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Abstract 

Design activity is often characterized by a search in which 
the designer examines various alternatives at several stages 
during the design process. Current computer-aided design 
(CAD) systems, however, provide very little support for this 
exploratory aspect of design. Two major problems exist: 
rapid generation of design alternatives, and presentation of 
these alternatives to the user in an accessible manner. 

This paper provides the foundations for a novel CAD tech­
nology intended to encourage a synergistic, cooperative rela­
tionship between the computer and the human designer: at 
any stage in the design process, the user can request that the 
system generate automatically design alternatives that satisfy 
certain constraints. These alternatives are structured by the 
system in a spatial framework using properties specified by 
the user as independent dimensions. The user can system­
atically brow&e through the design alternatives via graphical 
gestures such as scrolling and pointing, and select any of these 
designs for further development. 

A prototype CAD system-FLATS-supporting this co­
operative design paradigm has been constructed; it consists 
of three major modules : the modeling &y&tem, the grammar­
.directed con&trained generator, and the brow&ing system. This 
paper describes the algorithms and data representations used 
by these modules, and demonstrates the use of the system to 
design small architectural floor plans . 

A videotape demonstrating the prototype system accom­
panies this paper. 

K eywords: Graphical user interfaces, spatial data man­
agement, direct manipulation, design automation, human 
factors, human-machine interaction, constraint-based design, 
grammar-directed design. 

1 Introduction 

At present, computer aided design (CAD) technology is 
based on two major paradigms: 

• Drafting AHi&tant: Many widely available CAD systems 
are n ot really design assistants as much as drafting aids 
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in that they rely on the user having in mind the goal 
or final product . While the better systems offer various 
orientation and bookkeeping aids-for example, design 
trees, histories and choice points- all decisions are made 
by the user. 

• Con&trained Search: In some systems being developed 
by researchers, the user typically creates a starting de­
sign, specifies a set of constraints on the goal design, 
and then lets the CAD system "go." The system em­
ploys its internal model describing designs to generate 
alternatives (often exhaustively) using the constraints to 
prune fruitless paths and to guide the search. At th e end 
of this process, the user is presented with a set of design 
alternatives satisfying the constraints. Unfortunately, 
the set may be very large (often thousands of designs), 
and may be presented without any obvious structure to 
the output showing relations between the alternatives. 

This paper explores the foundation for a very different 
CAD paradigm-that of cooperative design between the user 
and the computer. The user creates a partial design, lets the 
system generate a lternatives subject to a "language" of de­
signs and given constraints, explores the alternatives by stru c­
turing them in a spatial framework (using graphical gestures 
to move through the designs) , picks some design, modifies it, 
lets the system suggest m ore alternatives, and so on. I believe 
that this paradigm offers great potential for increasing pro­
ductivity by letting designers concentrate on making critical 
and creative choices, and letting the system take care of the 
details of elaborating designs. 

Before presenting the details of this paradigm, I recapit­
ulate briefly the motivation for this work. Humans rarely 
design in a linear fashion from start to finish. A p erson typi­
cally creates a partial object, examines a few elaborations of 
that object, selects a few alternatives, examines their elab­
orations, and so on, until h e or she produces (one or more) 
designs that have certain desired characteristics. (Many of 
these, while satisfying the same rigid constraints, may differ 
only in some unquantifiable attributes.) Thus, exploring al­
ternatives is an integral part of human d esign activity. As 
mentioned earlier, a major weakness of current CAD systems 
is the lack of support for this exploratory nature of the mod­
eling task: these systems do not support a systematic search 
through all possible design alternatives. Thus, the user is 
limited to manually exploring a few choices-a slow and de­
manding task, potentially missing many d esirable options. 
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Research Issues 

This paper focuses on two major research questions: 

• How do we generate automatically design alternatives 
that satisfy the user's requirements, and, 

• How do we present design alternatives to the user so that 
he or she can easily perceive the relationships between 
those designs? 

