
138

SCULPT
An Interactive Solid Modeling Tool

Bruce Naylor
Computing Systems Research Laboratory

AT&T Bell Laboratories
M\DTay Hill, NI 07974

Abstract
Sculpt, an interactive polyhedral solid modeling system,
combines the effectiveness of BSP trees for performing
geometric search, set operations, and determination of
visibility, with the rendering performance of the AT&T
Pixel Machines to provide interactive SCUlpting of texture
mapped solids. The paradigm presented to the user is one
in which a tool is used to modify a workpiece repeatedly
by set operations (union, difference, or intersection). The
user may choose between performing one set operation at
a time with repositioning of the tool between operations,
or sweeping the tool during which either union or
difference is performed "continuously" (at sampled tool
positions). Solid near-plane clipping is also provided
using a BSP tree clipping algorithm. The user interface is
simple and was designed to allow portability to a variety
of workstations. Update rates using a Sun 3(260 and a
Pixel Machine 964 for texture mapped models of -1000
polygons require -0.2 secs per update when using a simple
tool.

Keywords Solid Modeling, Interactive Design, BSP Trees

1. Introduction

A major goal of computer graphics since its inception has
been to provide interactive design of 3D objects.
Achieving the performance required for this has certainly
proven to be difficult However, we have recently reached
a reasonable level of such capabilities through the
combined performance gains of: a new representation of
geometry admitting faster algorithms, non-geometric
techniques such as texture mapping, specially designed
processors with significant floating point capacity, and a
parallel architecture specifically designed for 3D rendering .
In particular, we have employed the BSP tree for
representing objects in conjunction with an AT&T Pixel
Machine to achieve interactive performance for designing
3D solids via a sequence of boolean set operations.

The earliest version of this system was described
briefly in [Thibault and Naylor 87]. Developments since
that time are explored in this paper, including user
interface design, BSP tree clipping, numerical robustness,
efficiency enhancements to the neighborhood operation,

texture mapping, and porting to a variety of workstations,
including the Pixel Machine (see [Potmesil and Hoffert 89]
for a discussion of this architecture). Descriptions of other
BSP tree based systems providing interactivity can be
found in [Fuchs, Grant and Abrams 83] (basic viewing)
and [Chin and Feiner 89] (shadow generation).

Sculpt c\DTently runs in four environments: a Pixel
Machine attached to a Sun workstation, any Silicon
Graphics Iris 40, a Sun workstation with a TAAC-l
graphics accelerator, and "stand alone" on any Sun
workstation by using its bit-mapped screen for display .
The Pixel Machine supports both color and texture maps,
the TAAC-l and Iris only color, and the Sun workstation
either color or bi-level renderings .

2. User Model

The paradigm presented to the user is that of sculpting a
workpiece with a tool. The user manipulates continuously
the position of a tool with respect to a workpiece while
being able to vary the view. Once positioned, the tool
may be subtracted from the workpiece, or added, or the
intersection between the tool and workpiece can be
formed. Intersection and difference cause the tool to be
made invisible to allow viewing of the result. In "sweep"
mode, set operations are performed at as high a rate as
possible. As soon as an operation is completed, the tool's
position is sampled and the next operation is begun, thus
resulting in a quantized sweep. The tool, selected from a
palette of eight, may .be scaled and rotated, and the user
can choose its color to be solid or texture mapped.

The paradigm of SCUlpting a workpiece has been found
to be intuitive, effective for the task, and simple to learn.
Most users are able to achieve a reasonable level of
proficiency in a few hours (including artists). Clearly,
tapping into human beings' considerable familiarity with
manipulating 3D objects is behind this. However, the
simplicity of the user interface contributes as well. Since
we wanted to run Sculpt on a variety of workstations, we
built the interface out of the lowest common denominator:
a single 3-button mouse and pop-up menus. Only three
levels of menus are needed with most menu items not
involving subsequent sub-menus. The number of items per
menu is typically no more than ten, and the right button is
used exclusively for menu selection. Consequently,

Graphics Interface '90

choosing menu items is relatively fast

While the right button is reserved for menu selection.
geometric input can utilize the mouse xy position as well
as the left and middle buttons. However. given that the
various demands for input exceed this facility. function
overloading of the mouse is necessary. The highest level
of functional partitioning distinguishes between controlling
the view/model1 and controlling the tool. In view mode.
mouse motion typically controls horizontal and vertical
rotations of the view/model. but occasionally it is used for
xy positioning (centering). In tool mode. mouse position
always affects xy tool position.

