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Abstract 

In this paper we introduce the concept of a virtual lab­
oratory as an electronic metaphor for a "real" lab . The 
virtual laboratory allows the user to discover knowl­
edge through simulated experiments guided by hyper­
text documents. It contains all the elements of a good 
physical laboratory: a wide range of objects and tools 
which can be assembled into experiments, a reference 
book, and a notebook for recording thoughts, inspira­
tions, results and conclusions. The concept is illustrated 
by an example of a laboratory design. 

Keywords: microworld, hypertext , software en viron­
ment for interactive visualization, object-oriented pro­
gramming. 

1 Introduction 

Powerful graphics workstations offer unprecedented 
hardware capabilities for conducting simulated exper­
iments using interactive visualization programs. How­
ever, the system software support for this type of ap­
plication is inadequate. For example, the user may find 
himself overwhelmed by hundreds of data files repre­
senting different models and model components, some 
of which are appropriate as input for one simulation 
program, some for another. This paper presents the 
concept of a virtual laboratory which provides an envi­
ronment for the management of simulated experiments. 

A virtual laboratory, like its "real" counterpart, is a 
playground for experimentation. It comes with a set of 
objects pertinent to its scientific domain, tools which 
operate on these objects, a reference book, and a note­
book. The reference book explains the concepts involved 
through text and illustrations, and serves as a guide to 
experiments. Once the concepts and tools are under­
stood, the user can expand the laboratory by adding 
new objects, creating new experiments, preparing writ­
ten reports and recording them in the notebook. An 
experienced user can further expand the laboratory by 
creating and installing new tools. 

This paper presents the concept of a virtual laboratory 
and outlines a design implemented on Silicon Graphics 
workstations. 

2 Virtual lab = hypertext + microworld 

Technically, we define a virtual laboratory as a mi­
croworld which can be explored under the guidance of 
a hypertext system. The term "microworld" denotes 
an interactive environment for creating and conducting 
simulated experiments [16]. The motivation for explor­
ing this microworld is based on the ability to see and 
create "neat phenomena" [9]' provided in the form of 
graphical objects. 

In a sense, both components of the virtual laboratory 
are described by Nelson in Dream Machines [11]. The 
pioneering role of this book in introducing the concept of 
hypertext is known, but under the heading The Mind 's 
Eye the notion of a microworld is also anticipated: 

Suppose that you have a computer. 
What sorts of things would you do with it? 
Things that are imaginative and don't require 

too much else. 
I am hinting at something. 
You could have it make pictures and show you 

stuff 
and change what it shows depending on what 

you do. 

Since Dream Machines, many examples of microworlds 
have been described in the literature. Papert [12] refers 
to a LOGO microworld which can be used to discover 
the principles of turtle geometry. L.E.G.O. [4, 5] pro­
vides a user with an electronic ruler and compass, thus 
creating a micro world for Euclidean constructions. The 
Alternate Reality Kit [15] models a world in which ob­
jects have physical properties, such as velocity and mass, 
allowing the user to learn about Newtonian mechan­
ics. A similar microworld domain is considered by Pa­
pert [12] . Thinglab [2] is defined as a kit for building 
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micro worlds for diverse applications; examples include 
experiments with geometric objects and with simulated 
electric circuits. Many other programs are available 
commercially or for research purposes. For example, the 
Game of Fractal Images [8] makes it possible to explore 
the mathematical microworld of Julia and Mandelbrot 
sets, while Compose [3] creates a microworld of dancing 
figures to assist in choreographic design. 

All these microworlds provide little guidance to the user. 
This is consistent with Papert's concept of a microworld 
as a simulated environment for "learning without be­
ing taught", which he justified using Piaget's model of 
children as builders of their own knowledge [12]. How­
ever, this justification does not extend to comprehen­
sive microworlds which provide an environment for a 
wide range of advanced experiments and cover a broad 
domain of science. They cannot be explored efficiently 
without guidance to the underlying concepts and the 
system itself. 