The paper also examines the major components of an ex­
isting, experimental CAD system supporting the technology 
described above: 1) a modeling sY6tem, which allows the user 
to create and manipulate designs; 2) a constrained generator, 
which allows the user to request that the system generate al­
ternatives subject to certain constraints; and, 3) a browsing 
system, which lets the user explore the alternatives (produced 
by the generator) in a systematic way. 

The rest of this paper is organized as follows. In Section 2, 
I discuss related work of other researchers. In Section 3 , I de­
scribe essential features of the user interface of a CAD system 
that supports the cooperative design paradigm. The proto­
type system is described in Section 4, including the theoreti­
cal underpinnings of the paradigm, the representation scheme 
for designs and the algorithms needed for automating design. 
An example of using the system to design small architectural 
floor plans is also presented in Section 4. Finally, in Section 
5, I conclude with the future direction of this research. 

2 Related Work 

In this section, I discuss some of the relevant work of re­
searchers in the areas of human factors, spatial data manage­
ment, automatic generation of building layouts, and graph 
grammars in solid modeling. Many of the principles ex­
pounded by these researchers have been used in the design of 
the user interface described in Section 3 and the algorithms 
described in Section 4. 

2.1 Graphical User Interfaces 

Schneiderman [Schn82] first introduced direct manipula­
tion as a set of guidelines for the design of user interfaces. In 
this paradigm, the user manipulates a continuous represen­
tation of an object via operations using physical gestures or 
command buttons; the user is provided immediate feedback 
showing the effect of these operations on the object. Schnei­
derman also pointed out that such systems are easily used by 
both novices and experts, and that users are able to achieve 
their goal more rapidly because of the feedback . Thus, the 
users can "understand" the system better. 

The successful application of these principles to the tech­
nique of spatial data management-organizing, accessing and 
manipulating information via its graphical representation­
was demonstrated by researchers at MIT [Done78] and CCA 
[Her080]. A spatial data management system (SDMS) orga­
nizes information in a spatial frameworks and allows users to 
access it in a natural manner by employing basic perceptual 
skills, such as vision, sound and touch. Donelson [Done78] 
argues that such systems are easy to use since people under­
stand spatial relations naturally. 

The prototype SDMS developed at CCA [Her080] can be 
used as an interface to large, shared databases. The infor­
mation is laid out in a graphical data space (GDS) consisting 
of a set of data &Urfaces used for displaying the data. The 
user sees portions of this space at different levels via graphics 
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displays that act as windows into the data surface. For exam­
ple, the world view monitor displays an entire data surface, 
with a highlighted "you are here" marker; the details of the 
highlighted region are shown on another monitor. Various 
navigational aids are provided to let the user move about in 
the GDS. For example, a joystick can be used to move along 
any direction on the data surface (moving perpendicular to 
the surface corresponds to zooming); the user can also rapidly 
move to a different part of the data surface by just touching 
the appropriate position in the world view. 

The success of an SDMS depends on the graphical repre­
sentations employed and on the controls provided to make 
the movement in the system comprehensive and natural to 
the users. The prototype SDMS described above was ex­
tended in the VIEW system by Friedell et al. [Frie82] to 
tailor the graphical presentations of information to the user's 
task, identity and database query. The VIEW system stores 
a "conceptual model" of the data contained in the database . 
This model includes information about how to present the 
information and how to display it graphically. Information is 
represented through icons arranged in two-dimensional infor­
mation apace. or I-apllces, which are generated dynamically. 
The VIEW system also attempts to display the" I-spaces in 
a structured manner by using a description of the database 
query (and its responses) to formulate a layout plan that suits 
the type and amount of data. For example, to display infor­
mation in response to a query against a database of ships, the 
icons might be arranged according to nationality. 

Reiner et Ill. [Rein84] developed the Database Design and 
Evaluation Workbench (DDEW) as a graphics-oriented sys­
tem for database designers . In DDEW, the user interface 
was integrated with the overall design process. To simplify 
the design process, multiple windows and a design tree were 
provided to display levels of design and to keep a record of de­
sign alternatives. Navigational aids (similar to the prototype 
SDMS described above) were provided for visualizing large 
designs and moving through its different levels. 