The remaining input functionality is provided by the
left and middle buttons used in tandem to form a valuator;
this provides all other geometric control such as scaling
(more on this below). To change the input functionality
entails selection of menu items. For instance. rapid
toggling between view and tool modes involves selecting
only one of two first level items. To remind the user of
exactly which of the several input modalities is in effect.
the cursor icon is changed to indicate the current state.
Also. any time an action is selected from the menu. a
"wait" icon is displayed until the action is completed.

3. The Tool

The tool is selected from a small set (8) of simple convex
polyhedra. including a cube. cone. cylinder and sphere.
Convexity of the tool arises from the implementation of
the set operation (the solution for the non-convex case.
which is given in [Thibault and Naylor 87]. is noticeably
more complex). However. users have not found tool
convexity to be a significant lintitation in the context of
sculpting.

When in tool mode. the position of the tool tracks the
'xy position of the mouse. The tool's motion is always
with respect to the screen: that is. left mouse motion
always moves the tool to the left, etc. Consequently.
changing the view will change the plane in model space in
which the tool moves. This has proven to be quite
effective as a means of positioning the tool. and results in
an alternation between modifying the view and
repositioning the tool. Translation perpendicular to the
screen can be achieved using the mouse buttons. but this
method is used typically for only small adjustments in the
neighborhood of the target position. Scaling may be
symmetric or differential along any principal axis of the
tool; rotation about each principal axis is provided as well.

1. The model is the wOJkpicoe and tool together. Transforming the model
admita the in_ inlcrprclation of transfonning the view, although
only one affine transfonnation is involved , one that maps the model to
the~. So, fer instance, rotating the model clockwise can be
equivalently intcrpreled u rotating the view countcr-clockwise. With
Sculpt, the UICr typically ha. the: subjective sense of lran.fonning the
model.

139

The buttons are used to control all of these.

The color attribute is defined for the entire tool. that
is. all faces have the same attribute. The attribute may be
either a single color or. in the case of the Puel Machine, a
texture. Texture coordinates for each vertex of the tool are
defined as part of the tool definition and are not modifiable
by the user. The current texture palette is selected from a
predefined set of such palettes. Each texture map uses 8
bitslpixel along with its own 256 x 24 bit color table. The
area available for storing texture maps is comprised of 4
channels. 8 bits/channel. with 256x256 pixels/channeL
Thus each channel can contain one 256x256 texture or 4
128xl28 or 16 64x64 textures. The current palettes
provide various combinations of 256x256 and 128x128
textures. for up to 16 of the later. New textures and new
palettes can be created using software tools external to
Sculpt.

4. Mouse Input Issues

Restricting input to a single mouse provided by a
windowing system required addressing a number of issues .
The first arises from the difference between the desire for
sampled input and the event driven and queued input
commonly provided by window systems. The time
required to draw a single image depends upon the number
of polygons. the number of pixels generated during the
sampling process. and the cost of determining the value of
each puel (texture mapped or constant col or, etc.).
Interactivity can tolerate up to maybe as much as 1 second
per update; clearly much slower than the rate at which the
mouse can generate events. One does not want, for
instance. to see a new frame for every detectable change in
mouse position. As a consequence. sampled input was
deemed the preferred modality.

4.1 Sampled Input

To map an event driven model of input into a sampled
model requires maintaining an input state, viz. position and
buttons up/down. through the processing of mouse events.
Whenever the state is needed. the entire event queue is
processed to determine the current state. thus giving the
effect of being sampled. However. this does not obviate
completely the need for the notion of events. When no
change has occurred in the state of the input, there is no
need to regenerate an image; and in a mUlti-processing
environment, avoiding this unnecessary computation is
highly desirable. As a result, the boolean "geometric input
has changed state" is determined to control generation of
new frames.

When the rendering time is significant, as it is using a
Sun workstation for rendering. detecting the starting and
stopping of a mouse sweep becomes important. Detecting
the start of a sweep is needed to avoid the first sample
being an insignificant small change from the starting
position. with the consequence that a noticeable amount of
time may be spent rendering only a slightly different

Graphics Interface '90

model. Detecting the stopping of a sweep is need to avoid
follow-through: continued change after the input has
stopped Consider that the input for a frame is sampled at
time to, the input stops at t1, and the current frame finishes
at t2, where to < tl < t2. As the input has changed since
its last sampling at to, a new frame will begin to be drawn
at t2; thus, the user will experience two new frames after
the sweep has stopped, one at t2 and one sometime later.
When the time to draw a frame is long, this can be very
disconcerting to the user; however, even with relative fast
frame times, this follow-through is subliminally annoying.
By using the time-stamps of events together with the
rendering beginning and finishing times, small starts and
old stops can be detected and discarded.

