
9

Real-Time Hidden-Line Elimination for a Rotating Polyhedral Scene
Using the Aspect Representation*

Harry Plantinga
Department of Computer Science

University of Pittsburgh

Charles R. Dyer
W. Brent Seales

Department of Computer Science
University of Wisconsin

Abstract

In this paper we address the problem of the real-time display
of line drawings of a polyhedral scene with hidden lines re­
moved, as the scene rotates or the viewpoint moves. We use
frame-to-frame coherency to formulate an algorithm for effi­
ciently computing and displaying the rotation along a path of
viewpoints. The algorithm precomputes the viewpoints at
which the appearance changes and the changes in appearance
that occur, using the aspect representation. It then displays
the views in real time by updating the current view to get a
new view. The on-line display phase is about as fast as dis­
playing a rotating wire-frame model of the scene. Thus high­
speed animation with hidden line removal can be achieved
for scenes of moderate size and visual complexity on general­
purpose workstations.

1. Introduction

The three-dimensional structure of an object is easier to per­
ceive when the object is rotating or when the viewer moves to
see the object from a range of viewpoints. Thus, CAD sys­
tems are usually able to display an object as it rotates.
Displaying a scene from a series of viewpoints (or "animating
rotation") is also important to graphical simulations such as
flight simulators. In problems such as these, real-time dis­
play and hidden-line or hidden-surface removal for complex
scenes are desirable but sometimes incompatible goals.

In this paper, we discuss the problem of displaying from a
moving viewpoint a series of line-drawing images of a poly­
hedral object or scene with hidden lines removed. We will
refer to this as the problem of animating rotation. We present
an algorithm for animating the rotation of a polyhedral scene
that displays frames at a rate roughly equivalent to the rate at
which the same hardware could display line-drawings of the
scene without hidden-line removal. We consider here only

"'The support of the National Science Foundation under Grant
No. IRI-8802436 is gratefully acknowledged.

the case of a rotation about one axis of the coordinate system
under orthographic projection.

The naive approach to animating rotation is to treat frames in­
dependently. For each frame, hidden lines are removed and
the frame is displayed. The real-time goal is to do this at
video rates, such as 30 frames per second. However, since
the viewpoints are closely spaced, there will be little differ­
ence between two successive frames and repeated hidden-line
removal may be superfluous. Thisframe-to-frame coherence
makes it possible to devise a more efficient algorithm.

The algorithm presented here takes advantage of frame-to­
frame coherence by computing the initial appearance of the
scene in the first frame and the viewpoints at which the scene
changes substantively, that is, at which the topological struc­
ture of the image changes. The viewpoints at which the ap­
pearance changes substantively are computed through the
construction of the aspect representation for the scene, a rep­
resentation that makes explicit exactly which vertices, edges,
and faces are visible from all viewpoints. The algorithm has
two phases: a preprocessing phase, in which the initial ap­
pearance of the polyhedron and the events are computed and
the visible edge graph is constructed; and an on-line phase, in
which a sequence of frames is displayed in real time.

Section 2 discusses frame-to-frame coherence and the sorts of
events that change the edge graph of the image. Section 3
shows how to compute and store these events, and Section 4
describes how to use this information to animate rotation.
Section 5 describes the implementation and results, and
Section 6 discusses related work.

2. Coherence and Events

We will restrict the discussion to the rotation of an object or
scene by e about the world coordinate system y-axis (see
Figure I), viewed under orthographic projection. Other rota­
tions can be handled by a coordinate transformation. We will
assume that no object edge is parallel to the plane of rotation.

Graphics Interface '90

(In practice, such edges can be handled by changing the axis
of rotation infmitesimally.) We will say that a vertex and an
edge appear to intersect from a given viewpoint when their
projections are visible and intersect in an image from that
viewpoint. We will refer to the apparent intersection point of
two edges in an image as aT-junction.

y

9

.'
.