2.2 Exhaustive Generation of Floor Plans 

Many researchers in architectural CAD have focussed their 
attention on providing schemes whereby users can provide 
the system with constraints on the final building layout; the 
system then attempts to produce an exhaustive enumeration 
of all floor plans meeting the user's criteria (see , for example, 
[Mitc76, Ga1l8l, Flem86, Flem89]). 

Flemming [Flem86, Flem89] describes LOOS as a "gener­
ative expert system" that complements a designers ability to 
create floor plans by "systematically searching for alte"rnative 
solutions with promising trade-offs." The system is able to in­
corporate a wide range of design considerations . LOOS differs 
from earlier approaches to exhaustive floor plan enumeration 
in having a grammar used to describe the design process (see 
Section 2.3), and in drawing a distinction between quantita­
tive or continuous properties of objects (for example , physical 
dimensions) and their qualitative or discrete properties (for 
example, geometric and spatial relations). LOOS does not, 
however, attempt to either structure the enumerated floor 
plans or permit the user to control or explore intermediate 
designs. 

2.3 Grammar-based design systems 

The underlying representation of floor plans used in LOOS 
described in Section 2.2 are Flemming's orthogonal structures. 
These orthogonal structures are essentially graphs that de­
scribe the spatial relations between rooms and associated ge-

Graphics Interface '90 



ometric infonnation. The design process is described in tenns 
of a grammar for manipulating these orthogonal structures; 
the language described by this grammar consists of valid floor 
plans that can be created. 

Friedell [Frie90) presents Landscape Grammar6 as a gen­
erative mechanism powerful enough to describe a language 
of landscapes; the emphasis there is on having the grammar 
guide directly the manipulation of geometry. The rewriting 
rules in that system essentially create scenes by subdividing 
objects into more detailed features. 

3 An Experiment in Design Automation via 
Browsing 

FLATSl is a prototype system for design automation via 
browsing that was constructed to demonstrate the paradigm 
of cooperation between the user and the computer in CAD 
applied to the design of small architectural floor plans. The 
most important contribution of this system is the support it 
provides for the exploratory aSpect of design. The overall 
design scenario that is supported is as follows: 

1. The user starts up the system and begins designing an 
object model using conventional modeling aids. The 
partial design produced is referred to as the na&eent de­
sign. 

2. At some point, the user is not sure of which step to 
take next (or would like to tryout the effects of differ­
ent steps), but has some idea of what constraints the 
final design(s) should satisfy. He or she then requests 
"browsing" assistance from the system. 

3. The user informs the system of the desired criteria in 
the final designs via a goal dialog. 

4. The system generates the set of designs satisfying the 
given constraints. 

5. The system then acquires from the user the attributes 
of designs with which to graphically structure the de­
sign space; thus the designs may be considered points in 
this multi-dimensional browsing space, each dimension 
of which corresponds to a specified attribute. At any 
time, a 2-dimensional projection of the browsing space 
is shown to the user on the graphical data surface; the 
user specifies navigation or layout attributes that de­
tennine the X- and Y- positions of designs on the data 
surface. 

6. The user is presented with the set of design alternatives 
on a graphical data surface. Since the number of designs 
may be large, the data surface may not fit in a single 
window. A world-view map always presents the entire 
data surface in miniaturized form. 

7. The user can move about the designs on the data surface 
via scrolling. The user can "zoom" into portions of the 
data surface and examine particular designs in detail. 
The user can also transfer any of the designs from the 
data surface to the modeling system; this design can 
then be further developed using the various modeling 
operators. 

~ For tho~e interested in this detail, the na.me is derived from Floor 
plan LAyouT Syslem. 
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-8. The user can also specify restrictions on attributes of the 
designs that should constitute the data surface. This 
causes the system to display a new data surface. (Steps 
7 and 8 can then be repeated.) 