Another issue arose from using the mouse for both
menu selection and geometric input. Menu selection
requires changing the mouse position; once this is
completed, the mouse's position reverts to providing
geometric input. If the absolute position of the mouse is
used, a discontinuity of position will have been introduced.
Using absolute positions directly also encounters the
problem of the mouse's area of excursion being rather
small. Both of these limitations are overcome by using
relative change as the logical input device with a reset
capability. After a menu selection is completed, the
relative change is reset to 0 by sampling the current mouse
position. However, the resampling must be delayed until a
new mouse motion event occurs; thus, the call to ResetO
simply sets a flag to indicate the need for resetting upon
the next event. This also solves the second problem: when
a boundary is reached, the user presses the menu button,
but re-positions the mouse outside of the menu area
instead of choosing an item. This can be used when the
cursor reaches the window boundary to reposition the
cursor towards the center.

4.2 Mapping Input to Values

For each kind of geometric input (view rotation, tool
translation, etc.), some constant must be specified that
defines the mapping from input device coordinates to the
desired geometric quantity. Clearly the button-down state
needs mapping to a quantity, but scaling of mouse xy
coordinates is also needed. The rate of change for each
such input function is specified by an empirically derived
table; and these rates are subsequently calibrated to each
class of workstation by global calibration values for both
motion and buttons.

Another issue arises from the non-linearity of the
perspective projection. If a fixed quantity of translation is
used for each translation-event, then the user will perceive
larger step sizes the more one zooms in. This can be
corrected by applying the view-to-model transformation to
the mouse input (the inverse perspective transform).
However, we found it useful to provide finer control the
more one zooms in by using a negative exponent less than
one. Thus, the user zooms out to perform coarse
positioning and zooms in for higher precision placement.

140

In addition, we use a traditional solution to the problem of
providing exact input from a high resolution geometric
input device: quantization of input values. For instance,
integer*45-degree rotations can be easily achieved by a
relatively slight quantizing of mouse input.

Varying rendering times posed another problem: a
constant rate button controlled rotation would rotate much
faster with a simple model than with a complicated onc.
Similarly for scaling or translation. Our solution is simply
to modulate the quantity of change associated with each
button sample by the time required to render the image;
this then yields a fairly constant unit of change per second,
at the expense of control resolution. However, zooming-in
can be used to restore this resolution.

S. BSP Tree Review

As stated earlier, the representation of the workpiece is a
binary space partitioning tree. A BSP tree is formed by
using hyperplanes to recursively parulIon d-space
(typically 3-space), resulting in its hierarchical
decomposition into a bin;rry tree of convex regions
(represented combinatorially by a binary tree). The leaves
of the BSP tree, called cells, form a convex partitioning of
d-space. Figure la shows a BSP tree induced partitioning
of the plane and 1 b shows the corresponding binary tree.
The root node represents the entire plane. A binary
partitioning of the plane is formed by the line .1abeled u,
resulting in a negative halfspace and a positive halfspace.
These two halfspaces are represented respectively by the
left and right children of the root. A binary partitioning of
each of these two halfspaces may then be performed, as in
the figure, and so on recursively. When, along any path of
the tree, subdivision is terminated, the leaf node will
correspond to an unpartitioned region (a cell). For any
node of the tree, the corresponding region is defined by the
intersection of the set of open halfspaces determined by
each hyperplane associated with a node on the path to that
region.

To define polytopes, we need the attribute
classiftcalion ::= { in,out} . If, in figure I, we assign to
cells 1 and 5 the value in, and to the rest out, then we will
have determined a concave polygon of six sides. Defining
a polytope as the closure of a union of convex cells allows
a single tree to represent any linear semi-algebraic set:
they can have concavity, any genus, any number of
connected components, non-manifold boundaries, and
unbounded interiors . In addition, all sets are treated
identically by the algorithms. The boundary of the set lies
in the partitioning hyperplanes, or more precisely, in the
sub-hyperplanes: that subset of a partitioning hyperlane
that intersects the region it partitions . The boundary can
be obtained either by classifying a sub-hyperplane by a
neighborhood search operation, or it can be represented
explicitly by polygons (assuming 0=3), each stored at the
internal node whose sub-hyperplane contains them.

Graphics Interface '90

141

4

2 5 6
(a) (b)

Figure 1. Partitioning of a 2D BSP Tree (a), and Its binary tree (b).