Figure 1. The viewing model.

x

Frame-to-frame coherence means that images from nearby
viewpoints are "similar." In order to formalize this notion of
similarity, we defme the Edge Structure Graph (ESG) of an
image from a given viewpoint. The ESG from a viewpoint is
the graph with edges and vertices corresponding to edge seg­
ments and intersection points of edge segments, respectively,
in an image from that viewpoint. In addition, for each edge
in the ESG, the coordinates in R3 of the endpoints of the cor­
responding object edge are stored. If the image edge ends in
aT-junction, a pointer to the occluding edge is stored.

As the viewpoint changes between two values or. more gen­
erally, traces out a path in viewpoint space, the appearance of
the object changes. These changes may consist of a linear
change in the location of edges and vertices or a structural
(topological) change, that is, a change in the ESG. We are in­
terested in the viewpoints that have the property that an arbi­
trarily small change in viewpoint along the path will result in
a change in the ESG. These viewpoints we call events after
the visual events of Koenderink and van Doom [1979].

The event viewpoints are the viewpoints from which either an
object vertex and a non-adjacent edge appear to intersect
(EV-events) or three object edges appear to intersect at an im­
age point (EEE-events). To see that this is true, suppose that
a given viewpoint is an event and that no non-adjacent ver­
tex-edge pair appears to intersect. The change in the ESG
must occur at an image vertex. Image vertices are a result of
object vertices or T-junctions, and if the T-junction is the ap­
parent intersection of only two object edges, the structure
doesn't change with a sufficiently small change in viewpoint.
Since the image structure does change with an arbitrarily
small viewpoint change, at least three object edges must ap­
pear to intersect at a point somewhere in the image.
Now suppose that an object vertex and non-adjacent edge ap­
pear to intersect from a given viewpoint. Since we are as­
suming that none of the object edges is parallel to the plane
of rotation, rotating slightly in some direction will separate
the edge and the vertex, resulting in one of the following
cases. If the vertex is in front of the edge from the given

10

viewpoint, one of the events shown in Figure 2 occurs. If the
vertex is behind the edge from the given viewpoint, one of
the events shown in Figure 3 occurs. Suppose that three ob­
ject edges appear to intersect. Let the first and second be ar­
bitrary. Depending on the location and orientation of the
third, one of the events shown in Figure 4 occurs . If more
edges or vertices meet at a viewpoint. the event can be treated
as two more events from infmitesimally different viewpoints.

(1)

(4)

(5)

Figure 2. EV events with the vertex In front of the edge.
In each row, the center figure shows the Image from the
event viewpoint and the left and right figures show the
appearance on either side.

(1) ~:::::::::::: : ::::::::::::: ::::::::: :::::::: ~::::~:::: ~m~:::~~::::!:~:~:::::il:::::::::::~::::::::~::
r ."

(2)

(3)

(4)

(5)

Figure 3. EV events with the vertex behind the edge.

3. Computing Events

In order to animate rotation, the viewpoints at which these
changes occur must be computed, and the change in the ESG
that occurs must be represented. To that end, note that all of
the events shown above arise from the apparent intersection
of three object edges. In order to find events, it is therefore
sufficient to take every set of three edges and fmd the view­
points on the path from which they appear to intersect. We
will call these viewpoints potential events; they are events if
they are visible in the image. It remains to determine whether
the apparent intersection point is visible in the image. This

Graphics Interface '90

could be computed for each potential event individually.
However, it is usually true that most of the potential events
are not visible. We now describe a more efficient approach.

'''""M
(2)

''' ·~Me.f
Figure 4. EEE events.

The approach we take is to define aspect space to be image
space x viewpoint space. In the present case, in which the ro­
tation is about a single axis, we can consider viewpoint space
to be SI . Since image space is a plane, aspect space is R2 x
SI . We can represent this as a subspace of R 3, specifically
R2 x (-n,n). A point in aspect space then corresponds to a
point in the image plane from a particular viewpoint. In addi­
tion, a point (xo,Yo,ZO) in object space is represented by a I-D
locus in aspect space since it is visible from all viewpoints.
This locus can be computed from the equations for the loca­
tion of the point in image space after a rotation by 8 about the
y-axis. Denoting coordinates in the image plane (u,v), the re­
sult is

u = Xo cos 8 - zo sin 8
v =Yo

(1)
(2)

Thus, a point in object space is represented in aspect space by
the I-D locus (u(8),v,8), -n < 8:5: n .