3.1 Structuring and Browsing 

Often there will be tens or even a few hundred designs satis­
fying the goal criteria. These designs constitute the browsing 
let; they can be considered points in an n-dimensional brows­
ing space, each dimension of which corresponds to a specified 
attribute. Structuring refers to graphically positioning the 
designs in browsing space. Even in cases where the number 
oC designs in the browsing space is small, structuring can be 
useful to bring out logical relationships between the designs. 
Moreover, the user can explore the spatially structured brows­
ing space using techniques similar to the well established di­
rect manipulation and spatial data management paradigms 
(Section 2.1). 

The attributes of designs used to structure the browsing 
space are specified by the user from a predefined set. For ex­
ample, the user might wish to structure the browsing space in 
a mechanical CAD system using "number of linkages," "max­
imum torque" and "average pressure" as dimensions. Certain 
domains may have deCault structuring dimensions that are 
always useful . For example, "number of rooms" is almost al­
ways a useful dimension in architectural design. The charac­
teristic vector of a design contains the values of its structuring 
attributes. 

To further restrict the set of design alternatives, the user 
can specify a selection vector to select designs through which 
he or she would like to browse. This operation is essen­
tially the same as a selection operation as denned in relational 
database terminology. For example, the user of an architec­
tural CAD system might decide to examine only houses that 
had 5 or fewer rooms; later he or she might decide to browse 
through those that had areas less than 3000 square feet. 

The set of designs that need to be presented to the usel' at 
any time constitutes the data surface. Finally, the attributes 
that determine the X- and Y-positions of designs on the data 
surface will be referred to as the navigation or layout dimen­
sions. For example, the user might request that designs be 
positioned on the data surface using the "number of rooms" 
as the X-dimension, and "area" as the Y-dimension. 

3.2 User's Conceptual View of the System 

The user sees the system as an automated design assis­
tant. It is used to explore alternatives when he or she does 
not have a fixed final model in mind, but has some idea of the 
properties of the ultimate design. If the user had a firm idea 
of what the final design would be and knew the sequence of 
operations that would lead to that goal, he or she would use 
the system's conventional components to create the design. 
Often, however, the user can only provide a "backbone" or 
starting design (the nascent design) and some indication of 
the direction he or she is headed in (the goal criteria) . In 
that case, the user expects the system to help him or her ex­
plore elaborations of the nascent design that are in the "right 
direction." 

The structuring mechanism helps the user explore design 
alternatives in a systematic way-by varying those properties 
of the designs that are of primary interest . By controlling the 
layout of the data surface using navigation dimensions, the 
user can explore designs that differ only along that dimen­
sion. Spatial proximity of designs having similar values for 
the dimension being visualized provides the user wit.h a sense 
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of continuity in exploring the designs. Consider, for example, 
the process of designing a house. IT "hou,se area" is one of the 
layout dimensions, the user would only have to look in the 
proximity of a given house on the data surface to find a house 
with an area slightly larger than its area. 

I believe that this conceptual model of the system sup­
ports well "exploratory design" performed by human design­
ers (Section 1). In that scenario, the goal is roughly known 
(along with certain constraints), but other attributes need 
to be "tuned" to provide a design satisfying "unquantifiable 
requirements." 

4 System Architecture 

Figure 1 presents an overview of the architecture of FLATS. 
The user interacts with the system via three modules: the 
mode/ing ",y&tem, the goal dialog module, and the brow&ing 
",y&tem. The goal dialog module is essentially an interface to 
the con6trained generator. Between the modeling system and 
the generator is an additional component-the recognizer. 

Modeling nascent 

/ 
System dolli~ 

recogrUOI" 

ConItrlints gaol Constrained 
USER dI.log Generator 

~ Browsing desi 
System altemawH 

Figure 1 : System Architecture 

The major functions of these modules are: 

• The mode/ing &y&t em allows the user to create and ma­
nipulate a na&cent design as is possible with a conven­
tional CAD system. 