This guidance could be provided in the form of a tra­
ditional book, but an electronic document is more suit­
able for integration with a microworld. One example is 
Mathematica [17] - a microworld for exploring math­
ematical phenomena. A user creates a Mathematica 
Notebook which may contain formulas, graphics and 
animation. The text and graphics are divided into cells 
and structured hierarchically, so the Notebook may con­
tain several levels of detail. The user can scan the text 
at any level and may request an expansion of any por­
tion of it. However, there are no links for jumping from 
one portion of text to another. 

Plantworks [7] can be viewed as a simple virtuallabora­
tory for developmental biology. Two components form 
its core: a program for simulating plant development 

. called pfg, and a hypertext system called metatext [13]. 
Metatext provides the capability of nonlinear browsing 
through the database of available experiments. When 
an experiment is selected, it automatically invokes ap­
plications with the appropriate argument files and dis­
plays a corresponding textual description. By invoking 
pfg, the user can view the modeled plant as a static 
image or as an animated sequence illustrating the de­
velopmental process. 

In contrast to most microworlds, Plantworks is an open 
system. It can incorporate most applications and data 
files available on the UNIX system and expand in many 
diverse directions. The open design is also one of the 
cornerstones of the virtual laboratory concept; in this 
sense the laboratory can be viewed as extending the 
functionality of UNIX. 

3 Design of a virtual laboratory 

Generally, a virtual laboratory may be divided into two 
components: the application programs, data files, and 
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textual descriptions that comprise the experiments; and 
the underlying system support and utilities that pro­
vide the framework on which these domain-dependent 
experiments are built. Below we describe the design of 
the latter component, the domain-independent software, 
that has grown out of our experience with Plantworks. 

3.1 The requirements 

The following list specifies features considered essential 
to lab operation. 

• Consistent organization of the lab. In the lab en­
vironment, experiments are run hy applying tools 
to objects. An object consists of files that are 
grouped together so that they can be retrieved eas­
ily. The format of the objects must be sufficiently 
standardized to allow straightforward implementa­
tion of common operations such as object saving 
and deletion. 

• Inheritance of features. It is often the case that sev­
eral objects differ only in details. The mechanism 
of inheritance should be employed to manipulate 
and store such objects efficien tly. 

• Version control. Interaction with an object during 
experimentation may result in a temporary or per­
manent modification. In the latter case, the user 
should be able to decide whether the newly created 
object replaces the old one or should be stored as 
another version of the original object. 

• Interactive manipulation of objects. The laboratory 
should provide a set of general-purpose tools for 
manipulating object parameters. For example , ob­
jects could be modified using control panels or by 
editing specific fields in a textual description of an 
experiment. 

• Flexibility in conducting experiments. The user 
should be able to apply tools (programs) to objects 
(data files) in a dynamic way, while an experiment 
is being conducted . This can be contrasted to a 
static association established when the object is in­
corporated into the system. 

• Guidance through the laboratory. The laboratory 
should include a hypertext system that imposes a 
logical organization on the set of objects, provides a 
textual description of the experiments, and makes 
it possible to browse through the experiments in 
many ways. Specific experiments should be invoked 
automatically when the corresponding text is se­
lected, in order to facilitate demonstrations and as­
sist a novice user. 

The remainder of this section gives a detailed discus­
sion of how these functions are supported in the current 
design of the laboratory. 
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Figure 1: The hierarchical structure of objects. 

3.2 Organization of the lab 

The framework for the virtual laboratory consists of: 

• a file structure for representing experimental units 
(objects); 

• utilities for manipulating these objects; and 

• a hypertext system that provides guidance through 
the lab. 

So far, objects have been referred to in an intuitive way, 
relying on the analogy between a real and virtual lab. 
For example, if our interest is in the development of 
the moss Phascum cuspidatum, in a real laboratory we 
would experiment with a specimen of the plant, while in 
a virtual laboratory we explore the corresponding math­
ematical model. However, the analogy to real objects 
does not extend to the level of detailed object defini­
tion. Specific design decisions are needed for software 
development purposes. 