An edge of the object connecting vertices PI = (xI,YI,zl) and
PI + al = (XI + aI, YI + bl , zl + Cl) can be represented para­
metrically as p(s) = PI + sal' 0 :5: s :5: 1. It appears in the im­
age at the points

u=(XI+als)cos8-(ZI+CI S)sin8 (3)
v=YI+bls (4)

Thus, an edge in object space is represented in aspect space
by the 2-D locus (u(s,8),v(s),8).

We are interested in computing the appearance of an object
face from all viewpoints. If the face is not occluded from any
viewpoint, it can be modelled as volume of aspect space. We
call that volume the aspect representation or asp for the face
[Plantinga and Dyer, 1986, 1990; Planting a, 1988]. The asp
for a polygon is a volume bounded by surfaces of the fonn of
Eqs. (3) and (4) and edges of the form of Eqs. (1) and (2).
Figure 5 shows a part of the asp for a triangle in the xy.plane.
If the face is occluded, not all of the face is visible from all
viewpoints. Then to represent the appearance of the face

11

from all viewpoints part of the asp for the face must be re­
moved. We would like to determine the appropriate volumes
to subtract for each occluding face.

v

u

9

Figure s. The asp for a triangle.

We make use of the following property of occlusion. We will
assume that the faces of the scene are oriented, with the front
of the face visible (on the outside of the object) and the rear
of the face invisible. We will say that a faC'..e occludes another
face when there is a line of sight that passes through the front
of the occluding face and hits the front of the occluded face.
Let f be an oriented face of a scene. Let P be the plane con­
taining f, and let the halfspace with respect to P on the front
side of f be r+ and the other halfspace r-. The faces that
f occludes from some viewpoint are precisely the faces (or
parts of faces) in r-, and no face or part of a face in r- oc­
cludes f from any viewpoint.

The algorithm for computing the events rests on the follow­
ing observation: the appearance of a face f as occluded by
the faces in front of the plane containing f is characterized by
the subtraction of the asps for the occluding faces from the
asp for f. This is true since if a point in aspect space is a part
of the asp for f and an occluding face, the occluding face oc­
cludes f at that image point and viewpoint since it is in ,... .

To construct the asp for a face f of a scene as occluded by the
other faces, the asp for each face (by itself) is first con­
structed. The form of the asp for a face is displayed graphi­
cally in Figure 5. It consists of a surface for each edge of the
face, represented with constants determining the surface and
pointers to the bounding curves. The curves are represented
with constants determining the curve and pointers to the
bounding vertices. In addition, the surfaces intersect in a line
at the viewpoint from which the face appears edge-on. Since
a face by itself is not occluded from any viewpoints, there are
no other bounding edges or vertices.

The next step in constructing the asp for f is to subtract the
asps for the faces in front of f from the asp for f. (If a face in­
tersects the plane containing r, the asp for the part of the face
in r+ is subtracted.) The remaining volume of the asp for r .
consists of image points and viewpoints at which the face r is
not occluded, i.e. appears in the image.

Note that the faces of the asp for a polygon are not planar
(see Figure 5). They are ruled quadric surfaces [Gigus et al.,
1988]. Asps can be represented as polyhedra except that the

Graphics Interface '90

constants for the curved surfaces must be represented. In
order to fmd the intersection of volumes bounded by such
surfaces, we must also know how to fmd the intersection of
the surfaces. Below we solve for the intersections of asp sur­
faces. Then fmding the intersections of asps is similar to
fmding the intersections of polyhedra, except that intersec­
tions of ruled surfaces must be found. These intersections are
found by substituting the stored constants into the equations
below, yielding new constants.