• The recognizer converts a design from the representa­
tion used by the modeling system to a valid design or 
"word" in the language of designs described by the ob­
ject grammar. This word also forms the starting point 
from which the generator produces design alternatives. 

• Via the goal dialog, the user can specify any constraints 
that he or she wishes the generated design alternatives 
to satisfy. 

• The generator develops the nascent design to produce 
design alternatives that are consistent with both the 
user-specified constraints and the rewriting rules speci­
fied in the language of designs (object grammar). 

• The brow&ing 6y&tem structures the design alternatives 
produced by the generator in a spatial framework speci­
fied by the user, who then can brow&e through these de­
signs via graphical gestures such as scrolling and point­
ing. 
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4.1 Modeling System 

The main function of the modeling system is to allow the 
user to create a nascent design. This component of the sys­
tem allows the user to create and manipulate floor plans, es­
sentially at the level of individual rooms, and objects within 
rooms. The major operations currently supported include: 

• create rooms as arbitrary shaped polygons 

• create corridors etc. as a set of connected lines 

• delete any object 

• rotate any object 

• move any object 

• modify an object's properties (such as orientation and 
type) 

• subdivide a room 

• save to and read from files 

• constrain drawing to grid 

• generate alternatives (i .e. pass nascent design to the 
Generator) 

Figure 2 shows a snapshot2 of a floor plan being created, 
and the currently available menu options. Along the left edge 
are the drawing menu items, represented by icons. Clicking 
the mouse on the command buttons towards the top, for ex­
ample, "File" , "Edit", etc., creates popup menus that allow 
the user operations such as "select a room," "delete a room," 
"save to file" and "read from file ." Many of these would be 
familiar to users of other CAD systems; the remainder are 
particular to the domain of floor plans and to the grammar I 
use to describe the process of developing floor plans . 

Design Representation 

The description of a design in the modeling system con­
sists of parts that have a direct graphical interpretation and 
can be manipulated by the user. For example, a floor plan 
is described as a list of polygons corresponding to the room 
boundaries, each polygon being described in terms of its ver­
tices. The representation scheme used by the modeling system 
may be different from the linguistic (language-theoretic) de­
scription required by the generator and discussed in the next 
section. Thus, we need to convert the representation of a de­
sign from the scheme used in the m odeling system to that 
used in the generator. 

4.2 Constrained Generator 

The generator essentially takes a starting "word" in the 
language of designs and applies rewriting rules from the gram­
mar (describing this language) to produce alternative designs 
satisfying the constraints specified by the user. 

Figure 3 depicts the architecture of the generation sub­
system. As shown in the figure, the generator contains two 
modules-the constraint tester and the recognizer-to ensure 
that a valid "word" is used as a starti'ng point, and that 
only valid words are produced . The con&traint tester has a 

2For clarity, I use screen dumps in the figures while de$cri bing the 
modules. Thou«h thele are in black and white , the a.ctua.l sys tem uses 
color. 
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Figure 2: Modeling System-snapshot 

database of constraints, which are of two types: those derived 
from domain characteristics, such as "the kitchen and dining 
must always touch," and those specified by the user, such as 
"the house should have 2 bedrooms"; these are used by the 
generator to prune fruitless paths when exploring different 
alternatives. 

The recognizer consists of a set of rules that operate on the 
nascent design represented by the modeling system and trans­
form this design into a form (valid "word") that the generator 
can develop further. 

The generator has rules to deal with hierarchic, topological 
. and geometric considerations . For example, one of the rules 
(named Tri-room, in Figure 4) adds a triangular room to the 
house. The rule applier module in Figure 3 incorporates these 
rules and the details of how to apply them. 

The core of the generation algorithm is constraint-based 
search, implemented by the Generation Control/er module. 
It uses standard search techniques-all the rewriting rules ap­
plicable at each step to the set of current alternatives (which 
is initialized to the nascent design) are applied until no more 
are applicable. Constraints are used to prune branches of 
the search graph; paths containing duplicate designs are also 
deleted. 