6. Set Operations

Set operations are computed in 3-space and result in a
modification to the 3-space model; therefore, they are view
independent This is in contrast to methods that evaluate
the set operations only in a finite set of ID spaces
determined by viewing rays (e.g. ray casting). While
computing set operations in ID is simpler that 3D, the
work must be repeated for every frame.

The workpiece is represented by a 3D BSP tree which
explicitly includes the faces of the polyhedron. Each face
is represented by a set of convex polygons, and these are
represented by a list of vertices (i.e. as aB-rep).
Polygonal convexity is required by all of the rendering
systems that we use and this is generated automatically
during neighborhood operations by the BSP tree's convex
decomposition of space. The tool is represented simply as
a list of convex polygons, where each polygon is once
again a list of vertices.

To perform a set operation, the relative spatial
relationship between the two objects must be determined
'by a geometric search. This can be accomplished by
"inserting" the tool into the tree. Figure 2 shows a
quadrilateral as the tool being subtracted from a triangular
workpiece. At each partitioning node, a binary partitioning
operation is performed that classifies each face of the tool
with respect to the hyperplane at that node as {lnNegHs,
lnPosHs, lnBoth, On}. If there are no faces on one side,
then the subtree on that side is either entirely inside or
outside the tool. Determining which is the case is
achieved by locating a point in the sub-hyperplane with
respect to the planes of the tool faces. This results in
classifying an entire subtree with respect to the tool
without visiting any of its nodes. After this, faces are then
"sent" to the respective subtrees which contain them and
this partitioning process continues until a cell is reached.
At this point, the faces are either discarded or used to
extend the tree, depending upon the set operation and the
classification of the cell. (See [Thibault and Naylor 87] or
[Thibault 87] for a complete description).

When manipulating the tool, the user views a model
that is the union of the workpiece and the tool. Each time

the tool is changed, it is inserted into the tree;
that is, a union is performed, except that the workpiece
faces are not modified, since tool faces occlude any
workpiece faces inside the tool. When the tool is changed,
the previous instance of the tool is first stripped from the
tree, the modifications to the tree having been noted in a
table.

For those wishing to "see" the underlying
representation, the user may choose to display the BSP
tree's binary tree structure. This simple drawing of the
binary tree is updated in every frame in which the tool
changes or a set operation is performed. This, together
with a display mode showing polygon edges, provides a
means to gain some understanding of the space partitioning
by moving the tool around and observing the changes to
the tree and to the edges resulting from partitioning the
tool.

6.1 The Neighborhood Operation

User selected set operations result in modifications to the
BSP tree representing the workpiece, including updating of
faces via a neighborhood operation to reflect changes to
the boundary. This will, in effect, compute the closure of
the interior of the new workpiece. For example, in figure
2 the face of the workpiece lying in the sub-hyperplane at
y needs to change to reflect the hole created by subtracting
the tool. This requires examing the new neighborhood of
the face. By inserting the face into y's left subtree, we can
discover which subsets are in and which are oUl, and then
retain only those that are in. Since the set operation is
subtraction, the neighborhood on the exterior side of the
face, represented by y's right subtree, could not have
changed (O-S = 0) and so does not need to be examined.
This would also be true had the operation been
intersection; for union it is the opposite neighborhood, i.e.
the interior neighborhood, that cannot change.

It is important to make this closure operation as
efficient as possible, and at the time of [Thibault and
Naylor 87] this operation was not well understood.
Whenever the tool is entirely in one halfspace of a node's
hyperplane, the correct values for the faces in the sub­
hyperplane as well as those in the opposite halfspace are

Graphics Interface '90

142

x _. (pq,qr,n,sp) x

/\ /\
y out y out n* out

/\ /\
z out z out n· (s's,sr,fT')

/\ /\
in out in n· (r'q,qp.ps') out n· out

(1) Initial geometry (2) Initial representations (3) BSP tree after classifying (qp,rq,sr,ps)

(4) Resulting partitioning (5) Final BSP tree

Figure 2. Workplece • Tool.

determined directly by the set operation: they are either
unchanged or discarded along with their tree nodes.
Therefore only those workpiece faces at nodes in which
the tool faces were found to lie in both halfspaces require
the neighborhood operation. Even this can be avoided if
no change has occurred in the relevant subtree;
consequently, the recursive call perfonning the set
operation on a subtree returns a boolean "subtree has
changed" which conditions the neighborhood operation.