A volume of aspect space corresponds to a polygon in the im­
age, and it is bounded by surfaces corresponding to edges in
the image. The surfaces are of the form given by Eqs. (3) and
(4) above. The intersection of two of these surfaces corre­
sponds to the apparent intersection of two edges in the image,
that is, a T -junction. If the two edges are PI + SI a I and P2 +
s2 a2, solving for S2 as a function of e and for SI as a function
of s2 yields

b2 (x2-X I) - a2 (Y2-YI) - (bz (z2-Z I) - c2 (Y2-YI» tan e
sl= (b2 al - a2 bl) - (b2 Cl - c2 bl) tan e (5)

Substituting this expression into Eqs. (3) and (4) yields the
image point at which the edges appear to intersect as a func­
tion of e. Thus, (u(e),v(e),e) is the curve in aspect space cor­
responding to the intersection of two asp surfaces, and it is
the general form for I-D boundaries of the asp.

EEE visual events result from the apparent intersection of
three object edges. Three edges can appear to intersect in a
single point from two viewpoints and their polar opposites
along the path. The viewpoints can be found by noting that if
the line of sight passes through the point PI + slal and the
other two edges, it must be the intersection of the planes de­
fmed by that point and the other two edges (see Figure 6).

Figure 6. The viewpoints from which three object edges
appear to intersect In a single image point.

Thus, the direction of the line of sight from which these edges
appear to intersect at the given point is

This is a quadratic equation in s. Since lines of sight in this
problem are parallel to the xz-plane, the viewing direction is
constrained to lie in the xz-plane. Thus, we can set the y­
component of Eq. (6) to 0 and solve for S to get the two view­
points (and their polar opposites) from which three lines ap-

12

pear to intersect in a single point. Substituting S into Eqs. 1-3
yields the asp vertices resulting from the intersection of three
general asp surfaces.

EV visual events result from the apparent intersection of an
object edge and a non-adjacent object vertex. Since the plane
containing the vertex and the edge intersects the plane of rota­
tion in a line, there is a single viewpoint (and its polar oppo­
site) from which the vertex and edge appear to intersect.
Since they intersect in a single image point, the event is rep­
resented by a point irt aspect space. .This kind of event is
generated by the intersection in aspect space of the surface
corresponding to the edge and the curve corresponding to the
point, yielding a point in aspect space. Solving Eqs. (1)-(4)
for S and e we see that the point is given by

(7)

(8)

together with Eq. (1). This event is a special case of EEE
events in which two of the edges intersect.

Since there is a constant number of asp vertices for every set
of 3 object edges, the number of vertices is bounded by 0(n3)

where n is the number of edges in the polyhedral scene.
These are the vertices of a 3-manifold in 3-space, so the num­
ber of edges, faces, and cells is also bounded by 0(n3) by
Euler's formula. Let q be the size of the asp for a face r and
note that the asp for a face of size r by itself is O(r). The
time to subtract the asp for a face from the asp for r is O(qr).
Thus, the time to construct the asp for the face is O(q (I.r» =
O(qn). The time for the construction of the asp for the whole
scene is O(I.qn) = 0(n4). These are worst case times; we
will argue that for many polyhedra the times are much better.
For example, the convex case requires less time: there are no
faces in front of any other face, so there is no subtraction of
cells to be done. If the polyhedron is not known in advance
to be convex, the naive algorithm for fmding all of the faces
in front of each face takes time 8(n2); thus, the asp construc­
tion algorithm takes time 8(n2).

4. Animating Rotation

The procedure for animating rotation involves computing and
storing all events as well as the changes in the ESG that occur
at each event. For example, suppose that the object in Figure
7 is to be rotated. To display the flISt frame the ESG must be
computed from the initial viewpoint using a standard hidden­
line removal algorithm. The algorithm must be modified
slightly to report occluding edges at T-junctions. Subsequent
images are then displayed by determining whether any events
are crossed by the change in viewpoint, and if so, updating
the ESG.

Graphics Interface '90

Figure 7. The object to be rotated.