Finally, the 6tructuringlbrow6ing (SIB) interface module 
essentially passes the generated alternatives to the browsing 
system. 

The Goal Dialog module, also shown in Figure 3, allows the 
user to specify constraints to the system. These can consist of 
restrictions on derived attributes of the designs (for example, 
"number of rooms", "area", etc. ). The user can also focus the 
generation process by specifying the set of rules to be used 
by the generator (for example, "use only rewriting rules that 
add rectangular rooms"). Thus, the object grammar is also 
shown as an input to the Goal Dialog in the figure . 
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Figure 3 : Constrained Generator Architecture 

D esign Representation 

To reduce the complexity of the design problem, I chose to 
focus on 2-dimensional objects . The representation of designs 
was developed based on the following considerations: 

• topology and geometry: we need to be manipulate both 
topological features-for example, the kitchen and din­
ing room in a house touch-and geometrical features­
for example, the shape of the bedroom is a rectangle; 

• hierarchy: we need to be able to develop designs hi­
erarchically and visualize partially developed designs. 
This requirement is motivated by the cooperative CAD 
paradigm-the user might wish to develop a given de­
sign only partially and then examine the alternatives 
produced; 

• arbitrary 6hape6: we need to be able to represent arbi­
trary shaped features in designs . This is a useful require­
ment for most graphical domains, even for the domain 
of floor plans (see, for example, [Krie83]) . 

Another important consideration was the two different styles 
of design that are widely used- outside-in and inside-out. 
For example, an architect designing a house whose outer 
boundary is fixed (because of constraints placed upon it by 
its location, other neighboring houses, etc.) might start by 
roughly dividing the house into the day-area, night-area, food­
preparation area, etc. This is the outside-in approach. On 
the other hand, an inside-out approach might b e used, for 
example, when we are designing a house on a large plot of 
land (thus, we have few restrictions on the outer shape), but 
are concerned with issues such as sharing the plumbing be­
tween rooms; in this case , we might start with one room , add 
another touching it , and so on. 
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Figure 4: Generator and Goal Dialog-snapshot 

Flemming's LOOS system [Flem89] is an example of the 
inside-out style-the core of his system is the addition of one 
rectangle at a time to an existing group of rectangles sub­
ject to certain constraints. Friedell's Landscape Grammars 
[Frie90] demonstrate the outside-in style of design- designs 
are developed by subdivision. 

I chose to represent designs as area, line and point features, 
similar to those used by [Frie90] ; these features specify the 
shape, location, orientation and other properties of objects in 
the designs. A rea features (AFs) correspond to polygonal fea­
tures, such as rooms; line f eatures (LFs) correspond to linear 
phenomena, such as corridors; point f eatures (PFs) describe 
point phenomena, such as furniture in a room (where the ex­
act shape is unimportant). An example of a floor plan is 
shown in Figure 5. The rooms are described by their polygo­
nal boundaries. The thick line dividing the figure represents a 
corridor. The small circle in the bathroom represents a sink; 
the small circle in the living room represents a table. 

The design process is d escribed by subdivision grammars 
that consist of rules to rewrite area features-these rules in­
corporate both inside-out and outside-in styles of developing 
designs, and basically define the "language" of valid designs. 
An example of a rule that divides a house into the night- and 
day-areas is shown graphically in Figure 6. The details of the 
types and application of rules are described in [Koch90]. 

The Recognizer 

As mentioned in Section 4.1, the representation scheme 
used by the modeling system may be different from the lin­
guistic description required by the generator. Even though 
the linguistic description of a design and its description in 
the modeling system both correspond to the same design, the 
attributes and relations brought out and emphasized by each 
are often different . For example, in the modeling system, 
the kitchen in a house may be described by the coordinates 

corridor 

sink·~~~'---'?"""----7" 

bathroom 

bedroom 

Figure 5: A Simple Floor Plan 

of its vertices (X 0, Yo, Xl, Y1 , ... ) . In the linguist,ic descrip­
tion, its size and type become important. Moreover, it has 
a relation-touching-with the dining room that is not de­
scribed directly by the modeling system (and the user cannot 
manipulate it) . Finally, concepts such as the "night-area" 
which have no graphical representation may not be defined in 
the modeling system; similarly absolute X- and Y-Iocations 
that are n eeded by the modeling system are not stored in the 
linguistic description. 