The neighborhood operation generates a convex
decomposition of the relevant neighborhood of a face, this
resulting from the subtree's hyperplanes that intersect the
face. It is the retention of only the in faces for an interior
neighborhood, and only the oUl faces for an exterior
neighborhood that results in the correct detennination of
the boundary. However, this process may produce more
fragments that necessary. If two face fragments created by
some partitioning hyperplane have the same classification,
one can replace these with their union. Since these
fragments were created by partitioning some polygon, this
original polygon is in fact the desired union. Thus,
whenever it is ·necessary to partition a polygon, a copy of
it is saved so that it may be used as the return value
whenever appropriate.

Another issue concerns the problem of faces that are
both coplanar and overlapping. If a tool face is found to
be On, it is retained at the node at which this occurs, since
it lies in that node's sub-hyperplane. If this face overlaps
(intersects) a workpiece face, this fact cannot be

discovered by the neighborhood operation, since the region
of overlap will have the same neighborhood for either
face. The solution presented in [Thibault and Naylor 87]
involves recursing in dimension, which requires procedures
and data structures specific to this task. A simple
alternative is to classify tool On faces before perfonning
the set operations on the subtrees. If the operation is
union, then classify the interior neighborhood and retain
oUl fragments, since the in fragments must overlap
workpiece faces. For difference, retain in fragments, and
for intersection no tool faces are needed.

6.2 Numerical Robustness

Relying on finite precision to support semantics developed
for the continuum is · a bane of geometric computation.
We have a simple scheme for dealing with this problem,
however. To begin with, the semantics of the BSP tree
spatial partitioning is based on open sets: the cells are
open sets, set operations are on open sets, and partitioning
a face is in tenns of open sets in the plane of the face. As
a result, regularization is not an issue per se, since union
and intersection of opens set yields open sets. Instead, the
boundary is created by explicitly executing the closure
operation. In addition, BSP trees, unlike boundary
representations, use no topological infonnation.
Consequently, sertSitivity of the algoritluns to correct and
consistent answers in determining co-incidence is greatly
reduced. In particular, there is no use of transitivity in
determining co-incidence so that one of the major problem
with "epsilon" based numerical methods is avoided.

Graphics Interface '90

Our numerical problems arise because we need the
semantics of planarity for polygons. In particular, we need
to guarantee that all vertices of a polygon lie On its
supporting hyperplane and that the vertices do not oscillate
from one side of a partitioning hyperplane to the other.
TIle simple solution we use is to treat hyperplanes as
having a thickness so as to "dampen" numerically created
noise. This is in keeping with BSP trees' space
partitioning nature, since it is equivalent to treating
hyperplanes as D-dimensional open sets. For partitioning
polygons, this gives us a polygon being InNegHs if and
only if all its vertices are InNegHs or On, that is, if and
only if its interior lies entirely InNegHs.

Unfortunately, this alone is insufficient to provide the
semantics needed by the neighborhood operation. This
semantics requires that along any path in the tree, all
hyperplanes are distinct However, numerical error can
cause a face fragment, which of course is On its node's
hyperplane, to be classified during the neighborhood
operation as On a descendant's hyperplane. Our solution
is to use two different hyperplane thicknesses: one for set
operations and a lesser one rI/5) for neighborhood
operations. This creates a "numerical space" between any
two sub-hyperplanes on a path. While this method is not
provably robust (like all other methods), in practice it has
provided approximately four orders of magnitude in size
using only single precision. In our interactive domain,
where input is already quantized relatively coarsely, this is
sufficient to avoid experiencing problems arising from
numerical errors.

7. Rendering

TIle BSP tree was originally developed in the context of
determining visibility priority in 3D scenes [Schumacker et
all [Fuchs, Kedem, Naylor 80], although in [Naylor 81] it
is defined as a dimension independent and application
independent spatial partitioning scheme akin to k-d trees
and linear decision trees. Visibility priority arises from the
following observations. Since both a plane and a view-ray
are linear, they can intersect at only one point. This
intersection point partitions the ray into a Near, On and
Far subsets. Thus all points on the side of the plane
containing the viewing position, the Near subset, have
higher visibility priority than those in the plane, the On
subset, which in ruin have higher priority than those in the
other halfspace, the Far subset As a result, a total
priority ordering of the cells and sub-hyperplanes can be
generated by a recursive inorder-like traversal in which the
location of the view with respect to a node's partitioning
plane determines the priority ordering of its subtrees. In
[Schumacker et al], faces where contained in the cells (at
the leaves) and in [Fuchs, Kedem and Naylor 80] they are
contained in the sub-hyperplanes. Sculpt employs this
later methodology, and therefore can generate either near­
to-far or far-to-near orderings.

