiguity
encountered by the pretty-printer.

111

Using Structured Text Strings

So far we have described, rather abstractly, how to specify
the structure of a CTS and the two-way mapping between it
and the application data structure. We now describe how we
have implemented these concepts using the Athena text
widget [Swick 88] as a means of interactively manipUlating
the actual text. Although, the Athena widget set is not a
Browse/Edit UIMS, building a miniature BrowselEdit
system that deals strictly with CTS, using the Athena text
widget has provided an environment for us to easily
experiment with these ideas. We hope to integrate these
ideas into other research we are currently doing in our
laboratory.

Currently, the CTS implementation consists of three
components : 1) A parser which accepts a unification
grammar and a text string, and returns a Lisp type list. 2) A
pretty-printer which accepts a unification grammar and a
list, and returns a text string. 3) A set of routines for
manipulating the Lisp lists returned by the parser. This
allows an application to inspect and modify the lists.
Although, dealing with lists is inconvenient in C, it is not a
limitation. Any arbitrary data structure can be represented
with lists. We have plans to replace the Lisp lists with an
object-oriented data model and application framework.

CTS
Parse

Text
Widget

Figure 2 - Prototype CTS Architecture

Figure 2 depicts the overall architecture of the prototype
implementation of CTS. We have added a callback resource
to the Text Widget, that is activated on any specifiable key
down event. The callback routine retrieves the text from the
text widget and calls CTS_Parser, passing it a unification
grammar and the text string. The CTS_Parser maps the text
string to the appropriately structured list. Finally, the
callback routine calls CTS_Pretty_Printer passing it the list
and the unification grammar and then using the text widget
redisplays the returned text string. In the case of multiline
text strings formatting information such as indentation can
be specified in a unification grammar. For example, the
following production demonstrates the description of
indenting for a generic If statement:

<lfStmt:(ifstmt ?cond ?blockl ?block2» ::=
"if' <CondExp:?cond> "then" Indent:"+2" "\n"
<StmtBlock:?blockl> Indent:"-2" "\n"
"else" Indent:"+2" "\n"
<StmtBlock:?block2> Indent: "-2" "\nil
"endif";

It is also possible for the application to modify the list data
structure, and in turn activate the CTS_Pretty_Printer and

Graphics Interface '90

redisplay of the resulting text using the text widget.

Conclusions

Many kinds of textual interaction contain inherently
meaningful structure. In the research described in this
paper, we have tried to develop an interactive technique for
manipUlating structured textual strings and their underlying
application data structure. Using ideas from the BrowselEdit
model we have suggested that a two-way mapping can be
constructed between structured text and application data.
We have proposed unification grammars as a method to
specify both the structure and data mapping characteristics
of complex text strings. We have described an interpretive
implementation based on unification and backtracking for
parsing and pretty-printing these structured text strings and
their corresponding lists . By using an interpretive approach,
the specification of complex text strings can be edited at any
point in the development/production cycle; no preprocess or
compilation step is required. We have described an
implementation running in our lab, that performs at
acceptable interactive speeds for simple to moderately
complex strings.

References

[DeSoi 89] DeSoi , J.F., Lively, W.M., and Sheppard,
S.V. , "Graphical Specification of User Interfaces
with Behavior Abstraction." CH/'89 Proceedings
(May 1989).

[Hayes 84] Hayes, P., "Executable Interface Definitions
Using Form-Based Interface Abstractions." In
Advances in Computer-Human Interaction, H.R.
Hartson, E., Ablex, New Jersey, 1984.

[Olsen 88] Olsen, D.R., "A Browse/Edit Model for User
Interface Management." UIST'88 Proceedings
(November 1988).

[Reps 84] Reps, T ., and Teitelbaum, T., "The Synthesizer
Generator." In Proceedings of the ACM
SIGSOFTISIGPLAN Software Engineering
Symposium on Practical Software Development
Environments (Pittsburgh, Pa., Apr. 1984).

[Sterling 86] Sterling, L., In The Art of Prolog: Advanced
Programming Techniques, E. Shapiro,
Cambridge, Mass., MIT Press, 1986.

[Swick 88] Swick, R.R., and Weissman, T., In X Toolkit
Athena Widgets -- C Language Interface, Digital
Equipment Corporation and MIT Project Athena,
1988.

112

Graphics Interface '90