In order to perfonn these operations, two data structures are
maintained: the Event List and the ESG. The ESG consists
of a graph of object edges, vertices, and T-junctions as de­
scribed above. The Event List is a list of events sorted by
viewpoint along the viewpoint path. With each event is
stored a list of pointers to edges that appear in the ESG and a
list of pointers to edges that disappear. Figure 8 shows the
ESG for the object (with T-junctions circled) together with a
representation of the sorted list of event viewpoints. Pointers
from an event to the edges that appear in the ESG are repre­
sented pictorially. Figure 9 shows the ESG after the view­
point has passed the event and the two edges have been added
to the ESG.

c:---_~
~====::=:t----'"

Figure 8. In the preprocessing phase, the initial ESG of
an object is computed and the visual events along the path
of viewpoints are computed and stored together with
pointers to edges that appear and disappear in the ESG.
The circled vertices are T -junctions.

Figure 9. When the viewpoint passes events, the image is
updated and displayed from the new viewpoint. In this
case, two new edges have been added to the ESG.

To construct the event list, we first construct the asp for the
polyhedral scene. The asp vertices correspond to events, so
for each vertex in the asp we add an event for the viewpoint
of that vertex and add appropriate lists of edges to be re­
moved and added from the ESG. When all of the events are
found, they are sorted by viewpoint along the path and put
into a list.

The on-line phase of animating rotation involves keeping
track of the current ESG as the viewpoint changes. Each time
the viewpoint crosses an event, the ESG is updated by delet­
ing and adding the specified edges. Each update requires lin­
ear time in the number of edges added and removed, which is

13

usually less than a small constant. Displaying a frame is then
about as fast as displaying a wire-frame object; the only dif­
ference is that the image location of T -junctions must be
computed by finding the intersection point of the two
(rotated) lines . However, there are usually fewer visible lines
to display for simple objects, since as many as about half of
the lines may be hidden and are not drawn (though for very
complex objects there may be more line segments to display
than edges in the object). Thus, if the number of events is no
more than the order of the number of frames to be displayed
(as is the case for scenes of moderate complexity and moder­
ate rotation rates), the display time is roughly equal to the
time required to display a series of wire-frame views of the
scene. Furthermore, the algorithm can take full advantage of
2-D and 3-D vector display hardware.

The preprocessing time required is essentially the time to
construct the asp for the scene and to sort the viewpoints at
which events occur. Sorting the events takes less time than
constructing the asp. Constructing the asp takes time 0(n2)
to 0(n4), depending on the number of visual events in the
scene, where n is the number of faces in the scene. A large
class of scenes (probably most models of real-world scenes)
have 0(n2) visual events, and the asp in this case can be con­
structed in 0(n2) to 0(n3) time. In the results section below,
we show that for a number of scenes of moderate sire and vi­
sual complexity, the number of events is less than 7 times the
number of edges.

This algorithm requires storage for every visual event along
the path of viewpoints. Thus, the amount of storage required
for events will be between O(n) and 0(n3). The actual
amount required varies according to the visual complexity of
the scene. For convex objects, the amount of storage re­
quired is linear in the number of faces of the object. For the
worst case of visual complexity, the storage requirements
may become impractical when the number of faces is less
than 1000; as few as 600 faces may result in about 1,000,000
visual events for scenes of the highest-possible visual com­
plexity [Plantinga, 1988]. In practice, common objects have
a visual complexity much closer to the convex case than to
the worst case, unless the scene modelled is visually very
complex, as for example a picket fence in front of a trellis.
The results of the implementation below suggest that the
storage requirements are reasonable for scenes of moderate
size and visual complexity. In fact, some of the storage may
be slower than main memory because the memory in active
use at one time is only about as much as the memory required
for one image and a small number of events.

5. Results

A prototype of both the preprocessing and the on-line por­
tions of this algorithm has been implemented. The prototype
program is written in C and was tested on a DECstation 3100
workstation. The algorithm was tested on several scenes; two
examples are shown in Figure 10.

Graphics Interface '90

Model 1

Model 2

FIgure 10. Two polyhedral scenes of moderate visual
complexIty.

Timing values and sizes for the construction phase of the al­
gorithm for the six models are shown in Figure 11. The num­
bers of faces, edges, and vertices of the original models are
recorded in the first three columns of the tables. For each of
the selected model orientations, the construction time (in
CPU seconds) and the resulting size (in Kbytes) are shown.