143

7.1 BSP Tree Polyhedral Clipping Algorithm

The capacity to easily perform set operations on BSP trees
can be exploited to provide polyhedral/solid clipping. In
Sculpt, the user is provided with solid clipping to the near
clipping-plane, thus creating another form of continuous
set operations. This operation, calculated for each view,
yields the intersection of the model with the halfspace
determined by the near clipping-plane whose position can
be controlled continuously by the mouse buttons. Rather
than make a new copy of the tree and then intersect it with
the halfspace, the operation is interleaved with the display
traversal of the BSP tree that generates the visibility
priority ordering of the polygons. No new tree nodes are
allocated. It serves to eliminate entire subtrees on the
viewer's side of the near clipping-plane without traversing
those sub trees, and it creates the faces resulting from the
intersection of the clipping-plane and the model. In figure
3, the algorithm for generating a lowest-to-highest priority
ordering with solid near plane-clipping is given.

This algorithm can be easily extended to perform
clipping to the entire view-volume, that is, to perform
intersection between the view volume and the model. The
view volume is simply represented the same as the tool,
i.e. as a list of faces, and the algorithm becomes almost
the same as that used to perform intersection with the tool.
TIle differences are that the model's tree is not modified
and that the neighborhood operation needed to form the
boundary of the clipped model is replaced by clipping of
model faces in the InBoth case to the planes of the view
volume, and by display of near-plane faces falling into in
cells of the model. If one substitutes in figure 3
"view volume" for "near ylane", the BSP tree clipping
algorilhm will result. This requires that
Partition PolygonsO and Locate_PointO handle a list of
polygons: as in fact they do for set operations with the
tool, and also that partitionedyolygons.location == On
whenever there is a single face co-incident with the
partitioning hyperplane. Otherwise, they are identical .

Only the intersection of the model with the near
clipping-plane will actually lead to a visual difference
between this polyhedral clipping and the usual polygon
clipping method, since faces lying in the side/window
planes and far plane are not visible. However, the BSP
tree clipping can be much more efficient than transmitting
the entire model through the viewing pipeline, an O(n)
operation. Subtrees found to be completely outside or
completely inside the view volume are not visited, and
therefore are "clipped" atomically. This savings will be
most dramatic when most of the model is inside the view
volume as is an overview, or mostly outside as when one
is zoomed-in viewing a small portion of the model. As a
consequence, sub-linear performance fot clipping is usually
attained; and for a relatively balanced tree, this can result
in an O(log n) expected case.

Graphics Interface '90

7.2 V~ibility Priority

Using a far-to-near priority ordering in leu of the depth
buffer algorithm is particularly attractive when using the
Sun workstation as the display device since it obviates the
need for the space and time required by the depth buffer.
While the other workstations can provide depth buffers
more easily for some additional cost in hardware (e.g 2-
4M of memory), the computation time for the z
calculations are eliminated. (A casual comparison on a
Personal Iris indicated an averaged speed up of 2x; but this
was much less on bigger machines.) Numerical errors
resulting from the perspective projection (l/z) are
eliminated as well. These errors are very noticeable when
rotating an object which has nearly co-planar faces: the
ordering of the faces oscillates.

Additional performance gains can be obtained using
instead a near-to-far priority ordering in which only visible
pixels are rendered. The savings accrued from this grows
as the cost of pOlel rendering grows as a result of texture
mapping, phong shading, transparency and/or anti-aliasing
calculations, and also as the depth complexity increases,
due to the avoidance of rendering occluded pixels. To
achieve this, a one-bit mask is maintained at each pixel
which is initially unset Analogous to the depth buffer
algorithm, the color of each polygon sample is computed
and the corresponding pixel updated if and only if the
mask in unset The mask is then set to preclude
subsequence modification. We have experienced
noticeable improvements from this when using texture
mapping (with intensity scaling), even with relatively low
depth complexity (we are not currently using any of the
other rendering technics).