Both of the representations discussed above are abstrac­
tions of the same object but for different purposes; a lso, often 
they will not be in a one-to-one correspondence. For exam­
ple, two floor plans differing only in the floor color might have 
different descriptions in the modeling system, but the same 
linguistic description. Note that in a syntax-directed model­
ing system, the representation used would correspond more 
closely to the language-theoretic linguistic-based one. How­
ever, syntax-based modeling is currently an open research is-
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Figure 6: Rule for Subdividing a House into Night and Day 
Areas 

sue by itself. In my prototype system (and in CAD systems 
that are not fully syntax-directed), we need to convert be­
tween the two representations, since the generator can only 
operate on valid linguistic descriptions. The recognizer in my 
system performs precisely the task of transforming a design 
from its description in the modeling system to a valid linguis­
tic description ("recognizing its validity" , or parsing). 

In Figure 4 the user has specified that the system de­
velop the nascent design of Figure 2 by adding square rooms 
(the highlighted rule named Sqrsoom in the window ti­
tled "Rewriting Rule Visualization Interface") and developing 
rooms into a kitchen, living, dining and bedroom (the rules 
named mk_kit, mk_liv, mk_din, mk_bed), subject to the con­
straints (as shown in the window titled "Constraints on De­
rived Attributes") that the total number of rooms is 5 or less, 
and that there is no more than one kitchen, living and dining 
each, and 1-2 bedrooms. At this point, the system generates 
various alternatives, which are then passed to the browser. 

4.3 Browsing System 

Figure 7 depicts the architecture of the Browsing system, 
including control and data flow. The ovals correspond to the 
domain-specific components of the system. The Top Level 
controller essentially initializes all modules and then stays in 
the following loop (until requested to exit the module): 

loop 

get layout dimensions and selection vector from 
the user via the Dialog Manager; 

produce the current data surface via the Data Sur­
face Creator; 

display the data surface to the user via the Data 
Surface Display; 

until requested to quit 

The Dialog Manager consists of two modules: 

• Selection Setup, which allows the user to specify value 
restrictions on some attributes of the designs to be vi­
sualized; and, 

• Navigation Setup, which allows the user to specify X­
and Y-dimensions to be used in the spatial layout of the 
data surface window. 
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Information about the selection vector and the navigation di­
mensions is then passed to the Data Surface Creator and the 
Data Surface Display modules . 

Using the set of alternatives (stored as linguistic descrip­
tions) produced by the generator the current data surface is 
produced by the Data Surface Creator. This operation is 
essentially the same as a selection operation on a relational 
database. The selected designs are then passed to ·the Data 
Surface Display module to be shown to the user . 

The Data Surface Display module shows the current data 
surface to the user, who can also move about and explore var­
ious designs in detail, via the following modules: 1 )the Struc­
turer (Layout Manager), which uses the currently selected 
X- and Y-attributes to produce information about where to 
place each design on the two-dimensional data surface win­
dow, where to draw axes, etc.; 2) the Visualizer, which pro­
duces a graphical description of a given design at a given scale 
from the linguistic description of the design; 3) Traverse and 
Zoom, which allows the user to move about the data surface 
and to visualize designs in greater detail; and, 4) the Dis­
play Control, which interfaces with the windowing system to 
create windows, send drawing commands, and process win­
dowing events (such as mouse clicking, and scrolling). Since 
the data surface may not fit in a single window, a world-view 
map presents the entire data surface in miniaturized form . 
"You are here" highlights in the world-view map indicate the 
regions of the data surface that are presented at normal scale 
in scrollable windows . 