In the current design, a laboratory object is defined as 
a directory containing two types of files and a subdirec­
tory. 

• The data files comprise our knowledge of a partic­
ular model. 

• A specification file defines the data files which make 
up the object and the tools which apply to them. 

• A directory of extensions lists objects which inherit 
some features of the current object. 

The above definition is compatible with the UNIX file 
system. Consequently, the object-oriented file structure 
which provides the basis for lab operation can be rep­
resented by a hierarchy of UNIX directories and files 
(Figure 1) . 

3.3 Inheritance of features 

The path of subdirectories leading to an object estab­
lishes the inheritance structure for the lab. Inheritance 
is based on the idea of specifying new objects in ref­
erence to objects which already exist [10]. The "old" 
object is called a prototype and the new one is its exten­
sion. The extension contains only those files which are 
different from the corresponding files in the prototype. 
Files that remain the same are delegated to the proto­
type by establishing links. In other words, the object 
directory will contain those files that are unique to the 
object, and links to files that are inherited from its pro­
totype (Figure 2). This approach saves space, facilitates 
creation of objects similar to the prototype, and allows 
a single change in the prototype to propagate through 
all descendents. 

3.4 Version control 

To conduct an experiment, all files that make up the se­
lected object are copied to a temporary location called 
the lab table. Consequently, manipulation of object pa­
rameters does not disturb the stored version. When the 
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specifications 
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Figure 2: A prototype with a sequence of extensions. Shaded areas indicate links . 

experiment is finished, the user may save the results by 
overwriting the original object or by creating an exten­
sion. In the latter case, the files on the lab table are 
compared with those in the prototype object; those files 
that differ from the prototype are saved, and links to 
the remaining files are established automatically. 

3.5 Interactive modification of objects 

The ability to easily manipulate the parameters in an 
experiment is an essential feature of the virtual labo­
ratory." As a rule, all parameters involved in an experi­
ment are supplied to the tools through the object's data 
files. In order to modify a parameter, the user edits the 
appropriate file, which is subsequently re-read by the 
application. 

Though the editing of parameters can be accomplished 
using any text editor, in many cases parameter modi­
fication can be performed more conveniently using vir­
tual control panels [14]. The current implementation of 
the laboratory provides the user with a general-purpose 
control manager which creates panels according to user­
supplied configuration files . A configllration file speci­
fies the appearance of each control in the panel and the 
format of the message to be sent as a result of control 
manipulation. 

A control panel is typically used in conjunction with the 
editor ed. The editor receives messages from the panel 
through a UNIX pipe and special-purpose driver, and 

processes the data file accordingly. In other words, ma­
nipulation of a control on the panel causes a message to 
be sent to the editor, which interprets it as a command 
and edits the data file. This approach to parameter 
control has several advantages. 

• It is consistent with the laboratory metaphor: wc 
apply tools to objects, not to applications. 

• Objects are kept up-to-date: all parameter modifi­
cations are recorded in the files which comprise the 
object. 

• The design of applications is simplified. No special 
provisions for communicating with the panels are 
required; the ability to re-read input data files is 
all that is needed. 

• The use of the editor as an interface between the 
panel and the application makes it possible to ac­
cess and modify parameters in even the most com­
plicated contexts. 