Even more gains can be obtained by using sub-pixel
masks to perform anti-aliasing [Fiume and Fournier 83].
The I-bitlpixel mask above can be extended to a 4x4
mask, for instance, thus requiring 16-bits/pixel, or to a 2x4
which can fit into the alpha channel. If all the bits of a
mask are set, the pixel has been completely rendered
(using Set = 0 makes this an = 0 test). Otherwise, a bit
mask representing the intersection of the current pixel with
the polygon is generated. The current pixel's mask is
subtracted from the polygons mask to determine the visible
sub-pOlels (A - B -> A & "'B). This can then be used
with a convolution table [Abrams, Westover and Whitted
85] to determine the filtered value that is added to the
current pixel's color. The pixel mask is then updated by
or-ing the two mask together. Since this process is
guaranteed to filter only the visible surfaces, it will
produce tl)e correct pOlel value up to the error introduced
by quantization. This is not the case for the method in
[Fiume and Fournier 83] which relies on the depth buffer
and is susceptible to "color bleeding" from occluded
pixels, or the A-buffer [Carpenter 84] which uses sorting
of micro-polygons by their z-value sampled at the pixel's
center and so may generate ordering errors. We are
currently implementing this technique on the Pixel
Machine.

144

In closing, we note that it is conceptually a simple
matter to construct an analytic representation of the visible
surfaces instead of the discrete bit-masked representation
such discussed. Given a near-to-far ordering on the faces,
one needs only to form their union in priority order. The
Bspt <union> B-rep -> Bspt algorithm described in section
6, when applied in 2D to ordered and projected faces,
generates a 2D BSP tree representing the visible surfaces,
i.e representing the image/picture. As with any visible
surface algorithm (especially analytic ones), this can be
used to generate shadows as well. The resulting shadow
algorithm is, in fact, almost identical to the method
described in [Chin and Feiner 89].

8. Performance

In figures 4-9, we show images generated by SCUlpt on a
Pixel Machines 964d connected to a Sun 3!l60. This
machine has It 1024x1280 screen, 64 pixel processors and
18 transformation processors. Figure 4 shows a simple
object designed with sculpt employing 4 texture maps,
each 256x256. Figure 5 demonstrates a sweep of the tool
with union performed at each sampled position. Figure 6
shows a head and its corresponding binary tree, while
figure 7 demonstrates the effect of solid near-plane
clipping and figure 8 sweeping with subtraction. Finally,
figure 9 demonstrates the use of 16 textures, each
128x128. Performance data for these images is given in
Table 1. All numbers have been rounded to some
approximate value.

9. Next Generation

The most overt deficiency of the current system results
from a technological limitation at the time of its design:
the absence of a closed algebra on BSP trees for set
operations. However, this deficiency has since been
remedied. We have just completed implementation of a
new BSP tree library/module that provides such a
capability. The current user interface to this library is
language based: objects are defined as C programs or as
shell scripts. In the near future, we will be constructing a
new version of Sculpt using this library. This will then
remove the current limitation on the tool of being convex
and predefined and will allow the user to perform general
CSG modeling. We envision retaining the sculpting
paradigm, however, in order to sculpt components which
are subsequently added to other components to form
objects, and also to sculpt new tools, rather than being
confined to the predefined set. We also intend to construct
a much more sophisticated user interface that will support
a variety of input devices using user interface building
tools currently under development at Columbia University .

Acknowledgements

Thanks . to Bill Thibault. whose did the original
implementation, and whose basic design is still preserved
throughout several rewrites, and to John Amanatides who

Graphics Interface '90

145

cpu/frame tree size number of average
object (seconds) (nodes) polygons depth

lamp stand 0.1 125 160 13

+ sweep 0.2 850 950 15

head 0.3 1500 1500 20

clipped head 0.3

head - sweep 0.3 1500 1600 20

16 cubes 0.15

Table 1. Statistics for figures 4-9.

ported Sculpt to the Pixel Machine, T AAC-l and the Sun.

References

[Abrams, Westover and Whined 85]
Greg Abrams, Lee Westover and Turner Whined,
"Efficient Alias-free Rendering using Bit-masks
and Look-up Tables", Computer Graphics, Vol
19(3), pp. 53-59, (July 1985).

[Carpenter 84]
Loren Carpenter, "The A-buffer, an Antialiased
Hidden Surface Method", Computer Graphics
VoI18(3), pp. 103-108, (July 1984).

[Chin and Feiner 89]
N. Chin and S. Feiner, "Near Real-Time Shadow
Generation Using BSP Trees", Computer
Graphics Vol. 23(3), pp. 99-106, (June 1980).

[Fiume and Foumier 83]
"A Parallel Scan Conversion Algorithm with
Anti-Aliasing for a General-Purpose
Ultracomputer", Computer Graphics Vol. 17(3),
pp. 141-150, (July 1983).

[Fuchs, Kedem, and Naylor 80]
H. Fuchs, Z. Kedem, and B. Naylor, "On Visible
Surface Generation by a Priori Tree
Structures," Computer Graphics Vol. 14(3), pp.
124-133, (June 1980).