Model Vertices Edges Faces
1 192 192 48
2 388 800 416

Model orienL Time Size Max events Ave events Total
(sec) (KE) per edge per edge Events

1 -30 11 35 32 16.7 3214
0 9 31 31 14.9 2870
30 12 36 39 17.2 3300

2 -30 413 168 33 6.8 5479
0 437 176 32 7.2 5761

30 268 144 32 5.8 4650
base 95 47 16 2.3 1866

Figure 11. Asp construction information

14

Several conclusions can be drawn from the data shown in
Figure 11. First, the construction times and sizes indicate that
the construction of the asp representation for models with
many more faces is indeed tractable. Although the off-line
computation time for the largest model was approximately
seven minutes, this absolute time is highly dependent on both
the prototype program coding efficiency and the hardware
configuration. We have estimated that the asp representation
for models with at least an order of magnitude more faces can
be computed and stored by using more efficient program cod­
ing. Second, the number of visual events that occurs in a typ­
ical scene is only a small constant times the number of edges
in the model. The models in the upper table were constructed
to illustrate the potential worst-case behavior of the asp con­
struction algorithm. In all models, the largest number of
events per edge encountered was 17.2. Extrapolating from
the models tested, 10 MB is sufficient to store the events for a
scene with 20,000 to 180,000 edges . However, since the
number of events may be worse than linear in scene size, the
maximum possible scene size for 10 MB of storage will de­
pend on the visual complexity of the scene and may be much
smaller for complex scenes. Still, the storage requirements
appear to be practical for scenes of moderate size and visual
complexity.

In order to measure the display rate of each of the test mod­
els, we measured the time needed to display a sequence of
360 frames. The timing results include the time to update the
event structure as well as the time spent on computing the im­
age coordinates of each of the vectors to be displayed. A
complete asp and animation sequence was computed for the
models in each of three orientations: -30°, 0°, and 30°. The
0° orientation, chosen to illustrate a significant amount of oc­
clusion, is the orientation pictured in Figure 10. For the sec­
ond model a baseline orientation was also chosen, in which
no occlusion occurs throughout the animation sequence.

The results of these experiments for 360-frame rotations in
which the angle between frames varies from 1 ° to 17° are as
follows : for the first model between 1 and 2 seconds were
required in all orientations, or 180-360 frames were com­
puted per second. For the second model, between 6 and 8
seconds were required in all orientations, or 45-60 frames per
second. These results lead to several observations. First, a
change in the number of degrees between frames in the ani­
mation sequence does not greatly affect the display rate. This
indicates that the time needed to compute the image coordi­
nates of the segments to be displayed greatly dominates the
time needed to update the event structure. Thus processing a
larger number of events between frames has little effect on
the frame rate. Second, the display times for each of the three
orientations of each model are very similar. Although the
amount of occlusion varies from the base orientation to the
other orientations, the stable display time suggests again that
the large number of visible segments to be computed domi­
nates the overall frame rate.

Graphics Interface '90

In order to quantify these observations we have isolated the
percentage of total display time spent on processing visual
events. The total time for visual event processing includes
time spent both scanning the event list and maintaining the
ESG. For each model the time spent on event processing is
less than 5% of the total time for increments of less than 15°
and less than 1 % of the total time for increments of less than
2°. As expected. larger increments between frames imply
less coherence and greater time spent processing events.

The above observations indicate that the dominant part of the
display process is the computation of the image coordinates
of the endpoints of segments. and not the processing of visual
events. With 3-D rotation and vector-drawing hardware this
segment coordinate computation can be done quickly for
large wire-frame models. Since the added computational cost
of processing visual events is small, the animation of much
larger scenes can be achieved using the aspect representation.

Thus, the aspect representation can be used to achieve the
real-time display of scenes containing at least 1,000-10,000
faces on a general-purpose workstation. From the prototype
implementation of this algorithm we have found that for
scenes of moderate size and visual complexity

• The number of visual events is in practice a relatively
small constant times the number of edges in the scene

• Frame display time is stable for less than 15° increments
between frames

• Visual event processing requires less than 5% of the total
display time for increments of less than 15° and 1 % for
increments ofless than 2°.