The main limitation of the described approach is related 
to the one-way flow of information from the panel to the 
application. This makes it impossible for the application 
to update the controls when parameters are changed 
by the application itself. Also, unless special steps are 
taken, the initial values of the buttons and sliders reflect 
defaults specified in the configuration file rather than 
the actual values in the parameter file. 
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3.6 Dynamic application of tools to objects 

Ideally, the user should be able to apply a tool to an 
object as a whole, without detailed knowledge of the 
programs involved or the component files. These effects 
are achieved through the object's specification file . It 
lists all files associated with an object, and the tools 
that can be applied to them. For example: 

tree.l 
tree.v 
panel.v 
tree.ras 

• 
image: 

view: 

generate: 
pfg tree.l tree.v 

snap: 
snap tree.ras 

paste: 
ipaste tree.ras 

panel: 
display: 

panel panel.v I ped tree.v 
EDIT panel.v 

EDIT tree.v 

Figure 3: A sample specification file. 

The structure given in the specification file is used to 
create a hierarchy of menus associated with an icon rep­
resenting the object (Figure 4). The end nodes in the hi­
erarchy invoke tools that operate on the object. For ex­
ample, selection of the item image followed by the item 
generate from the menus created using the above spec­
ification file invokes the plant modeling program pfg. 

In order to avoid the repetitive specification of com­
monly used tools, they are described in a system-wide 
file, tools. For example, EDIT may be defined there as 
follows: 

EDIT 
edit: 

wsh -s '60,12 -c vi -w12 

General-purpose utilities, which create a new version, 
save changes to an object, and perform other system 
functions, are also included in the object's menu. The 
program which produces the icon and handles menu se­
lections is called the object manager and is in voked while 
browsing through the lab. 
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tree 

Figure 4: An object icon with menus. 

3.7 Guidance through the lab 

A user may browse through the objects in the lab either 
by following the hierarchy induced by the prototype­
extension relation or by following hypertext links. The 
object browser provides rudimentary faCilities for navi­
gating through the hierarchy, moving down through suc­
cessive extensions or up through previous levels. It ap­
pears on the screen as an icon bearing the name of the 
current object. At any time, the user may request that. 
the browser invoke the object manager to place this ob­
ject on the lab table. 

It is often the case, however, that models separated in 
the prototype-extension hierarchy are related concep­
tually and should be associated for presentation pur­
poses. Such associations are maintained by metatext 
- the UNIX-based hypertext system described in [13] . 
Like the object browser, metatext is represented on the 
screen by an icon with an associated menu. The menu 
items are specified in an index file which is read by 
metatext at the time of its invocation. Each menu item 
is associated with a frame file that specifies the object 
to be invoked and, optionally, the tools to be applied. 
These tools are described in terms of the object's menu 
hierarchy given in its specification file. For example, 
assuming the partial specification file presented in Fig­
ure 3, the tools to generate the image and display the 
control panel will be invoked automatically if options 
image/generate and view/panel/display are included 
as arguments when calling the object manager. Syntac­
tically, the frame will contain the statement: 

:object tree image/generate view/panel/display 

Metatext can also be used to display a textual descrip­
tion of the object. The text is included in the frame and 
is formatted using troD. When a meta.text menu item 
is selected, this text may be displayed along with the 
object. The set of textual descriptions and correspond­
ing objects forms an interactive document which guides 
the user through the lab in a manner independent of its 
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hierarchical organization. One such document consists 
of the public index files and frames that form the lab's 
reference book. In addition, an individual user may de­
velop private metatext files to create his own notebook. 

While these hypertext documents may be viewed as a 
means of relating disconnected objects and providing 
additional information and comments, descriptions that 
pertains directly to an object should be incorporated 
into the object itself. In the current implementation of 
the laboratory, an object may include intelligent cap­
tions that provide an explanation of experiment param­
eters as well as a method for manipulating them. The 
editor for managing these captions, called hvi, can oper­
ate in two modes. The full edit mode allows the user to 
create a caption consisting of text with embedded spe­
cial fields. The hypertext mode enables the user to per­
form functions associated with the special fields while 
protecting the text fields from change. For example, 
some special fields can be edited in order to change pa­
rameter values. Other fields may act as buttons. Thus, 
an intelligent caption is similar to a control panel in that 
both may modify data files. 