[Fuchs, Abrarn and Grant 83]
Henry Fuchs, Gregory D. Abram, and Eric D.
Grant, "Near Real-Time Shaded Display of
Rigid Objects," Computer Graphics Vol. 17(3)
pp. 65-72 (July 1983).

[Naylor 81]
Bruce F. Naylor, "A Priori Based Techniques for
Determining Visibility Priority for 3~D
Scenes," Ph.D. Thesis, University of Texas at
Dallas (May 1981).

[Potmesil and Hoffert 89]

Michael Potmesil and Eric Hoffert, "The Pixel
Machine: A Parallel Image Computer", Computer
Graphics, Vol. 23(3), pp. 69-78, (July 1989).

[Schumaker et a1 69]
R. A. Schumacker, R. Brand, M. Gilliland, and
W. Sharp, "Study for Applying Computer­
Generated Images to Visual Simulation ."
AFHRL-TR-69-14, U.S. Air Force Human
Resources Laboratory (1969).

[Thibault and Naylor 87]
W. Thibault and B. Naylor, "Set Operations On
Polyhedra Using Binary Space Partitioning
Trees," Computer Graphics Vol. 21(4), (July
1987).

[Thibault 87]
William C. Thibault, "Application of Binary
Space Partitioning Trees to Geometric Modeling
and Ray-Tracing", Ph.D. Dissertation, Georgia
Institute of Technology, Atlanta, Georgia, (1987).

Graphics Interface '90

146

Dlsplay_Bspt(T: Bspt j near"'plane : (polygon: Brepj hp : plane»

hp ::= hyperplane bp ::= binary partition er : (hp, faces, Interior...pt)

IF T.ls • cell
THEN

IF T.membershlp == IN
THEN

Render_Polygons(near "'plane.polygon)
ELSE

Discard_Polygons(near "'plane.polygon)
END

ELSE
partitioned "'polygons = Partition _ Polygons(near "'plane.polygon, T.bp.hp)
CASE partitioned yolygons.location

InNegHs:
bpJocatlon := Locate_Polnt(T.bp.lnterlor"'pt, nearJllane.hp)
IF bp_location == InNegHs
THEN

Display _Bspt(T.posHs _subtree, NULL)
Render_Polygons(T.bp.faces)
Display _ Bspt(T .negHs _subtree, near_plane)

ELSE
,. Clip away near subtree and T .bp.faces .,
Dlsplay_Bspt(T.negHs_subtree, near_plane)

END
InPosHs:

bp_location := Locate _Polnt(T.bp.lnterlor"'pt, near Jllane.plane)
IF bp_location == InNegHs
THEN

Display _ Bspt(T .negHs _subtree, NULL)
Render _Polygons(T.bp.faces)
Display _ Bspt(T.posHs _subtree, near "'plane)

ELSE
,. Clip away near subtree and T.bp.faces .,
Dlsplay_Bspt(T.posHs_subtree, near"'plane)

END
On:

eyeJocatlon := Locate_Point(eye, T.root.hp)
IF eye_location == InNegHs
THEN

Display _ Bspt(T.posHs _ subtree, partitioned "'polygons.lnPosHs)
Render _Polygons(T.bp.faces OR near "'plane.polygon)
,. Clip away near subtree .,

ELSE
Display _Bspt(T.negHs_subtree, partltloned"'poIygons.lnNegHs)
Render _Polygons(T.bp.faces OR near "'plane.polygon)
,. Clip away near subtree .,

END
InBoth:

eye_location := Locate_Point(eye, T.root.hp)
IF eye_location == InNegHs
THEN

Display _ Bspt(T .posHs _ subtree, partitioned "'polygons.lnPosHs)
Render _Polygons(Clip _Faces(T.bp.faces, near "'plane.hp)
Display _ Bspt(T.negHs _subtree, partitioned _polygons.inNegHs)

ELSE
Display _ Bspt(T.negHs _subtree, partitioned "'p0lygons.inNegHs)
Render _Polygons(Clip _Faces(T.bp.faces, near Jllane.hp)
Display _ Bspt(T.posHs _ sub tree, partitioned "'polygons.inPosHs)

END
END Case END DlsplaL Bspt

Figure 3. Displaying BSP tree faces in far-to-near priority ordering with near-plane clipping.

Graphics Interface '90

147

Figure 4

Figure 5

Figure 6

Graphics Interface '90

148

Figure 7
Figure 8

Figure 9

Graphics Interface '90