Figure 8 shows a snapshot of the user browsing through the 
set of design alternatives that was produced by the generator. 
As shown on the right side of the figure (the window titled 
"Selection Vector"), the user has decided to browse through 
all designs (that is, no restrictions); also, the X-axis for struc­
turing the data surface has been chosen as the "number of 
bedrooms". As can be seen, the data surface is larger than 
the window size; hence, scrollbars are provided, allowing the 
user to look at the different designs via scrolling. The ver­
tical dashed line separates the floor plans with 1 bedroom 
(left) from those with 2 (right). Finally, the user has chosen 
to zoom into one of the floor plans (outlined by the dashed 
rectangle) as shown in the window towards the bottom right . 

At this point, the user can select any of these alternatives 
and transfer it to the modeling system (by clicking on the 
"Txfer ... " button near the top of the zoom windows); that al­
ternative then becomes the new nascent design, and the steps 
described so far in this example can be repeated to develop 
the design further . 

4.4 Implementation 

FLATS currently runs on both a Sun SPARCstation and 
a DECstation 3100, utilizing the X window system (Version 
11) . The software is written in C, and is built on top of the 
X library, X toolkit and the MIT / Athena widget set. 

Figures 9 and 10 show FLATS being used. In Figure 9, the 
nascent design-a floor plan with two rooms-is shown on the 
manual modeling system (the window towards the top left of 
the figure). The window titled "Rewriting Rule Visualization 
Interface" shows that the user has restricted the generator t o 
use the highlighted rules: add a square room (Sqrsoom) , and 
convert a room to a bathroom (mlc_ba th), a bedroom (mic_b ed), 
a living (mlc_liv), a dining (mk_din), or a kitchen (mic_kit). The 
window titled "Constraints on Derived Attributes" lists the 
constraints that the user specified: 1-5 rooms, at most 2 bed­
rooms, and at most 1 kitchen, dining, living, and bathroom 
each. The window in the bottom right of the figure, titled 
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Figure 7 : Browsing System Architecture 

"Selection Vector", shows that that user wishes to view the 
design alternatives laid out along the X-axis using the num­
ber of bedrooms, and along the Y-axis using the number of 
dining rooms . The window titled "World View" towards the 
right shows the entire data surface in mini at urized form , along 
with highlights showing the current data surface. Finally, the 
window in the top right, titled "Current Data Surface" shows 
the design alternatives (numbering 18) that satisfy the user 
specified criteria. The scrollbars can be used to examine dif­
ferent portions of the data surface. Also, the floor plans on 
the left of the vertical dashed line have 1 bedroom; those on 
the right have 2. 

Figure 10 shows another example (the figure has the same 
layout of the various windows as the previous example) . 
In this example, the user starts by dividing the house into 
"night" and "day" areas (as shown in the top left of the fig­
ure). The rest of the figure can be interpreted in a manner 
similar to the previous example. 

5 Conclusions and Future Direction 

I believe that the paradigm for "Design Automation via 
Browsing" , based on the techniques described in this paper, 
offers a qualitatively significant improvement over currently 
available CAD technology. Preliminary experimentation with 
the pro totype system in the domain of small architectural 
floor plans has shown that the system allows the user to sys­
tematically control the generation of design alternatives and 
explore through them, which also leads to a better under­
standing of the relations between the alternatives. 

At present, my focus is on developing the grammar further 

and exploring the limits of this system. Specifically, I am 
looking at the following issues: 

• how do we make sure that the u ser does not get "lost" 
while browsing through a data surface containing hun­
dreds of designs? 

• can we speed up the generation process by using the 
selection vector specified by the user (while browsing) as 
additional constraints that can further prune the search 
graph? 

• what issues involved when applying this t echnology t o 
another application domain? 

This research addresses one of the major limitations of cur­
rent CAD technology- the lack of user-comput.er cooperation 
in the design process-and provides a comm on con ceptual 
framework in which CAD systems similar to the prototype 
system described here can be constructed. With such sys­
tems, I believe that the productivity of designers can b e sig­
nificantly improved . 
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