4 Conclusions 

In this paper we have introduced the concept and pre­
sen ted an example of the design of a virtual laboratory. 
The objective of the laboratory is to provide an envi­
ronment for conducting simulated experiments, similar 
to a microworld but capable of encompassing a broad 
range of concepts. The laboratory is an open system 
where a user may introduce new tools and create new 
experiments easily. It also provides a means to guide 
the user through the experiments and the underlying 
concepts. This latter function is fulfilled by a hypertext 
system: an interactive document that includes text and 
illustrations, and links them to the experiments. The 
extensibility of the laboratory is based on the UNIX 
philosophy of building upon existing utilities. The pro­
posed object-oriented organization of data within the 
standard UNIX file system and the use of a hypertext 
system that supports UNIX shell commands, create an 
environment that supplements the existing system and 
becomes a general-purpose utility for conducting many 
diverse projects. 

The virtual laboratory described here has been used as a 
software environment for experimenting with simulated 
plant models and fractals. In this application, it offers 
a number of benefits : 

• The organization of data fil es into objects, com­
plete with textual descriptions, alleviates the prob­
lem of finding files related to a particular experi­
ment. This ease of access is particularly important 
in two situations: when the user wants to return 
to experiments performed in the past, and when 
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experiments are to be run one after another for 
demonstration purposes. 

• The virtual laboratory provides a good environ­
ment for cooperative work. A contributor of a new 
model creates the corresponding object and incor­
porates it into the laboratory. Other users can ac­
cess the new object by selecting it from a menu 
associated with the object browser or metatext. In 
this way, the work of many people can be integrated 
into a coherent system. 

• The concept of a lab table makes it possible to ex­
periment freely with an object, and provides a sim­
ple method for saving the results. Combined with 
the inheritance mechanism, several versions of an 
experiment may be created easily and stored effi­
ciently. 

• The ease of changing parameters using virtual con­
trol panels prompts an extensive exploration of the 
models. On several occasions, the full potential of a 
model was not realized until a virtual control panel 
was applied to facilitate parameter modification. 

• The virtual laboratory is an attractive research and 
learning environment. 

The concept of designing the lab as an extension of 
UNIX has made it possible to develop it in a gradual 
way. Several extensions are still possible and some open 
problems remain. 

• Although the version control mechanism facilitates 
the creation of new extensions, there is no labora­
tory support for creating new prototypes at the top 
of the hierarchy. At the present time they must be 
created by moving and copying the appropriate files 
using the UNIX shell. 

• Object specifications should be extended to include 
information about the relationships between the 
components of an object. This information could 
be used to update related files, in a manner similar 
to that provided by the UNIX make facility. 

• The object browser should provide a better visual 
interface for navigating through the object hierar­
chy. In the existing implementation, the icon repre­
senting the browser bears the name of the current 
object and its menu lists the object's extensions, 
but the position of the object within the entire hi­
erarchy is not shown. 

• Currently, there is no visual association between 
the object's icon and the windows it creates. This 
leads to confusion when several objects are on the 
lab table at one time. Possible solutions include us­
ing the object's name as the window title, connect­
ing the related windows with lines as in ConMan 
[6], or allocating a specific portion of the screen to 
each object. 
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• When an object is removed from the table, all the 
associated windows should be closed automatically. 
This involves keeping a record of the processes in­
voked and signalling them when the object is re­
moved. Although this would seem a simple task 
under UNIX, it is not easily achieved on IRIS work­
stations, where a process ID is changed as soon as 
the process opens a window. 

• Metatext provides only basic hypertext functional­
ity. In order to get a feel for improvements which 
may result from the use of a more sophisticated hy­
pertext system, we are investigating the possibility 
of using HyperCard [1] . An attractive configuration 
for research purposes consists of a Macintosh 11 run­
ning HyperCard, connected to an IRIS workstation 
running simulation programs. This configuration 
offers the best of both worlds: an extensive hyper­
text environment and excellent interactive graphics 
capabilities. 
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