These results suggest that the preprocessing times for typical
larger models will be much lower than the theoretical worst­
case bounds and that the resulting size of the event structure
will be a relatively small constant times the number of edges
in the model. In addition, the small computational cost asso­
ciated with visual event processing shows that the interactive.
real-time on-line display of large models can be achieved
when preprocessing time is available.

6. Related Work

In computing successive frames of an animation sequence,
one technique is to compute each frame independently and
store the results. Animated displays of moderate complexity
may thus be computed in advance and displayed in real time.
Denber and Turner described a method of compressing the
data in an animated sequence and increasing the speed of
their replay [Denber and Turner, 1986]. The technique in­
volves storing and displaying only the difference between
successive images. The technique is raster-based, and it does
not involve a faster method for computing the successive im­
ages. Glassner described a method for faster ray-tracing of a
sequence of images in an animation [Glassner, 1988]. The

15

technique uses a space subdivision algorithm for decreasing
the time required for ray tracing. The novel part of the
method is that it uses the subdivision techniques in 4-D
spacetime rather than 3-D space. achieving approximately a
50% decrease in ray-tracing runtime for the examples given.

Hubschman and Zucker introduced the idea of using frame­
to-frame coherence to decrease the time required for hidden­
line removal [Hubschman and Zucker, 1981]. They work in a
world with one or two stationary convex polyhedra, and they
fmd a number of frame-to-frame coherence constraints. The
result is a partition of the scene such that "the movement of
the viewing position across a partition boundary results in an
occlusion relationship becoming active or inactive." The
scene is updated when one of these "change boundaries" is
crossed. As a result, the storage requirements are 8(03) even
in the case of a single. non-degenerate convex polyhedron. A
generalization of this technique to multiple non-convex poly­
hedra would result in worst-case storage requirements of
8(n9) for a scene with n faces [Plantinga and Dyer, 1990].

Shelley and Greenberg introduced the idea of using frame-to­
frame coherence for animation with a viewpoint moving
along a path of viewpoints in viewpoint space [Shelley and
Greenberg, 1982]. They use a number of culling and sorting
rules to reduce the work involved. For example. they fmd the
box bounding the path of viewpoints; any faces that point
away from all viewpoints in the box can be removed from
consideration for all viewpoints along the path.

Fuchs et al. address the problem of displaying a set of poly­
gons from an arbitrary viewpoint in near-real time [Fuchs et
al .• 1983], with an approach that involves constructing the
BSP-tree (Binary Space Partition tree) [Fuchs. et al .• 1980]
for a scene in an off-line preprocessing stage. Then the dis­
play of a frame from some viewpoint with hidden surfaces
removed involves traversing the tree to get a list of faces in
an approximation of back-to-front order. The faces are
drawn on the screen in that order, and the result is an image
with hidden surfaces removed. In this approach, displaying
an image involves a tree-traversal and the display of all of the
faces of the scene.

This approach works well for the problems for which it ap­
plies. However, the BSP-tree approach only applies to hid­
den-surface removal. In cases where hidden-line removal is a
desirable or acceptable alternative, our approach may be used
to achieve greater frame-rates since hidden-line removal
makes it possible to draw the outline of polygons rather than
fllling them, which is usually slower. And even assuming
that filling a polygon and drawing its outline require the same
amount of time, our algorithm may have better on-line per­
formance since it only draws the visible polygons in a scene.
usually less than the total number of polygons in the scene.
The BSP-tree approach requires drawing all of the polygons
in the BSP-tree, which is more than the number of polygons
in the scene since polygons may have to be split in construct­
ing the BSP-tree.

Graphics Interface '90

7. Concluding Remarks

This paper presents an algorithm for efficiently animating ro­
tation by taking advantage of the frame-to-frame coherence
inherent in an animated sequence. The appearance from all
viewpoints along a given path is computed in a preprocessing
phase that works by constructing the aspect representation for
the scene. The preprocessing phase also involves computing
the initial appearance of the scene with a standard hidden-line
removal algorithm. The on-line phase involves the display of
views of the scene with hidden lines removed at a real-time
rate. It is about as fast as displaying a wire-frame model of a
polyhedral scene as it rotates, without removing hidden lines.

Another approach to this problem is to precompute all of the
frames of the animation sequence. This approach will require
considerably more storage than the method presented above,
since each view is stored rather than one view and the differ­
ences between views. In our test images above, the number
of events between frames was a small constant. In addition,
pre-computation time is likely to be greater than for the
method presented above, although general comparisons are
difficult to make. However, this simple approach may have
slightly higher replay speed since the representation is in 2-D
rather than 3-D vectors, and 2-D vectors may require less
time to display. Of course, the asp approach is more flexible
in that the number of degrees per frame is not determined in
advance.

The only previous algorithm for efficiently animating rotation
of general polyhedra with hidden lines or surfaces removed is
that of Fuchs et al. [1983]. After some pre-computation time,
it is efficient at computing the faces of the scene in an order
that approximates back-to-front. This is sufficient for hid­
den-surface removal by drawing all of the (shaded) faces
from back to front. However, when hidden-line removal is a
desirable or acceptable alternative to hidden-surface removal,
and when pre-computation time is available per viewpoint
path (rather than per scene), our algorithm may provide better
performance for a class of scenes, at the expense of greater
storage requirements.

The algorithm presented here is practical only for a certain
class of scenes. When the number of faces in the scene be­
comes large and the scene is visually complex, the number of
visual events will eventually become too large to store. In
the convex case, the number of visual events is O(n) where n
is the number of faces in the scene, but in the worst case the
number of visual events is O(n3). However, the prototype
implementation shows that for polyhedral scenes of moderate
size and visual complexity, the number of visual events is a
relatively small constant times the number of edges in the
scene. In practice, depending on the visual complexity of the
scene, a typical workstation has enough memory to store the
events for polyhedral scenes containing up to approximately
1,000 to 100,000 edges.

16

In addition, there must be sufficient preprocessing time per
rotation and sufficient processing speed to handle the on-line
phase. Perhaps a good rule of thumb is that a workstation
will be able to animate rotation for a polyhedral scene in real
time if it can display a rotating wire-frame model of the scene
in real time. Since only a small portion of the on-line display
time is used in updating the ESG this rule applies even if 3-D
rotation and vector-drawing hardware is available.

References

Denber, M. and P. Turner, "A differential compiler for com­
puter animation," ACM Computer Graphics 20(4),
1986, pp. 21-27.

Fuchs, H., Z. M. Kedem, and B. F. Naylor, "On visible sur­
face generation by a priori tree structures," ACM
Computer Graphics 14(3),1980, pp. 124-133.

Fuchs, H., G. Abram, and E. Grant, "Near real-time shaded
display of rigid objects," ACM Computer Graphics
17(3), 1983, pp. 65-72.

Gigus, Z., J. Canny, and R. Seidel, "Efficiently computing
and representing aspect graphs of polyhedral objects,"
Proc. Second Int. Conf. on Computer Vision, 1988,
pp. 30-39.

Glassner, A., "Spacetime ray tracing for animation," IEEE
Computer Graphics and Applications 8(2), 1988, pp.
60-70.

Hubschman, H. and S. Zucker, "Frame-to-frame coherence
and the hidden surface computation: constraints for a
convex world," ACM Computer Graphics 15(3),
1981, pp. 45-54.

Koenderink, J. and A. van Doom, "The internal representa­
tion of solid shape with respect to vision," Bioi.
Cybernetics 32, 1979, pp. 211-216.

Planting a, H. and C. R. Dyer, "An algorithm for constructing
the aspect graph," Proc. 27th IEEE Symp.
Foundations of Computer Sci., 1986, pp. 123-131.

Plantinga, H., "The Asp: A Continuous, Viewer-Centered
Object Representation for Computer Vision," Ph.D.
dissertation, University of Wisconsin - Madison,
August 1988.

Planting a, H. and C. R. Dyer, "Visibility, Occlusion, and the
Aspect Graph," to appear in International Journal of
Computer Vision, 1990.

Shelley, K. and D. Greenberg, "Path specification and path
coherence," ACM Computer Graphics 16(3), 1982,
pp. 157-166.

Graphics Interface '90

